Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Nature ; 540(7631): 80-85, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27842381

RESUMEN

In all domains of life, selenocysteine (Sec) is delivered to the ribosome by selenocysteine-specific tRNA (tRNASec) with the help of a specialized translation factor, SelB in bacteria. Sec-tRNASec recodes a UGA stop codon next to a downstream mRNA stem-loop. Here we present the structures of six intermediates on the pathway of UGA recoding in Escherichia coli by single-particle cryo-electron microscopy. The structures explain the specificity of Sec-tRNASec binding by SelB and show large-scale rearrangements of Sec-tRNASec. Upon initial binding of SelB-Sec-tRNASec to the ribosome and codon reading, the 30S subunit adopts an open conformation with Sec-tRNASec covering the sarcin-ricin loop (SRL) on the 50S subunit. Subsequent codon recognition results in a local closure of the decoding site, which moves Sec-tRNASec away from the SRL and triggers a global closure of the 30S subunit shoulder domain. As a consequence, SelB docks on the SRL, activating the GTPase of SelB. These results reveal how codon recognition triggers GTPase activation in translational GTPases.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , GTP Fosfohidrolasas/metabolismo , Ribosomas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Codón de Terminación/química , Codón de Terminación/genética , Codón de Terminación/metabolismo , Microscopía por Crioelectrón , Endorribonucleasas/metabolismo , Activación Enzimática , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/ultraestructura , Proteínas Fúngicas/metabolismo , GTP Fosfohidrolasas/ultraestructura , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Biosíntesis de Proteínas , Dominios Proteicos , ARN de Transferencia Aminoácido-Específico/química , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia Aminoácido-Específico/metabolismo , ARN de Transferencia Aminoácido-Específico/ultraestructura , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Subunidades Ribosómicas Pequeñas Bacterianas/química , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/ultraestructura , Ribosomas/química , Ribosomas/enzimología , Ribosomas/ultraestructura , Ricina/metabolismo , Selenocisteína/metabolismo
2.
Trends Biochem Sci ; 41(9): 798-814, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27372401

RESUMEN

The fidelity of translation depends strongly on the selection of the correct aminoacyl-tRNA that is complementary to the mRNA codon present in the ribosomal decoding center. The ribosome occasionally makes mistakes by selecting the wrong substrate from the pool of aminoacyl-tRNAs. Here, we summarize recent structural advances that may help to clarify the origin of missense errors that occur during decoding. These developments suggest that discrimination between tRNAs is based primarily on steric complementarity and shape acceptance rather than on the number of hydrogen bonds between the molding of the decoding center and the codon-anticodon duplex. They strengthen the hypothesis that spatial mimicry, due either to base tautomerism or ionization, drives infidelity in ribosomal translation.


Asunto(s)
Código Genético/genética , Mutación Missense , Biosíntesis de Proteínas , ARN de Transferencia Aminoácido-Específico/química , ARN de Transferencia Aminoácido-Específico/metabolismo , Anticodón/genética , Codón/genética , Enlace de Hidrógeno , Mutación Missense/genética , Biosíntesis de Proteínas/genética , ARN de Transferencia Aminoácido-Específico/genética , Ribosomas/química , Ribosomas/metabolismo
3.
RNA ; 23(11): 1685-1699, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28808125

