RESUMEN
The mitochondrial ATP synthase emerges as key hub of cellular functions controlling the production of ATP, cellular signaling, and fate. It is regulated by the ATPase inhibitory factor 1 (IF1), which is highly abundant in neurons. Herein, we ablated or overexpressed IF1 in mouse neurons to show that IF1 dose defines the fraction of active/inactive enzyme in vivo, thereby controlling mitochondrial function and the production of mitochondrial reactive oxygen species (mtROS). Transcriptomic, proteomic, and metabolomic analyses indicate that IF1 dose regulates mitochondrial metabolism, synaptic function, and cognition. Ablation of IF1 impairs memory, whereas synaptic transmission and learning are enhanced by IF1 overexpression. Mechanistically, quenching the IF1-mediated increase in mtROS production in mice overexpressing IF1 reduces the increased synaptic transmission and obliterates the learning advantage afforded by the higher IF1 content. Overall, IF1 plays a key role in neuronal function by regulating the fraction of ATP synthase responsible for mitohormetic mtROS signaling.
Asunto(s)
Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteínas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Encéfalo/metabolismo , Línea Celular , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , ATPasas de Translocación de Protón Mitocondriales/fisiología , Cultivo Primario de Células , Proteínas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Proteína Inhibidora ATPasaRESUMEN
The yeast mitochondrial ATP synthase is a rotary molecular machine primarily responsible for the production of energy used to drive cellular processes. The enzyme complex is composed of 17 different subunits grouped into a soluble F1 sector and a membrane-embedded F0 sector. The catalytic head of the F1 sector and the membrane integrated motor module in the F0 sector are connected by two stalks, the F1 central stalk and the F0 peripheral stalk. Proton translocation through the F0 motor module drives the rotation of the subunit 910-ring that generates torque which is transmitted to the calaytic head through the γ subunit of the central stalk. The rotation of the γ subunit causes changes in conformation of the catalytic head which leads to the synthesis of ATP. Biogenesis of the enzyme involves modular assembly of polypeptides of dual genetic origin, the nuclear and the mitochondrial genomes. Most of the yeast ATP synthase subunits are encoded by the genome of the nucleus, translated on cytosolic ribosomes and imported into mitochondria. In the mitochondria, the enzyme forms a dimer which contributes to the formation of cristae, a characteristic of mitochondrial morphology. Substantial progress has recently been made on the elucidation of detailed stucture, function and biogenesis of yeast mitochondrial ATP synthase. The recent availability of high-resolution structure of the complete monomeric form, as well as the atomic model for the dimeric F0 sector, has advanced the understanding of the enzyme complex. This review is intended to provide an overview of current understanding of the molecular structure, catalytic mechanism, subunit import into mitochondria, and the subunit assembly into the enzyme complex. This is important as the yeast mitochondrial ATP synthase may be used as a model for understanding the corresponding enzyme complexes from human and other eukaryotic cells in physiological and diseased states.
Asunto(s)
Proteínas Fúngicas , ATPasas de Translocación de Protón Mitocondriales , Transporte Biológico , Catálisis , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/química , Proteínas Fúngicas/fisiología , ATPasas de Translocación de Protón Mitocondriales/biosíntesis , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/fisiología , Modelos Moleculares , Estructura Molecular , Subunidades de Proteína/metabolismoRESUMEN
Mitochondrial ATP generation by oxidative phosphorylation combines the stepwise oxidation by the electron transport chain (ETC) of the reducing equivalents NADH and FADH2 with the generation of ATP by the ATP synthase. Recent studies show that the ATP synthase is not only essential for the generation of ATP but may also contribute to the formation of the mitochondrial permeability transition pore (PTP). We present a model, in which the PTP is located within the c-subunit ring in the Fo subunit of the ATP synthase. Opening of the PTP was long associated with uncoupling of the ETC and the initiation of programmed cell death. More recently, it was shown that PTP opening may serve a physiologic role: it can transiently open to regulate mitochondrial signaling in mature cells, and it is open in the embryonic mouse heart. This review will discuss how the ATP synthase paradoxically lies at the center of both ATP generation and cell death.
Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/fisiología , ATPasas de Translocación de Protón Mitocondriales/fisiología , Adenosina Trifosfato/biosíntesis , Animales , Apoptosis , Transporte de Electrón , Metabolismo Energético , Humanos , Poro de Transición de la Permeabilidad MitocondrialRESUMEN
F1F0-ATP synthases are multimeric protein complexes and common prerequisites for their correct assembly are (i) provision of subunits in appropriate relative amounts, (ii) coordination of membrane insertion and (iii) avoidance of assembly intermediates that uncouple the proton gradient or wastefully hydrolyse ATP. Accessory factors facilitate these goals and assembly occurs in a modular fashion. Subcomplexes common to bacteria and mitochondria, but in part still elusive in chloroplasts, include a soluble F1 intermediate, a membrane-intrinsic, oligomeric c-ring, and a membrane-embedded subcomplex composed of stator subunits and subunit a. The final assembly step is thought to involve association of the preformed F1-c10-14 with the ab2 module (or the ab8-stator module in mitochondria)--mediated by binding of subunit δ in bacteria or OSCP in mitochondria, respectively. Despite the common evolutionary origin of F1F0-ATP synthases, the set of auxiliary factors required for their assembly in bacteria, mitochondria and chloroplasts shows clear signs of evolutionary divergence. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Asunto(s)
ATPasas de Translocación de Protón Mitocondriales/química , Cloroplastos/enzimología , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/fisiologíaRESUMEN
The free radical theory of aging is almost 60 years old. As mitochondria are the principle source of intracellular reactive oxygen species (ROS), this hypothesis suggested a central role for the mitochondrion in normal mammalian aging. In recent years, however, much work has questioned the importance of mitochondrial ROS in driving aging. Conversely new evidence points to other facets of mitochondrial dysfunction which may nevertheless suggest the mitochondrion retains a critical role at the center of a complex web of processes leading to cellular and organismal aging.
Asunto(s)
Envejecimiento/fisiología , Mitocondrias/fisiología , Animales , ADN Mitocondrial/genética , Humanos , ATPasas de Translocación de Protón Mitocondriales/fisiología , Mutación , Especies Reactivas de Oxígeno/metabolismoRESUMEN
The importance of epigenetic changes in the development of hepatic steatosis is largely unknown. The histone variant macroH2A1 under alternative splicing gives rise to macroH2A1.1 and macroH2A1.2. In this study, we show that the macroH2A1 isoforms play an important role in the regulation of lipid accumulation in hepatocytes. Hepatoma cell line and immortalized human hepatocytes transiently transfected or knocked down with macroH2A1 isoforms were used as in vitro model of fat-induced steatosis. Gene expressions were analyzed by quantitative PCR array and Western blot. Chromatin immunoprecipitation analysis was performed to check the association of histone H3 lysine 27 trimethylation (H3K27me3) and histone H3 lysine 4 trimethylation (H3K4me3) with the promoter of lipogenic genes. Livers from knockout mice that are resistant to lipid deposition despite a high-fat diet were used for histopathology. We found that macroH2A1.2 is regulated by fat uptake and that its overexpression caused an increase in lipid uptake, triglycerides, and lipogenic genes compared with macroH2A1.1. This suggests that macroH2A1.2 is important for lipid uptake, whereas macroH2A1.1 was found to be protective. The result was supported by a high positivity for macroH2A1.1 in knockout mice for genes targeted by macroH2A1 (Atp5a1 and Fam73b), that under a high-fat diet presented minimal lipidosis. Moreover, macroH2A1 isoforms differentially regulate the expression of lipogenic genes by modulating the association of the active (H3K4me3) and repressive (H3K27me3) histone marks on their promoters. This study underlines the importance of the replacement of noncanonical histones in the regulation of genes involved in lipid metabolism in the progression of steatosis.