RESUMEN

Seryl-tRNA synthetase (SerRS) attaches L-serine to the cognate serine tRNA (tRNASer) and the noncognate selenocysteine tRNA (tRNASec). The latter activity initiates the anabolic cycle of selenocysteine (Sec), proper decoding of an in-frame Sec UGA codon, and synthesis of selenoproteins across all domains of life. While the accuracy of SerRS is important for overall proteome integrity, it is its substrate promiscuity that is vital for the integrity of the selenoproteome. This raises a question as to what elements in the two tRNA species, harboring different anticodon sequences and adopting distinct folds, facilitate aminoacylation by a common aminoacyl-tRNA synthetase. We sought to answer this question by analyzing the ability of human cytosolic SerRS to bind and act on tRNASer, tRNASec, and 10 mutant and chimeric constructs in which elements of tRNASer were transposed onto tRNASec We show that human SerRS only subtly prefers tRNASer to tRNASec, and that discrimination occurs at the level of the serylation reaction. Surprisingly, the tRNA mutants predicted to adopt either the 7/5 or 8/5 fold are poor SerRS substrates. In contrast, shortening of the acceptor arm of tRNASec by a single base pair yields an improved SerRS substrate that adopts an 8/4 fold. We suggest that an optimal tertiary arrangement of structural elements within tRNASec and tRNASer dictate their utility for serylation. We also speculate that the extended acceptor-TΨC arm of tRNASec evolved as a compromise for productive binding to SerRS while remaining the major recognition element for other enzymes involved in Sec and selenoprotein synthesis.


Asunto(s)
ARN de Transferencia Aminoácido-Específico/metabolismo , ARN de Transferencia de Serina/metabolismo , Serina-ARNt Ligasa/metabolismo , Secuencia de Bases , Sitios de Unión , Citosol/enzimología , Humanos , Cinética , Modelos Moleculares , Mutagénesis , Conformación de Ácido Nucleico , Pliegue del ARN , ARN de Transferencia Aminoácido-Específico/química , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia de Serina/química , ARN de Transferencia de Serina/genética , Especificidad por Sustrato
4.
Nucleic Acids Res ; 45(5): 2776-2785, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28076288

RESUMEN

We report the identification of novel tRNA species with 12-base pair amino-acid acceptor branches composed of longer acceptor stem and shorter T-stem. While canonical tRNAs have a 7/5 configuration of the branch, the novel tRNAs have either 8/4 or 9/3 structure. They were found during the search for selenocysteine tRNAs in terabytes of genome, metagenome and metatranscriptome sequences. Certain bacteria and their phages employ the 8/4 structure for serine and histidine tRNAs, while minor cysteine and selenocysteine tRNA species may have a modified 8/4 structure with one bulge nucleotide. In Acidobacteria, tRNAs with 8/4 and 9/3 structures may function as missense and nonsense suppressor tRNAs and/or regulatory noncoding RNAs. In δ-proteobacteria, an additional cysteine tRNA with an 8/4 structure mimics selenocysteine tRNA and may function as opal suppressor. We examined the potential translation function of suppressor tRNA species in Escherichia coli; tRNAs with 8/4 or 9/3 structures efficiently inserted serine, alanine and cysteine in response to stop and sense codons, depending on the identity element and anticodon sequence of the tRNA. These findings expand our view of how tRNA, and possibly the genetic code, is diversified in nature.


Asunto(s)
ARN Bacteriano/química , ARN de Transferencia/química , Anticodón , Bacterias/genética , Toxinas Bacterianas/genética , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , ARN de Transferencia Aminoácido-Específico/química , ARN de Transferencia de Cisteína/química , ARN de Transferencia de Cisteína/metabolismo
5.
Methods ; 113: 46-55, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27777026

RESUMEN

In addition to their role in correctly attaching specific amino acids to cognate tRNAs, aminoacyl-tRNA synthetases (aaRS) have been found to possess many alternative functions and often bind to and act on other nucleic acids. In contrast to the well-defined 3D structure of tRNA, the structures of many of the other RNAs recognized by aaRSs have not been solved. Despite advances in the use of X-ray crystallography (XRC), nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy (cryo-EM) for structural characterization of biomolecules, significant challenges to solving RNA structures still exist. Recently, small-angle X-ray scattering (SAXS) has been increasingly employed to characterize the 3D structures of RNAs and RNA-protein complexes. SAXS is capable of providing low-resolution tertiary structure information under physiological conditions and with less intensive sample preparation and data analysis requirements than XRC, NMR and cryo-EM. In this article, we describe best practices involved in the process of RNA and RNA-protein sample preparation, SAXS data collection, data analysis, and structural model building.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Escherichia coli/genética , Pliegue del ARN , ARN de Transferencia Aminoácido-Específico/química , Aminoacilación de ARN de Transferencia , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/genética , Cromatografía en Gel , Escherichia coli/metabolismo , Modelos Moleculares , Electroforesis en Gel de Poliacrilamida Nativa , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia Aminoácido-Específico/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X
6.
Nature ; 484(7393): 256-9, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22437501