Asunto(s)
Biomarcadores/metabolismo , Carcinoma Hepatocelular/patología , Dieta Alta en Grasa/efectos adversos , Epigenómica , Hígado Graso/metabolismo , Hígado Graso/patología , Hepatocitos/patología , Histonas/metabolismo , Animales , Western Blotting , Carcinoma Hepatocelular/metabolismo , Células Cultivadas , Inmunoprecipitación de Cromatina , Hígado Graso/etiología , Femenino , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Hepatocitos/metabolismo , Histonas/genética , Humanos , Técnicas para Inmunoenzimas , Peroxidación de Lípido , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ATPasas de Translocación de Protón Mitocondriales/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas/genética , Isoformas de Proteínas , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Mitochondrial defects have been related to obesity and prostate cancer. We investigated if Mexican-Mestizo men presenting this type of cancer, exhibited somatic mutations of ATP6 and/or ND3.Body mass index (BMI) was determined; the degree of prostate cancer aggressiveness was demarcated by the Gleason score. DNA from tumor tissue and from blood leukocytes was amplified by the polymerase chain reaction and ATP6 and ND3 were sequenced. We included 77 men: 20 had normal BMI, 38 were overweight and 19 had obesity; ages ranged from 52 to 83. After sequencing ATP6 and ND3, from DNA obtained from leukocytes and tumor tissue, we did not find any somatic mutations. All changes observed, in both genes, were polymorphisms. In ATP6 we identified, in six patients, two non-synonymous nucleotide changes and in ND3 we observed that twelve patients presented non-synonymous polymorphisms. To our knowledge, this constitutes the first report where the complete sequences of the ATP6 and ND3 have been analyzed in Mexican-Mestizo men with prostate cancer and diverse BMI. Our results differ with those reported in Caucasian populations, possibly due to ethnic differences.
Asunto(s)
Complejo I de Transporte de Electrón/fisiología , ATPasas de Translocación de Protón Mitocondriales/fisiología , Obesidad/genética , Sobrepeso/genética , Polimorfismo Genético , Neoplasias de la Próstata/genética , Anciano , Anciano de 80 o más Años , Complejo I de Transporte de Electrón/genética , Humanos , Masculino , México , Persona de Mediana Edad , ATPasas de Translocación de Protón Mitocondriales/genética , Metástasis de la Neoplasia/genética , Obesidad/complicaciones , Sobrepeso/complicaciones , Neoplasias de la Próstata/complicaciones , Neoplasias de la Próstata/patologíaRESUMEN
Mutations in the MT-ATP6 gene are frequent causes of severe mitochondrial disorders. Typically, these are missense mutations, but another type is represented by the 9205delTA microdeletion, which removes the stop codon of the MT-ATP6 gene and affects the cleavage site in the MT-ATP8/MT-ATP6/MT-CO3 polycistronic transcript. This interferes with the processing of mRNAs for the Atp6 (Fo-a) subunit of ATP synthase and the Cox3 subunit of cytochrome c oxidase (COX). Two cases described so far presented with strikingly different clinical phenotypes-mild transient lactic acidosis or fatal encephalopathy. To gain more insight into the pathogenic mechanism, we prepared 9205delTA cybrids with mutation load ranging between 52 and 99% and investigated changes in the structure and function of ATP synthase and the COX. We found that 9205delTA mutation strongly reduces the levels of both Fo-a and Cox3 proteins. Lack of Fo-a alters the structure but not the content of ATP synthase, which assembles into a labile, â¼60 kDa smaller, complex retaining ATP hydrolytic activity but which is unable to synthesize ATP. In contrast, lack of Cox3 limits the biosynthesis of COX but does not alter the structure of the enzyme. Consequently, the diminished mitochondrial content of COX and non-functional ATP synthase prevent most mitochondrial ATP production. The biochemical effects caused by the 9205delTA microdeletion displayed a pronounced threshold effect above â¼90% mutation heteroplasmy. We observed a linear relationship between the decrease in subunit Fo-a or Cox3 content and the functional presentation of the defect. Therefore we conclude that the threshold effect originated from a gene-protein level.