RESUMEN

During protein synthesis, the ribosome accurately selects transfer RNAs (tRNAs) in accordance with the messenger RNA (mRNA) triplet in the decoding centre. tRNA selection is initiated by elongation factor Tu, which delivers tRNA to the aminoacyl tRNA-binding site (A site) and hydrolyses GTP upon establishing codon-anticodon interactions in the decoding centre. At the following proofreading step the ribosome re-examines the tRNA and rejects it if it does not match the A codon. It was suggested that universally conserved G530, A1492 and A1493 of 16S ribosomal RNA, critical for tRNA binding in the A site, actively monitor cognate tRNA, and that recognition of the correct codon-anticodon duplex induces an overall ribosome conformational change (domain closure). Here we propose an integrated mechanism for decoding based on six X-ray structures of the 70S ribosome determined at 3.1-3.4 Å resolution, modelling cognate or near-cognate states of the decoding centre at the proofreading step. We show that the 30S subunit undergoes an identical domain closure upon binding of either cognate or near-cognate tRNA. This conformational change of the 30S subunit forms a decoding centre that constrains the mRNA in such a way that the first two nucleotides of the A codon are limited to form Watson-Crick base pairs. When U·G and G·U mismatches, generally considered to form wobble base pairs, are at the first or second codon-anticodon position, the decoding centre forces this pair to adopt the geometry close to that of a canonical C·G pair. This by itself, or with distortions in the codon-anticodon mini-helix and the anticodon loop, causes the near-cognate tRNA to dissociate from the ribosome.


Asunto(s)
Modelos Biológicos , Ribosomas/química , Ribosomas/metabolismo , Anticodón/genética , Anticodón/metabolismo , Emparejamiento Base , Secuencia de Bases , Codón/genética , Codón/metabolismo , Cristalografía por Rayos X , Modelos Genéticos , Modelos Moleculares , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , Conformación Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/metabolismo , ARN de Transferencia Aminoácido-Específico/química , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia Aminoácido-Específico/metabolismo , Ribosomas/genética , Thermus thermophilus
7.
Mol Cell ; 39(3): 410-20, 2010 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-20705242

RESUMEN

The 21(st) amino acid, selenocysteine (Sec), is assigned to the codon UGA and is biosynthesized on the selenocysteine-specific tRNA (tRNA(Sec)) with the corresponding anticodon. In archaea/eukarya, tRNA(Sec) is ligated with serine by seryl-tRNA synthetase (SerRS), the seryl moiety is phosphorylated by O-phosphoseryl-tRNA kinase (PSTK), and the phosphate group is replaced with selenol by Sep-tRNA:Sec-tRNA synthase. PSTK selectively phosphorylates seryl-tRNA(Sec), while SerRS serylates both tRNA(Ser) and tRNA(Sec). In this study, we determined the crystal structures of the archaeal tRNA(Sec).PSTK complex. PSTK consists of two independent linker-connected domains, the N-terminal catalytic domain (NTD) and the C-terminal domain (CTD). The D-arm.CTD binding occurs independently of and much more strongly than the acceptor-arm.NTD binding. PSTK thereby distinguishes the characteristic D arm with the maximal stem and the minimal loop of tRNA(Sec) from the canonical D arm of tRNA(Ser), without interacting with the anticodon. This mechanism is essential for the UGA-specific encoding of selenocysteine.