Asunto(s)
ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/genética , ATPasas de Translocación de Protón Mitocondriales/fisiología , Mutación/genética , Línea Celular , Complejo IV de Transporte de Electrones/metabolismo , Eliminación de Gen , Humanos , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/deficiencia , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Subunidades de Proteína/deficiencia , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismoRESUMEN
Archaea live under different environmental conditions, such as high salinity, extreme pHs and cold or hot temperatures. How energy is conserved under such harsh environmental conditions is a major question in cellular bioenergetics of archaea. The key enzymes in energy conservation are the archaeal A1AO ATP synthases, a class of ATP synthases distinct from the F1FO ATP synthase ATP synthase found in bacteria, mitochondria and chloroplasts and the V1VO ATPases of eukaryotes. A1AO ATP synthases have distinct structural features such as a collar-like structure, an extended central stalk, and two peripheral stalks possibly stabilizing the A1AO ATP synthase during rotation in ATP synthesis/hydrolysis at high temperatures as well as to provide the storage of transient elastic energy during ion-pumping and ATP synthesis/-hydrolysis. High resolution structures of individual subunits and subcomplexes have been obtained in recent years that shed new light on the function and mechanism of this unique class of ATP synthases. An outstanding feature of archaeal A1AO ATP synthases is their diversity in size of rotor subunits and the coupling ion used for ATP synthesis with H(+), Na(+) or even H(+) and Na(+) using enzymes. The evolution of the H(+) binding site to a Na(+) binding site and its implications for the energy metabolism and physiology of the cell are discussed.
Asunto(s)
Archaea/enzimología , Proteínas Arqueales/fisiología , ATPasas de Translocación de Protón Mitocondriales/fisiología , Proteínas Motoras Moleculares/fisiología , Proteínas Arqueales/química , Sitios de Unión , Biocatálisis , Dominio Catalítico , ATPasas de Translocación de Protón Mitocondriales/química , Modelos Moleculares , Proteínas Motoras Moleculares/químicaRESUMEN
Antigen-presenting cells (APCs) act as vehicles that transfer HIV to their target CD4(+) cells through an intercellular junction, termed the virologic synapse. The molecules that are involved in this process remain largely unidentified. In this study, we used photoaffinity labeling and a proteomic approach to identify new proteins that facilitate HIV-1 transfer. We identified ectopic mitochondrial ATP synthase as a factor that mediates HIV-1 transfer between APCs and CD4(+) target cells. Monoclonal antibodies against the ß-subunit of ATP synthase inhibited APC-mediated transfer of multiple strains HIV-1 to CD4(+) target cells. Likewise, the specific inhibitors of ATPase, citreoviridin and IF1, completely blocked APC-mediated transfer of HIV-1 at the APC-target cell interaction step. Confocal fluorescent microscopy showed localization of extracellular ATP synthase at junctions between APC and CD4(+) target cells. We conclude that ectopic ATP synthase could be an accessible molecular target for inhibiting HIV-1 proliferation in vivo.
Asunto(s)
Células Presentadoras de Antígenos/metabolismo , Linfocitos T CD4-Positivos/metabolismo , VIH-1/metabolismo , ATPasas de Translocación de Protón Mitocondriales/fisiología , Anticuerpos/farmacología , Presentación de Antígeno/fisiología , Células Presentadoras de Antígenos/inmunología , Transporte Biológico/inmunología , Linfocitos T CD4-Positivos/inmunología , Células Cultivadas , Células HEK293 , VIH-1/inmunología , Células HeLa , Humanos , Uniones Intercelulares/inmunología , Uniones Intercelulares/metabolismo , ATPasas de Translocación de Protón Mitocondriales/inmunología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Etiquetas de Fotoafinidad/farmacología , Transporte de Proteínas/inmunología , Coloración y Etiquetado/métodos , Distribución TisularRESUMEN
Transporters at the hepatic canalicular membrane are essential for the formation of bile and the prevention of cholestatic liver disease. One such example is ATP8B1, a P4-type ATPase disrupted in three inherited forms of intrahepatic cholestasis. Mutation of the X-linked mouse gene Atp11c, which encodes a paralogous P4-type ATPase, precludes B-cell development in the adult bone marrow, but also causes hyperbilirubinemia. Here we explore this hyperbilirubinemia in two independent Atp11c mutant mouse lines, and find that it originates from an effect on nonhematopoietic cells. Liver function tests and histology revealed only minor pathology, although cholic acid was elevated in the serum of mutant mice, and became toxic to mutant mice when given as a dietary supplement. The majority of homozygous mutant females also died of dystocia in a maternal genotype-specific manner. ATP11C therefore represents a multifunctional transporter, essential for adult B-cell development, the prevention of intrahepatic cholestasis, and parturition, and is a new candidate for genetically undiagnosed cases of cholestasis and dystocia in humans.
Asunto(s)
Colestasis Intrahepática/enzimología , Colestasis Intrahepática/genética , Enfermedades Genéticas Ligadas al Cromosoma X/enzimología , Enfermedades Genéticas Ligadas al Cromosoma X/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Chaperonas Moleculares/genética , Mutación , Animales , Linfocitos B/patología , Secuencia de Bases , Colestasis Intrahepática/patología , Ácido Cólico/administración & dosificación , Ácido Cólico/toxicidad , Cartilla de ADN/genética , Modelos Animales de Enfermedad , Distocia/enzimología , Distocia/genética , Femenino , Genes Ligados a X , Homocigoto , Hiperbilirrubinemia Hereditaria/enzimología , Hiperbilirrubinemia Hereditaria/genética , Linfopenia/enzimología , Linfopenia/genética , Linfopenia/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , ATPasas de Translocación de Protón Mitocondriales/fisiología , Chaperonas Moleculares/fisiología , Fenotipo , EmbarazoRESUMEN
RATIONALE: Endothelial cells (ECs) have distinct mechanotransduction mechanisms responding to laminar versus disturbed flow patterns. Endothelial dysfunction, affected by imposed flow, is one of the earliest events leading to atherogenesis. The involvement of γ/δ T lymphocytes in endothelial dysfunction under flow is largely unknown. OBJECTIVE: To investigate whether shear stress regulates membrane translocation of ATP synthase ß chain (ATPSß) in ECs, leading to the increased γ/δ T-lymphocyte adhesion and the related functions. METHOD AND RESULTS: We applied different flow patterns to cultured ECs. Laminar flow decreased the level of membrane-bound ATPSß (ecto-ATPSß) and depleted membrane cholesterol, whereas oscillatory flow increased the level of ecto-ATPSß and membrane cholesterol. Incubating ECs with cholesterol or depleting cellular cholesterol with ß-cyclodextrin mimicked the effect of oscillatory or laminar flow, respectively. Knockdown caveolin-1 by small interfering RNA prevented ATPSß translocation in response to laminar flow. Importantly, oscillatory flow or cholesterol treatment elevated the number of γ/δ T cells binding to ECs, which was blocked by anti-ATPSß antibody. Furthermore, the incubation of γ/δ T cells with ECs increased tumor necrosis fact α and interferon-γ secretion from T cells and vascular cell adhesion molecule-1 expression in ECs. In vivo, γ/δ T-cell adhesion and ATPSß membrane translocation was elevated in the aortic inner curvature and disturbed flow areas in partially ligated carotid arteries of ApoE(-/-) mice fed a high-fat diet. CONCLUSIONS: This study provides evidence that disturbed flow and hypercholesterolemia synergistically promote γ/δ T-lymphocyte activation by the membrane translocation of ATPSß in ECs and in vivo in mice, which is a novel mechanism of endothelial activation.
Asunto(s)
Comunicación Celular/fisiología , Endotelio Vascular/citología , ATPasas de Translocación de Protón Mitocondriales/fisiología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Estrés Mecánico , Linfocitos T/citología , Linfocitos T/metabolismo , Adenosina Trifosfatasas/fisiología , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Transporte Biológico/fisiología , Caveolina 1/fisiología , Adhesión Celular/fisiología , Membrana Celular/fisiología , Células Cultivadas , Colesterol/metabolismo , Endotelio Vascular/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos AnimalesRESUMEN
The mammalian mitochondrial ATP synthase, also as known as mitochondrial respiratory chain complex V, is a large protein complex located in the mitochondrial inner membrane, where it catalyzes ATP synthesis from ADP, Pi, and Mg2+ at the expense of an electrochemical gradient of protons generated by the electron transport chain. Complex V is composed of 2 functional domains F0 and F1. The clinical features of patients are significantly heterogeneous depending on the involved organs. Most patients with complex V deficiency had clinical onset in the neonatal period with severe brain damage or multi-organ failure resulting in a high mortality. Neuromuscular disorders, cardiomyopathy, lactic acidosis and 3-methylglutaconic aciduria are common findings. Complex V consists of 16 subunits encoded by both mitochondrial DNA and nuclear DNA. On MT-ATP6, MT-ATP8, ATPAF2, TMEM70 and ATP5E gene of mitochondrial DNA, many mutations associated with Complex V deficiency have been identified. Here, the pathology, clinical features, diagnosis, treatment and molecular genetics of Complex V deficiency were summarized.