Asunto(s)
Proteínas Arqueales/química , Methanococcus/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Methanococcus/genética , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Estructura Terciaria de Proteína , ARN de Archaea/química , ARN de Archaea/genética , ARN de Archaea/metabolismo , ARN de Transferencia Aminoácido-Específico/química , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia Aminoácido-Específico/metabolismo , Relación Estructura-Actividad
8.
Nucleic Acids Res ; 43(21): 10534-45, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26433229

RESUMEN

Selenocysteine (Sec) is found in the catalytic centers of many selenoproteins and plays important roles in living organisms. Malfunctions of selenoproteins lead to various human disorders including cancer. Known as the 21st amino acid, the biosynthesis of Sec involves unusual pathways consisting of several stages. While the later stages of the pathways are well elucidated, the molecular basis of the first stage-the serylation of Sec-specific tRNA (tRNA(Sec)) catalyzed by seryl-tRNA synthetase (SerRS)-is unclear. Here we present two cocrystal structures of human SerRS bound with tRNA(Sec) in different stoichiometry and confirm the formation of both complexes in solution by various characterization techniques. We discovered that the enzyme mainly recognizes the backbone of the long variable arm of tRNA(Sec) with few base-specific contacts. The N-terminal coiled-coil region works like a long-range lever to precisely direct tRNA 3' end to the other protein subunit for aminoacylation in a conformation-dependent manner. Restraints of the flexibility of the coiled-coil greatly reduce serylation efficiencies. Lastly, modeling studies suggest that the local differences present in the D- and T-regions as well as the characteristic U20:G19:C56 base triple in tRNA(Sec) may allow SerRS to distinguish tRNA(Sec) from closely related tRNA(Ser) substrate.


Asunto(s)
ARN de Transferencia Aminoácido-Específico/química , Selenocisteína/biosíntesis , Serina-ARNt Ligasa/química , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , ARN de Transferencia Aminoácido-Específico/metabolismo , Serina-ARNt Ligasa/metabolismo , Especificidad por Sustrato
9.
Nucleic Acids Res ; 43(18): 9028-38, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26304550

RESUMEN

Selenocysteine (Sec), the 21(st) amino acid in translation, uses its specific tRNA (tRNA(Sec)) to recognize the UGA codon. The Sec-specific elongation factor SelB brings the selenocysteinyl-tRNA(Sec) (Sec-tRNA(Sec)) to the ribosome, dependent on both an in-frame UGA and a Sec-insertion sequence (SECIS) in the mRNA. The bacterial SelB binds mRNA through its C-terminal region, for which crystal structures have been reported. In this study, we determined the crystal structure of the full-length SelB from the bacterium Aquifex aeolicus, in complex with a GTP analog, at 3.2-Å resolution. SelB consists of three EF-Tu-like domains (D1-3), followed by four winged-helix domains (WHD1-4). The spacer region, connecting the N- and C-terminal halves, fixes the position of WHD1 relative to D3. The binding site for the Sec moiety of Sec-tRNA(Sec) is located on the interface between D1 and D2, where a cysteine molecule from the crystallization solution is coordinated by Arg residues, which may mimic Sec binding. The Sec-binding site is smaller and more exposed than the corresponding site of EF-Tu. Complex models of Sec-tRNA(Sec), SECIS RNA, and the 70S ribosome suggest that the unique secondary structure of tRNA(Sec) allows SelB to specifically recognize tRNA(Sec) and characteristically place it at the ribosomal A-site.


Asunto(s)
Proteínas Bacterianas/química , Factores de Elongación de Péptidos/química , ARN de Transferencia Aminoácido-Específico/química , Selenocisteína/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Factores de Elongación de Péptidos/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia Aminoácido-Específico/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Selenocisteína/metabolismo
10.
Nucleic Acids Res ; 41(13): 6729-38, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23649835

RESUMEN

Selenocysteine (Sec) is translationally incorporated into proteins in response to the UGA codon. The tRNA specific to Sec (tRNA(Sec)) is first ligated with serine by seryl-tRNA synthetase (SerRS). In the present study, we determined the 3.1 Å crystal structure of the tRNA(Sec) from the bacterium Aquifex aeolicus, in complex with the heterologous SerRS from the archaeon Methanopyrus kandleri. The bacterial tRNA(Sec) assumes the L-shaped structure, from which the long extra arm protrudes. Although the D-arm conformation and the extra-arm orientation are similar to those of eukaryal/archaeal tRNA(Sec)s, A. aeolicus tRNA(Sec) has unique base triples, G14:C21:U8 and C15:G20a:G48, which occupy the positions corresponding to the U8:A14 and R15:Y48 tertiary base pairs of canonical tRNAs. Methanopyrus kandleri SerRS exhibited serine ligation activity toward A. aeolicus tRNA(Sec) in vitro. The SerRS N-terminal domain interacts with the extra-arm stem and the outer corner of tRNA(Sec). Similar interactions exist in the reported tRNA(Ser) and SerRS complex structure from the bacterium Thermus thermophilus. Although the catalytic C-terminal domain of M. kandleri SerRS lacks interactions with A. aeolicus tRNA(Sec) in the present complex structure, the conformational flexibility of SerRS is likely to allow the CCA terminal region of tRNA(Sec) to enter the SerRS catalytic site.


Asunto(s)
ARN Bacteriano/química , ARN de Transferencia Aminoácido-Específico/química , Serina-ARNt Ligasa/química , Euryarchaeota/enzimología , Modelos Moleculares , Conformación de Ácido Nucleico , Serina-ARNt Ligasa/metabolismo , Aminoacilación de ARN de Transferencia
11.
Nucleic Acids Res ; 41(21): 9800-11, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23982514

RESUMEN

Selenoprotein expression in Escherichia coli redefines specific single UGA codons from translational termination to selenocysteine (Sec) insertion. This process requires the presence of a Sec Insertion Sequence (SECIS) in the mRNA, which forms a secondary structure that binds a unique Sec-specific elongation factor that catalyzes Sec insertion at the predefined UGA instead of release factor 2-mediated termination. During overproduction of recombinant selenoproteins, this process nonetheless typically results in expression of UGA-truncated products together with the production of recombinant selenoproteins. Here, we found that premature termination can be fully avoided through a SECIS-dependent Sec-mediated suppression of UGG, thereby yielding either tryptophan or Sec insertion without detectable premature truncation. The yield of recombinant selenoprotein produced with this method approached that obtained with a classical UGA codon for Sec insertion. Sec-mediated suppression of UGG thus provides a novel method for selenoprotein production, as here demonstrated with rat thioredoxin reductase. The results also reveal that the E. coli selenoprotein synthesis machinery has the inherent capability to promote wobble decoding.


Asunto(s)
Codón , Escherichia coli/genética , Selenocisteína/metabolismo , Selenoproteínas/biosíntesis , Animales , Anticodón , ARN de Transferencia Aminoácido-Específico/química , Ratas , Proteínas Recombinantes/biosíntesis , Selenoproteínas/genética , Tiorredoxina Reductasa 1/biosíntesis , Tiorredoxina Reductasa 1/genética , Tiorredoxina Reductasa 1/metabolismo
12.
RNA ; 18(12): 2260-8, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23097422

RESUMEN

We have shown previously that simple RNA structures bind pure phospholipid liposomes. However, binding of bona fide cellular RNAs under physiological ionic conditions is shown here for the first time. Human tRNA(Sec) contains a hydrophobic anticodon-loop modification: N6-isopentenyladenosine (i6A) adjacent to its anticodon. Using a highly specific double-probe hybridization assay, we show mature human tRNA(Sec) specifically retained in HeLa intermediate-density membranes. Further, isolated human tRNA(Sec) rebinds to liposomes from isolated HeLa membrane lipids, to a much greater extent than an unmodified tRNA(Sec) transcript. To better define this affinity, experiments with pure lipids show that liposomes forming rafts or including positively charged sphingosine, or particularly both together, exhibit increased tRNA(Sec) binding. Thus tRNA(Sec) residence on membranes is determined by several factors, such as hydrophobic modification (likely isopentenylation of tRNA(Sec)), lipid structure (particularly lipid rafts), or sphingosine at a physiological concentration in rafted membranes. From prior work, RNA structure and ionic conditions also appear important. tRNA(Sec) dissociation from HeLa liposomes implies a mean membrane residence of 7.6 min at 24°C (t(1/2) = 5.3 min). Clearly RNA with a 5-carbon hydrophobic modification binds HeLa membranes, probably favoring raft domains containing specific lipids, for times sufficient to alter biological fates.