Asunto(s)
Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/etiología , ATPasas de Translocación de Protón Mitocondriales/deficiencia , Enfermedades Mitocondriales/terapia , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/fisiología , PronósticoRESUMEN
Mitochondrial F1FO ATP synthase (Complex V) catalyses ATP synthesis from ADP and inorganic phosphate using the proton-motive force generated by the substrate-driven electron transfer chain. In this work, we investigated the impact of the loss of activity of the mitochondrial enzyme in a photosynthetic organism. In this purpose, we inactivated by RNA interference the expression of the ATP2 gene, coding for the catalytic subunit beta, in the green alga Chlamydomonas reinhardtii. We demonstrate that in the absence of beta subunit, complex V is not assembled, respiratory rate is decreased by half and ATP synthesis coupled to the respiratory activity is fully impaired. Lack of ATP synthase also affects the morphology of mitochondria which are deprived of cristae. We also show that mutants are obligate phototrophs and that rearrangements of the photosynthetic apparatus occur in the chloroplast as a response to ATP synthase deficiency in mitochondria. Altogether, our results contribute to the understanding of the yet poorly studied bioenergetic interactions between organelles in photosynthetic organisms.
Asunto(s)
Chlamydomonas/fisiología , Cloroplastos/fisiología , Mitocondrias/fisiología , ATPasas de Translocación de Protón Mitocondriales/fisiología , Adenosina Trifosfato/metabolismo , Cloroplastos/ultraestructura , ATPasas de Translocación de Protón Mitocondriales/genética , Fotosíntesis , Subunidades de ProteínaRESUMEN
The mitochondrial F(0)F(1) ATP synthase is an essential multi-subunit protein complex in the vast majority of eukaryotes but little is known about its composition and role in Trypanosoma brucei, an early diverged eukaryotic pathogen. We purified the F(0)F(1) ATP synthase by a combination of affinity purification, immunoprecipitation and blue-native gel electrophoresis and characterized its composition and function. We identified 22 proteins of which five are related to F(1) subunits, three to F(0) subunits, and 14 which have no obvious homology to proteins outside the kinetoplastids. RNAi silencing of expression of the F(1) alpha subunit or either of the two novel proteins showed that they are each essential for the viability of procyclic (insect stage) cells and are important for the structural integrity of the F(0)F(1)-ATP synthase complex. We also observed a dramatic decrease in ATP production by oxidative phosphorylation after silencing expression of each of these proteins while substrate phosphorylation was not severely affected. Our procyclic T. brucei cells were sensitive to the ATP synthase inhibitor oligomycin even in the presence of glucose contrary to earlier reports. Hence, the two novel proteins appear essential for the structural organization of the functional complex and regulation of mitochondrial energy generation in these organisms is more complicated than previously thought.
Asunto(s)
ATPasas de Translocación de Protón Mitocondriales/fisiología , Trypanosoma brucei brucei/enzimología , Adenosina Trifosfato/metabolismo , Animales , Inhibidores Enzimáticos/farmacología , Técnicas de Silenciamiento del Gen , Glucosa/metabolismo , Inmunoprecipitación , ATPasas de Translocación de Protón Mitocondriales/antagonistas & inhibidores , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/genética , Oligomicinas/farmacología , Subunidades de Proteína/fisiología , Proteínas Protozoarias/genética , Proteínas Protozoarias/fisiología , Interferencia de ARN , Azida Sódica/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/crecimiento & desarrolloRESUMEN
Synaptic failure underlies cognitive impairment in Alzheimer's disease (AD). Cumulative evidence suggests a strong link between mitochondrial dysfunction and synaptic deficits in AD. We previously found that oligomycin-sensitivity-conferring protein (OSCP) dysfunction produces pronounced neuronal mitochondrial defects in AD brains and a mouse model of AD pathology (5xFAD mice). Here, we prevented OSCP dysfunction by overexpressing OSCP in 5xFAD mouse neurons in vivo (Thy-1 OSCP/5xFAD mice). This approach protected OSCP expression and reduced interaction of amyloid-beta (Aß) with membrane-bound OSCP. OSCP overexpression also alleviated F1Fo ATP synthase deregulation and preserved mitochondrial function. Moreover, OSCP modulation conferred resistance to Aß-mediated defects in axonal mitochondrial dynamics and motility. Consistent with preserved neuronal mitochondrial function, OSCP overexpression ameliorated synaptic injury in 5xFAD mice as demonstrated by preserved synaptic density, reduced complement-dependent synapse elimination, and improved synaptic transmission, leading to preserved spatial learning and memory. Taken together, our findings show the consequences of OSCP dysfunction in the development of synaptic stress in AD-related conditions and implicate OSCP modulation as a potential therapeutic strategy.