Asunto(s)
ARN de Transferencia Aminoácido-Específico/química , ARN de Transferencia Aminoácido-Específico/metabolismo , Secuencia de Bases , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Membrana Dobles de Lípidos/metabolismo , Liposomas/química , Liposomas/metabolismo , Microdominios de Membrana/metabolismo , Membranas/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN de Transferencia Aminoácido-Específico/genética , Esfingosina/metabolismo
13.
RNA Biol ; 11(12): 1540-54, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25616362

RESUMEN

Pseudouridine (Ψ) is the most abundant of >150 nucleoside modifications in RNA. Although Ψ was discovered as the first modified nucleoside more than half a century ago, neither the enzymatic mechanism of its formation, nor the function of this modification are fully elucidated. We present the consistent picture of Ψ synthases, their substrates and their substrate positions in model organisms of all domains of life as it has emerged to date and point out the challenges that remain concerning higher eukaryotes and the elucidation of the enzymatic mechanism.


Asunto(s)
Transferasas Intramoleculares/metabolismo , Seudouridina/metabolismo , Procesamiento Postranscripcional del ARN , ARN Guía de Kinetoplastida/metabolismo , ARN de Transferencia Aminoácido-Específico/metabolismo , Uridina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Transferasas Intramoleculares/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Conformación de Ácido Nucleico , ARN/genética , ARN/metabolismo , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , ARN Mitocondrial , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN de Transferencia Aminoácido-Específico/química , ARN de Transferencia Aminoácido-Específico/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
14.
Orig Life Evol Biosph ; 44(4): 269-77, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25585798

RESUMEN

The self-referential genetic encoding starts with glycine and serine, in the realm of one-carbon units of metabolism. It is proposed that the prototRNA dimer-directed mechanism of protein synthesis and encoding promotes a sink dynamics that corresponds to the driving 'force' for the fixation of the supporting metabolic pathways. A succession of processes is delineated, ending up in reproduction, which accomplished the function of reinforcing the protein synthesis metabolic sink mechanism.


Asunto(s)
Código Genético , Glicina/química , Modelos Genéticos , Origen de la Vida , ARN de Transferencia Aminoácido-Específico/química , Serina/química , Evolución Biológica , Carbono/metabolismo , División Celular , Dimerización , Glicina/metabolismo , Glicina Hidroximetiltransferasa/química , Glicina Hidroximetiltransferasa/metabolismo , Redes y Vías Metabólicas , Biosíntesis de Proteínas , ARN de Transferencia Aminoácido-Específico/metabolismo , Reproducción , Serina/metabolismo
15.
Orig Life Evol Biosph ; 44(4): 293-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25585807

RESUMEN

It is proposed that the prebiotic ordering of nucleic acid and peptide sequences was a cooperative process in which nearly random populations of both kinds of polymers went through a codependent series of self-organisation events that simultaneously refined not only the accuracy of genetic replication and coding but also the functional specificity of protein catalysts, especially nascent aminoacyl-tRNA synthetase "urzymes".


Asunto(s)
Aminoácidos/química , Aminoacil-ARNt Sintetasas/química , Origen de la Vida , Biosíntesis de Proteínas , ARN Mensajero/química , ARN de Transferencia Aminoácido-Específico/química , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Biocatálisis , Transferencia de Energía , Código Genético , Teoría de la Información , Datos de Secuencia Molecular , ARN Catalítico/química , ARN Catalítico/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia Aminoácido-Específico/metabolismo , Termodinámica
16.
Orig Life Evol Biosph ; 44(4): 287-91, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25585805

RESUMEN

The origin of a genetic code made it possible to create ordered sequences of amino acids. In this article we provide two perspectives on code origin by carrying out simulations of code-sequence coevolution in finite populations with the aim of examining how the standard genetic code may have evolved from more primitive code(s) encoding a small number of amino acids. We determine the efficacy of the physico-chemical hypothesis of code origin in the absence and presence of horizontal gene transfer (HGT) by allowing a diverse collection of code-sequence sets to compete with each other. We find that in the absence of horizontal gene transfer, natural selection between competing codes distinguished by differences in the degree of physico-chemical optimization is unable to explain the structure of the standard genetic code. However, for certain probabilities of the horizontal transfer events, a universal code emerges having a structure that is consistent with the standard genetic code.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Codón/química , Código Genético , Origen de la Vida , ARN Mensajero/química , ARN de Transferencia Aminoácido-Específico/química , Aminoácidos/química , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Codón/metabolismo , Evolución Molecular , Transferencia de Gen Horizontal , Genes , Modelos Genéticos , Probabilidad , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , ARN de Transferencia Aminoácido-Específico/metabolismo , Selección Genética
17.
Orig Life Evol Biosph ; 44(4): 299-302, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25592392

RESUMEN

RNA world hypothesis is widely accepted still now, as an idea by which the origin of life might be explained. But, there are many weak points in the hypothesis. In contrast, I have proposed a more reasonable [GADV]-protein world hypothesis or GADV hypothesis, suggesting that life originated from the protein world, which was formed by pseudo-replication of [GADV]-proteins. In this communication, I will discuss about the origin of life from the point of view of the GADV hypothesis.


Asunto(s)
Código Genético , Modelos Genéticos , Origen de la Vida , Biosíntesis de Proteínas , ARN de Transferencia Aminoácido-Específico/química , Alanina/química , Alanina/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Evolución Biológica , Carbono/metabolismo , Glicina/química , Glicina/metabolismo , Conformación Proteica , Pliegue de Proteína , ARN de Transferencia Aminoácido-Específico/metabolismo , Valina/química , Valina/metabolismo
18.
Chemistry ; 19(47): 15872-8, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24127424

RESUMEN

The twenty first amino acid, selenocysteine (Sec), is the only amino acid that is synthesized on its cognate transfer RNA (tRNA(Sec)) in all domains of life. The multistep pathway involves O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SepSecS), an enzyme that catalyzes the terminal chemical reaction during which the phosphoseryl-tRNA(Sec) intermediate is converted into selenocysteinyl-tRNA(Sec). The SepSecS architecture and the mode of tRNA(Sec) recognition have been recently determined at atomic resolution. The crystal structure provided valuable insights that gave rise to mechanistic proposals that could not be validated because of the lack of appropriate molecular probes. To further improve our understanding of the mechanism of the biosynthesis of selenocysteine in general and the mechanism of SepSecS in particular, stable tRNA(Sec) substrates carrying aminoacyl moieties that mimic particular reaction intermediates are needed. Here, we report on the accurate synthesis of methylated, phosphorylated, and phosphonated serinyl-derived tRNA(Sec) mimics that contain a hydrolysis-resistant ribose 3'-amide linkage instead of the natural ester bond. The procedures introduced allow for efficient site-specific methylation and/or phosphorylation directly on the solid support utilized in the automated RNA synthesis. For the preparation of (S)-2-amino-4-phosphonobutyric acid-oligoribonucleotide conjugates, a separate solid support was generated. Furthermore, we developed a three-strand enzymatic ligation protocol to obtain the corresponding full-length tRNA(Sec) derivatives. Finally, we developed an electrophoretic mobility shift assay (EMSA) for rapid, qualitative characterization of the SepSecS-tRNA interactions. The novel tRNA(Sec) mimics are promising candidates for further elucidation of the biosynthesis of selenocysteine by X-ray crystallography and other biochemical approaches, and could be attractive for similar studies on other tRNA-dependent enzymes.