Asunto(s)
Enfermedad de Alzheimer/etiología , Mitocondrias/genética , ATPasas de Translocación de Protón Mitocondriales/fisiología , Transmisión Sináptica/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/psicología , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Expresión Génica , Memoria , Ratones Transgénicos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Terapia Molecular Dirigida , Neuronas/metabolismo , Aprendizaje EspacialRESUMEN
There has been increasing evidence pointing to the mitochondrial respiratory chain (MRC) as a novel and important target for the actions of 17beta-estradiol (E(2)) and estrogen receptors (ER) in a number of cell types and tissues that have high demands for mitochondrial energy metabolism. This novel E(2)-mediated mitochondrial pathway involves the cooperation of both nuclear and mitochondrial ERalpha and ERbeta and their co-activators on the coordinate regulation of both nuclear DNA- and mitochondrial DNA-encoded genes for MRC proteins. In this paper, we have: 1) comprehensively reviewed studies that reveal a novel role of estrogens and ERs in the regulation of MRC biogenesis; 2) discussed their physiological, pathological and pharmacological implications in the control of cell proliferation and apoptosis in relation to estrogen-mediated carcinogenesis, anti-cancer drug resistance in human breast cancer cells, neuroprotection for Alzheimer's disease and Parkinson's disease in brain, cardiovascular protection in human heart and their beneficial effects in lens physiology related to cataract in the eye; and 3) pointed out new research directions to address the key questions in this important and newly emerging area. We also suggest a novel conceptual approach that will contribute to innovative regimens for the prevention or treatment of a wide variety of medical complications based on E(2)/ER-mediated MRC biogenesis pathway.
Asunto(s)
Transporte de Electrón/efectos de los fármacos , Transporte de Electrón/fisiología , Estrógenos/fisiología , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Receptores de Estrógenos/fisiología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/etiología , Animales , Apoptosis/genética , Apoptosis/fisiología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/etiología , Enfermedades Cardiovasculares/prevención & control , Proliferación Celular , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Resistencia a Antineoplásicos , Transporte de Electrón/genética , Estradiol/farmacología , Estradiol/fisiología , Femenino , Genoma Mitocondrial , Humanos , Cristalino/efectos de los fármacos , Cristalino/fisiología , Masculino , Mitocondrias/genética , Proteínas Mitocondriales/fisiología , ATPasas de Translocación de Protón Mitocondriales/fisiología , Modelos Biológicos , Neoplasias Hormono-Dependientes/tratamiento farmacológico , Neoplasias Hormono-Dependientes/etiología , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/etiología , Biosíntesis de Proteínas/efectos de los fármacos , Transcripción Genética/efectos de los fármacosRESUMEN
The increased longevity in modern societies raised the attention to biological interventions that could promote a healthy aging. Mitochondria are main organelles involved in the production of adenosine triphosphate (ATP), the energetic substrate for cellular biochemical reactions. The production of ATP occurs through the oxidative phosphorylation of intermediate substrates derived from the breakdown of lipids, sugars, and proteins. This process is coupled to production of oxygen reactive species (ROS) that in excess will have a deleterious role in cellular function. The damage promoted by ROS has been emphasized as one of the main processes involved in senescence. In the last decades, the discovery of specialized proteins in the mitochondrial inner membrane that promote the uncoupling of proton flux (named uncoupling proteins-UCPs) from the ATP synthase shed light on possible mechanisms implicated in the buffering of ROS and consequently in the process of aging. UCPs are responsible for a physiological uncoupling that leads to decrease in ROS production inside the mitochondria. Thus, induction of uncoupling through UCPs could decrease the cellular damage that occurs during aging due to excess of ROS. This review will focus on the evidence supporting these mechanisms.
Asunto(s)
Envejecimiento/fisiología , Canales Iónicos/fisiología , Longevidad/fisiología , Mitocondrias/metabolismo , Proteínas Mitocondriales/fisiología , Especies Reactivas de Oxígeno/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Transporte de Electrón/fisiología , Metabolismo Energético , Humanos , ATPasas de Translocación de Protón Mitocondriales/fisiología , Fosforilación Oxidativa , Superóxidos/metabolismo , Proteína Desacopladora 1RESUMEN
Dendritic spine injury underlies synaptic failure in many neurological disorders. Mounting evidence suggests a mitochondrial pathway of local nonapoptotic caspase signaling in mediating spine pruning. However, it remains unclear whether this caspase signaling plays a key role in spine loss when severe mitochondrial functional defects are present. The answer to this question is critical especially for some pathological states, in which mitochondrial deficits are prominent and difficult to fix. F1Fo ATP synthase is a pivotal mitochondrial enzyme and the dysfunction of this enzyme involves in diseases with spinopathy. Here, we inhibited F1Fo ATP synthase function in primary cultured hippocampal neurons by using non-lethal oligomycin A treatment. Oligomycin A induced mitochondrial defects including collapsed mitochondrial membrane potential, dissipated ATP production, and elevated reactive oxygen species (ROS) production. In addition, dendritic mitochondria underwent increased fragmentation and reduced positioning to dendritic spines along with increased caspase 3 cleavage in dendritic shaft and spines in response to oligomycin A. Concurring with these dendritic mitochondrial changes, oligomycin A-insulted neurons displayed spine loss and altered spine architecture. Such oligomycin A-mediated changes in dendritic spines were substantially prevented by the inhibition of caspase activation by using a pan-caspase inhibitor, quinolyl-valyl-O-methylaspartyl-[-2,6-difluorophenoxy]-methyl ketone (Q-VD-OPh). Of note, the administration of Q-VD-OPh showed no protective effect on oligomycin A-induced mitochondrial dysfunction. Our findings suggest a pivotal role of caspase 3 signaling in mediating spine injury and the modulation of caspase 3 activation may benefit neurons from spine loss in diseases, at least, in those with F1Fo ATP synthase defects.
Asunto(s)
Espinas Dendríticas/metabolismo , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Adenosina Trifosfato/metabolismo , Clorometilcetonas de Aminoácidos/farmacología , Animales , Caspasa 3/metabolismo , Inhibidores de Caspasas/farmacología , Muerte Celular , Femenino , Hipocampo/metabolismo , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos C57BL , ATPasas de Translocación de Protón Mitocondriales/fisiología , Neuronas/metabolismo , Oligomicinas/metabolismo , Oligomicinas/farmacología , Quinolinas/farmacología , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Hepatic ischemia/reperfusion (I/R) injury is an inevitable consequence during liver surgery. Ischemic preconditioning (IPC) has been shown to protect the livers from I/R injury, partially mediated by preservation of hepatic ATP contents. However, the precise molecular mechanisms of these events remain poorly elucidated. In this study, liver proteomes of the mice subjected to I/R injury pretreated with or without IPC were analyzed using 2-DE combined with MALDI-TOF/TOF mass analysis. Twenty proteins showing more than 1.5-fold difference were identified in the livers upon I/R injury. Among these proteins, four proteins were further regulated by IPC when compared with nonpretreated controls. One of these proteins, ATP synthase beta subunit (ATP5beta) catalyzes the rate-limiting step of ATP formation. The expression level of ATP5beta, which was further validated by Western blot analysis, was significantly decreased upon I/R injury while turned over by IPC pretreatment. Change pattern of hepatic ATP corresponded with that of ATP5beta expression, indicating that increasing hepatic ATP5beta expression might be a reason for ATP-preserving effect of IPC. In summary, this study provided new clues for understanding the mechanisms of IPC against I/R injury. The protective role of ATP5beta might give evidences for developing new therapeutic approaches against hepatic I/R injury.