Asunto(s)
Materiales Biocompatibles/síntesis química , Ácidos Fosforosos/química , ARN de Transferencia Aminoácido-Específico/química , Aminobutiratos/química , Secuencia de Bases , Materiales Biocompatibles/química , Metilación , Conformación de Ácido Nucleico , Fosforilación , ARN de Transferencia Aminoácido-Específico/síntesis química , Técnicas de Síntesis en Fase Sólida
19.
Protein Expr Purif ; 88(1): 80-4, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23266652

RESUMEN

Selenocysteine Synthase (SELA, E.C. 2.9.1.1) from Escherichia coli is a homodecamer pyridoxal-5'-phosphate containing enzyme responsible for the conversion of seryl-tRNA(sec) into selenocysteyl-tRNA(sec) in the biosynthesis of the 21th amino acid, selenocysteine (Sec or U). This paper describes the cloning of the E. coli selA gene into a modified pET29a(+) vector and its expression in E. coli strain WL81460, a crucial modification allowing SELA expression without bound endogenous tRNA(sec). This expression strategy enabled the purification and additional biochemical and biophysical characterization of the SELA decamer. The homogeneous SELA protein was obtained using three chromatographic steps. Size Exclusion Chromatography and Native Gel Electrophoresis showed that SELA maintains a decameric state with molecular mass of approximately 500 kDa with an isoelectric point of 6,03. A predominance of α-helix structures was detected by circular dichroism with thermal stability up to 45 °C. The oligomeric assemblage of SELA was investigated by glutaraldehyde crosslinking experiments indicate that SELA homodecameric structure is the result of a stepwise addition of intermediate oligomeric states and not a direct monomer to homodecamer transition. Our results have contributed to the establishment of a robust expression model for the enzyme free of bound RNA and are of general interest to be taken into consideration in all cases of heterologous/homologous expressions of RNA-binding proteins avoiding the carryover of endogenous RNAs, which may interfere with further biochemical characterizations.


Asunto(s)
Escherichia coli/enzimología , Proteínas Recombinantes/aislamiento & purificación , Transferasas/química , Transferasas/aislamiento & purificación , Biofisica , Peso Molecular , Estructura Secundaria de Proteína , Fosfato de Piridoxal/química , ARN de Transferencia Aminoácido-Específico/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Selenocisteína/biosíntesis , Selenocisteína/química
20.
Nucleic Acids Res ; 39(3): 1034-41, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20870747

RESUMEN

O-Phosphoseryl-tRNA kinase (PSTK) is the key enzyme in recruiting selenocysteine (Sec) to the genetic code of archaea and eukaryotes. The enzyme phosphorylates Ser-tRNA(Sec) to produce O-phosphoseryl-tRNA(Sec) (Sep-tRNA(Sec)) that is then converted to Sec-tRNA(Sec) by Sep-tRNA:Sec-tRNA synthase. Earlier we reported the structure of the Methanocaldococcus jannaschii PSTK (MjPSTK) complexed with AMPPNP. This study presents the crystal structure (at 2.4-Å resolution) of MjPSTK complexed with an anticodon-stem/loop truncated tRNA(Sec) (Mj*tRNA(Sec)), a good enzyme substrate. Mj*tRNA(Sec) is bound between the enzyme's C-terminal domain (CTD) and N-terminal kinase domain (NTD) that are connected by a flexible 11 amino acid linker. Upon Mj*tRNA(Sec) recognition the CTD undergoes a 62-Å movement to allow proper binding of the 7-bp D-stem. This large reorganization of the PSTK quaternary structure likely provides a means by which the unique tRNA(Sec) species can be accurately recognized with high affinity by the translation machinery. However, while the NTD recognizes the tRNA acceptor helix, shortened versions of MjPSTK (representing only 60% of the original size, in which the entire CTD, linker loop and an adjacent NTD helix are missing) are still active in vivo and in vitro, albeit with reduced activity compared to the full-length enzyme.


Asunto(s)
Proteínas Arqueales/química , Fosfotransferasas/química , ARN de Archaea/química , ARN de Transferencia Aminoácido-Específico/química , Anticodón/química , Proteínas Arqueales/genética , Secuencia de Bases , Sitios de Unión , Cristalografía , Methanococcales/enzimología , Modelos Moleculares , Datos de Secuencia Molecular , Movimiento (Física) , Mutación , Fosfotransferasas/genética , Unión Proteica , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda