Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
BMC Genomics ; 25(1): 605, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886635

RESUMEN

BACKGROUND: Acer truncatum Bunge is an economic, ecological, oil, and medicinal tree, and its kernel oil is rich in nervonic acid. It is crucial to explore the transcriptional expression patterns of genes affecting fatty acid synthesis to improve the quality of Acer truncatum oil. RESULTS: This study used the seeds from high fatty acid strain YQC and those from low fatty acid strain Y38 as the test materials. Specifically, we performed a comparative transcriptome analysis of Y38 seeds and YQC to identify differentially expressed genes (DEGs) at two time points (seeds 30 days after the blooming period and 90 days after the blooming period). Compared with YQC_1 (YQC seeds at 30 days after the blooming period), a total of 3,618 DEGs were identified, including 2,333 up-regulated and 1,285 downregulated DEGs in Y38_1 (Y38 seeds at 30 days after blooming period). In the Y38_2 (Y38 seeds at 90 days after the blooming period) versus YQC_2 (YQC seeds at 90 days after the blooming period) comparison group, 9,340 genes were differentially expressed, including 5,422 up-regulated and 3,918 down-regulated genes. The number of DEGs in Y38 compared to YQC was significantly higher in the late stages of seed development. Gene functional enrichment analyses showed that the DEGs were mainly involved in the fatty acid biosynthesis pathway. And two fatty acid synthesis-related genes and seven nervonic acid synthesis-related genes were validated by qRT-PCR. CONCLUSIONS: This study provides a basis for further research on biosynthesizing fatty acids and nervonic acidnervonic acids in A. truncatum seeds.


Asunto(s)
Acer , Ácidos Grasos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Semillas , Semillas/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Acer/genética , Acer/metabolismo , Acer/crecimiento & desarrollo , Ácidos Grasos/metabolismo , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Ácidos Grasos Monoinsaturados
2.
BMC Plant Biol ; 24(1): 284, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627650

RESUMEN

BACKGROUND: Lipids found in plant seeds are essential for controlling seed dormancy, dispersal, and defenses against biotic and abiotic stress. Additionally, these lipids provide nutrition and energy and are therefore important to the human diet as edible oils. Acer truncatum, which belongs to the Aceaceae family, is widely cultivated around the world for its ornamental value. Further because its seed oil is rich in unsaturated fatty acids (UFAs)- i.e. α-linolenic acid (ALA) and nervonic acid (NA)- and because it has been validated as a new food resource in China, the importance of A. truncatum has greatly risen. However, it remains unknown how UFAs are biosynthesized during the growth season, to what extent environmental factors impact their content, and what areas are potentially optimal for their production. RESULTS: In this study, transcriptome and metabolome of A. truncatum seeds at three representative developmental stages was used to find the accumulation patterns of all major FAs. Cumulatively, 966 metabolites and 87,343 unigenes were detected; the differential expressed unigenes and metabolites were compared between stages as follows: stage 1 vs. 2, stage 1 vs. 3, and stage 2 vs. 3 seeds, respectively. Moreover, 13 fatty acid desaturases (FADs) and 20 ß-ketoacyl-CoA synthases (KCSs) were identified, among which the expression level of FAD3 (Cluster-7222.41455) and KCS20 (Cluster-7222.40643) were consistent with the metabolic results of ALA and NA, respectively. Upon analysis of the geographical origin-affected diversity from 17 various locations, we found significant variation in phenotypes and UFA content. Notably, in this study we found that 7 bioclimatic variables showed considerable influence on FAs contents in A. truncatum seeds oil, suggesting their significance as critical environmental parameters. Ultimately, we developed a model for potentially ecological suitable regions in China. CONCLUSION: This study provides a comprehensive understanding of the relationship between metabolome and transcriptome in A. truncatum at various developmental stages of seeds and a new strategy to enhance seed FA content, especially ALA and NA. This is particularly significant in meeting the increasing demands for high-quality edible oil for human consumption. The study offers a scientific basis for A. truncatum's novel utilization as a woody vegetable oil rather than an ornamental plant, potentially expanding its cultivation worldwide.


Asunto(s)
Acer , Transcriptoma , Humanos , Perfilación de la Expresión Génica , Acer/genética , Acer/metabolismo , Ácidos Grasos Insaturados/metabolismo , Semillas , Metaboloma , Aceites de Plantas/metabolismo
3.
Planta ; 260(5): 109, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39340535

RESUMEN

MAIN CONCLUSION: MiR171d and SCL6 are induced by the plant hormone auxin. MiR171d negatively regulates the expression of SCL6, thereby regulating the growth and development of plant adventitious roots. Under natural conditions, it is difficult to induce rooting in the process of propagating Acer rubrum L. via branches, which seriously limits its wide application in landscaping construction. In this study, the expression of Ar-miR171d was downregulated and the expression of ArSCL6 was upregulated after 300 mg/L indole-3-butyric acid (IBA) treatment. The transient interaction of Ar-miR171d and ArSCL6 in tobacco cells further confirmed their cleavage activity. Transgenic function verification confirmed that OE-Ar-miR171d inhibited adventitious root (AR) development, while OE-ArSCL6 promoted AR development. Tissue-specific expression verification of the ArSCL6 promoter demonstrated that it was specifically expressed in the plant root and leaf organs. Subcellular localization and transcriptional activation assays revealed that both ArSCL6 and ArbHLH089 were located in the nucleus and exhibited transcriptional activation activity. The interaction between the two was verified by bimolecular fluorescence complementarity (BIFC) experiments. These results help elucidate the regulatory mechanisms of the Ar-miR171d-ArSCL6 module during the propagation of A. rubrum and provide a molecular basis for the rooting of branches.


Asunto(s)
Acer , Regulación de la Expresión Génica de las Plantas , MicroARNs , Raíces de Plantas , MicroARNs/genética , MicroARNs/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Acer/genética , Acer/crecimiento & desarrollo , Acer/metabolismo , Plantas Modificadas Genéticamente , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Ácidos Indolacéticos/metabolismo , Indoles/metabolismo , Indoles/farmacología
4.
J Exp Bot ; 75(11): 3521-3541, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38469677

RESUMEN

We hypothesized that anthocyanins act as a sugar-buffer and an alternative electron sink during leaf senescence to prevent sugar-mediated early senescence and photoinhibition. To elucidate the role of anthocyanin, we monitored seasonal changes in photosynthetic traits, sugar, starch and N contents, pigment composition, and gene expression profiles in leaves exposed to substantially different light conditions within a canopy of an adult fullmoon maple (Acer japonicum) tree. Enhancement of starch amylolysis accompanied by cessation of starch synthesis occurred in the same manner independent of light conditions. Leaf sugar contents increased, but reached upper limits in the late stage of leaf senescence, even though leaf anthocyanins further increased after complete depletion of starch. Sun-exposed leaves maintained higher energy consumption via electron flow than shade-grown leaves during leaf N resorption. Thus, anthocyanins accumulated in sun-exposed leaves might have a regulative role as a sugar-buffer, retarding leaf senescence, and an indirect photoprotective role as an alternative sink for electron consumption to compensate declines in other metabolic processes such as starch and protein synthesis. In this context, anthocyanins may be key substrates protecting both outer-canopy leaves (against photoinhibition) and inner-canopy leaves (via shading by outer-canopy leaves) from high light stress during N resorption.


Asunto(s)
Acer , Antocianinas , Hojas de la Planta , Almidón , Acer/fisiología , Acer/metabolismo , Almidón/metabolismo , Antocianinas/metabolismo , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Senescencia de la Planta , Fotosíntesis
5.
Glob Chang Biol ; 30(10): e17530, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39435521

RESUMEN

Roots contribute a large fraction of CO2 efflux from soils, yet the extent to which global change factors affect root-derived fluxes is poorly understood. We investigated how red maple (Acer rubrum) and red oak (Quercus rubra) root biomass and respiration respond to long-term (15 years) soil warming, nitrogen addition, or their combination in a temperate forest. We found that ecosystem root respiration was decreased by 40% under both single-factor treatments (nitrogen addition or warming) but not under their combination (heated × nitrogen). This response was driven by the reduction of mass-specific root respiration under warming and a reduction in maple root biomass in both single-factor treatments. Mass-specific root respiration rates for both species acclimated to soil warming, resulting in a 43% reduction, but were not affected by N addition or the combined heated × N treatment. Notably, the addition of nitrogen to warmed soils alleviated thermal acclimation and returned mass-specific respiration rates to control levels. Oak roots contributed disproportionately to ecosystem root respiration despite the decrease in respiration rates as their biomass was maintained or enhanced under warming and nitrogen addition. In contrast, maple root respiration rates were consistently higher than oak, and this difference became critical in the heated × nitrogen treatment, where maple root biomass increased, contributing significantly more CO2 relative to single-factor treatments. Our findings highlight the importance of accounting for the root component of respiration when assessing soil carbon loss in response to global change and demonstrate that combining warming and N addition produces effects that cannot be predicted by studying these factors in isolation.


Asunto(s)
Acer , Nitrógeno , Raíces de Plantas , Quercus , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Nitrógeno/metabolismo , Acer/fisiología , Acer/metabolismo , Acer/crecimiento & desarrollo , Quercus/fisiología , Quercus/metabolismo , Suelo/química , Calentamiento Global , Biomasa , Dióxido de Carbono/metabolismo , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Árboles/fisiología
6.
Physiol Plant ; 176(5): e14522, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39248017

RESUMEN

Reserves of non-structural carbohydrates (NSC) stored in living cells are essential for drought tolerance of trees. However, little is known about the phenotypic plasticity of living storage compartments (SC) and their interactions with NSC reserves under changing water availability. Here, we examined adjustments of SC and NSC reserves in stems and roots of seedlings of two temperate tree species, Acer negundo L. and Betula pendula Roth., cultivated under different substrate water availability. We found that relative contents of soluble NSC, starch and total NSC increased with decreasing water availability in stems of both species, and similar tendencies were also observed in roots of A. negundo. In the roots of B. pendula, soluble NSC contents decreased along with the decreasing water availability, possibly due to phloem decoupling or NSC translocation to shoots. Despite the contrast in organ responses, NSC contents (namely starch) positively correlated with proportions of total organ SC. Individual types of SC showed markedly distinct plasticity upon decreasing water availability, suggesting that water availability changes the partitioning of organ storage capacity. We found an increasing contribution of parenchyma-rich bark to the total organ NSC storage capacity under decreasing water availability. However, xylem SC showed substantially greater plasticity than those in bark. Axial storage cells, namely living fibers in A. negundo, responded more sensitively to decreasing water availability than radial parenchyma. Our results demonstrate that drought-induced changes in carbon balance affect the organ storage capacity provided by living cells, whose proportions are sensitively coordinated along with changing NSC reserves.


Asunto(s)
Acer , Almidón , Agua , Agua/metabolismo , Acer/metabolismo , Acer/fisiología , Almidón/metabolismo , Betula/metabolismo , Betula/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Tallos de la Planta/metabolismo , Tallos de la Planta/fisiología , Árboles/metabolismo , Árboles/fisiología , Sequías , Metabolismo de los Hidratos de Carbono , Xilema/metabolismo , Madera/metabolismo , Plantones/metabolismo , Plantones/fisiología
7.
BMC Biol ; 21(1): 68, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013569

RESUMEN

BACKGROUND: The accumulation of fatty acids in plants covers a wide range of functions in plant physiology and thereby affects adaptations and characteristics of species. As the famous woody oilseed crop, Acer truncatum accumulates unsaturated fatty acids and could serve as the model to understand the regulation and trait formation in oil-accumulation crops. Here, we performed Ribosome footprint profiling combing with a multi-omics strategy towards vital time points during seed development, and finally constructed systematic profiling from transcription to proteomes. Additionally, we characterized the small open reading frames (ORFs) and revealed that the translational efficiencies of focused genes were highly influenced by their sequence features. RESULTS: The comprehensive multi-omics analysis of lipid metabolism was conducted in A. truncatum. We applied the Ribo-seq and RNA-seq techniques, and the analyses of transcriptional and translational profiles of seeds collected at 85 and 115 DAF were compared. Key members of biosynthesis-related structural genes (LACS, FAD2, FAD3, and KCS) were characterized fully. More meaningfully, the regulators (MYB, ABI, bZIP, and Dof) were identified and revealed to affect lipid biosynthesis via post-translational regulations. The translational features results showed that translation efficiency tended to be lower for the genes with a translated uORF than for the genes with a non-translated uORF. They provide new insights into the global mechanisms underlying the developmental regulation of lipid metabolism. CONCLUSIONS: We performed Ribosome footprint profiling combing with a multi-omics strategy in A. truncatum seed development, which provides an example of the use of Ribosome footprint profiling in deciphering the complex regulation network and will be useful for elucidating the metabolism of A. truncatum seed oil and the regulatory mechanisms.


Asunto(s)
Acer , Ácidos Grasos , Ácidos Grasos/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Acer/genética , Acer/metabolismo , Ribosomas/metabolismo , Semillas/genética , Regulación de la Expresión Génica de las Plantas
8.
Environ Monit Assess ; 196(10): 920, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256203

RESUMEN

This study investigates the phytoremediation potential of non-productive seedlings of Ailanthus altissima, Acer pseudoplatanus, and Fraxinus excelsior for lead, cadmium, and zinc accumulation in contaminated soils of Zanjan Province, an industrial area with significant pollution. The evaluation employed a completely randomized design, with three treatment levels for each element, alongside a control treatment, replicated three times over a two-year period. A total of 810 one-year-old seedlings from the three species were involved in the study. Soil contamination levels, ranging from 0 to 2000 mg/kg for lead and zinc and from 0 to 200 mg/kg for cadmium, were administered through soil pot irrigation. Sampling of seedling stems and pot soils was conducted in November of 2021 and 2022. The absorption levels of elements in the samples were determined using the dry acid digestion method and an ICP-OES atomic absorption spectrometer. Results indicate species-specific variations in metal absorption, with Ailanthus showing the highest accumulation rates. Findings suggest Ailanthus as a promising candidate for soil improvement in polluted environments, particularly in contaminated soils of Zanjan Province.


Asunto(s)
Acer , Ailanthus , Biodegradación Ambiental , Fraxinus , Metales Pesados , Plantones , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/análisis , Fraxinus/metabolismo , Ailanthus/metabolismo , Metales Pesados/metabolismo , Metales Pesados/análisis , Acer/metabolismo , Plantones/metabolismo , Suelo/química , Zinc/metabolismo , Zinc/análisis , Cadmio/metabolismo , Cadmio/análisis , Plomo/metabolismo , Plomo/análisis
9.
BMC Genomics ; 23(1): 567, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941547

RESUMEN

BACKGROUND: Acer pseudosieboldianum is a kind of excellent color-leafed plants, and well known for its red leaves in autumn. At the same time, A. pseudosieboldianum is one of the native tree species in the northeast of China, and it plays an important role in improving the lack of color-leafed plants in the north. In previous study, we found a mutant of the A. pseudosieboldianum that leaves intersect red and green in spring and summer. However, it is unclear which genes cause the color change of mutant leaves. RESULTS: In order to study the molecular mechanism of leaf color formation, we analyzed the leaves of the mutant group and the control group from A. pseudosieboldianum by RNA deep sequencing in this study. Using an Illumina sequencing platform, we obtained approximately 276,071,634 clean reads. After the sequences were filtered and assembled, the transcriptome data generated a total of 70,014 transcripts and 54,776 unigenes, of which 34,486 (62.96%) were successfully annotated in seven public databases. There were 8,609 significant DEGs identified between the control and mutant groups, including 4,897 upregulated and 3,712 downregulated genes. We identified 13 genes of DEGs for leaf color synthesis that was involved in the flavonoid pathway, 26 genes that encoded transcription factors, and eight genes associated with flavonoid transport. CONCLUSION: Our results provided comprehensive gene expression information about A. pseudosieboldianum transcriptome, and directed the further study of accumulation of anthocyanin in A. pseudosieboldianum, aiming to provide insights into leaf coloring of it through transcriptome sequencing and analysis.


Asunto(s)
Acer , Transcriptoma , Acer/genética , Acer/metabolismo , Antocianinas , Flavonoides/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
10.
BMC Plant Biol ; 22(1): 29, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35026989

RESUMEN

BACKGROUND: Acer truncatum (purpleblow maple) is a woody tree species that produces seeds with high levels of valuable fatty acids (especially nervonic acid). The species is admired as a landscape plant with high developmental prospects and scientific research value. The A. truncatum chloroplast genome has recently been reported; however, the mitochondrial genome (mitogenome) is still unexplored. RESULTS: We characterized the A. truncatum mitogenome, which was assembled using reads from PacBio and Illumina sequencing platforms, performed a comparative analysis against different species of Acer. The circular mitogenome of A. truncatum has a length of 791,052 bp, with a base composition of 27.11% A, 27.21% T, 22.79% G, and 22.89% C. The A. truncatum mitogenome contains 62 genes, including 35 protein-coding genes, 23 tRNA genes and 4 rRNA genes. We also examined codon usage, sequence repeats, RNA editing and selective pressure in the A. truncatum mitogenome. To determine the evolutionary and taxonomic status of A. truncatum, we conducted a phylogenetic analysis based on the mitogenomes of A. truncatum and 25 other taxa. In addition, the gene migration from chloroplast and nuclear genomes to the mitogenome were analyzed. Finally, we developed a novel NAD1 intron indel marker for distinguishing several Acer species. CONCLUSIONS: In this study, we assembled and annotated the mitogenome of A. truncatum, a woody oil-tree species producing nervonic acid. The results of our analyses provide comprehensive information on the A. truncatum mitogenome, which would facilitate evolutionary research and molecular barcoding in Acer.


Asunto(s)
Acer/genética , Acer/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Genoma Mitocondrial , Aceites de Plantas/metabolismo , Árboles/genética , Variación Genética , Filogenia
11.
BMC Plant Biol ; 22(1): 498, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36280828

RESUMEN

BACKGROUND: Acer rubrum L. (red maple) is a popular tree with attractive colored leaves, strong physiological adaptability, and a high ornamental value. Changes in leaf color can be an adaptive response to changes in environmental factors, and also a stress response to external disturbances. In this study, we evaluated the effect of girdling on the color expression of A. rubrum leaves. We studied the phenotypic characteristics, physiological and biochemical characteristics, and the transcriptomic and metabolomic profiles of leaves on girdled and non-girdled branches of A. rubrum. RESULTS: Phenotypic studies showed that girdling resulted in earlier formation of red leaves, and a more intense red color in the leaves. Compared with the control branches, the girdled branches produced leaves with significantly different color parameters a*. Physiological and biochemical studies showed that girdling of branches resulted in uneven accumulation of chlorophyll, carotenoids, anthocyanins, and other pigments in leaves above the band. In the transcriptomic and metabolomic analyses, 28,432 unigenes including 1095 up-regulated genes and 708 down-regulated genes were identified, and the differentially expressed genes were mapped to various KEGG (kyoto encyclopedia of genes and genomes) pathways. Six genes encoding key transcription factors related to anthocyanin metabolism were among differentially expressed genes between leaves on girdled and non-girdled branches. CONCLUSIONS: Girdling significantly affected the growth and photosynthesis of red maple, and affected the metabolic pathways, biosynthesis of secondary metabolites, and carbon metabolisms in the leaves. This resulted in pigment accumulation in the leaves above the girdling site, leading to marked red color expression in those leaves. A transcriptome analysis revealed six genes encoding anthocyanin-related transcription factors that were up-regulated in the leaves above the girdling site. These transcription factors are known to be involved in the regulation of phenylpropanoid biosynthesis, anthocyanin biosynthesis, and flavonoid biosynthesis. These results suggest that leaf reddening is a complex environmental adaptation strategy to maintain normal metabolism in response to environmental changes. Overall, the results of these comprehensive phenotype, physiological, biochemical, transcriptomic, and metabolomic analyses provide a deeper and more reliable understanding of the coevolution of red maple leaves in response to environmental changes.


Asunto(s)
Acer , Acer/genética , Acer/metabolismo , Transcriptoma , Antocianinas/metabolismo , Hojas de la Planta/metabolismo , Perfilación de la Expresión Génica/métodos , Clorofila/metabolismo , Carotenoides/metabolismo , Factores de Transcripción/genética , Carbono/metabolismo , Regulación de la Expresión Génica de las Plantas , Color
12.
Photosynth Res ; 152(1): 55-71, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35034267

RESUMEN

Trees regenerating in the understory respond to increased availability of light caused by gap formation by undergoing a range of morphological and physiological adjustments. These adjustments include the production of thick, sun-type leaves containing thicker mesophyll and longer palisade cells than in shade-type leaves. We asked whether in the shade-regenerating tree Acer pseudoplatanus, the increase in leaf thickness and expansion of leaf tissues are possible also in leaves that had been fully formed prior to the increase in irradiance, a response reported so far only for a handful of species. We acclimated potted seedlings to eight levels (from 1 to 100%) of solar irradiance and, in late summer, transferred a subset of them to full sunlight. Within 30 days, the shaded leaves increased leaf mass per area and became thicker mostly due to elongation of palisade cells, except for the most shaded individuals which suffered irreversible photo-oxidative damage. This anatomical acclimation was accompanied by partial degradation of chlorophyll and a transient decline in photosynthetic efficiency of PSII (Fv/FM). These effects were related to the degree of pre-shading. The Fv/FM recovered substantially within the re-acclimation period. However, leaves of transferred plants were shed significantly earlier in the fall, indicating that the acclimation was not fully effective. These results show that A. pseudoplatanus is one of the few known species in which mature leaves may re-acclimate anatomically to increased irradiance. This may be a potentially important mechanism enhancing utilization of gaps created during the growing season.


Asunto(s)
Acer , Acer/anatomía & histología , Acer/metabolismo , Clorofila/metabolismo , Humanos , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Árboles
13.
Biochem Genet ; 60(6): 1845-1864, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35118585

RESUMEN

Acer truncatum Bunge is generally used as an ornamental tree because of its autumn leaves, although the viewing period is short-approximately 7-15 days. Color improvement of ornamental trees has consistently been an important research topic because color partially determines the value of the commodity; however, a lack of genomic data have limited the progress of molecular breeding research in this area. The purposes of this study were to obtain a transcriptome database for A. truncatum, screen anthocyanin biosynthesis-related genes, and reveal the mechanisms underlying leaf color transformation to provide a basis for increasing the viewing period or breeding cultivars that display red leaves throughout the growing season via gene regulation. In this study, although the use of an Illumina HiSeq 2000 platform and systematic bioinformatics analysis using both young and mature leaves as experimental materials, 233,912,882 clean reads were generated and 121,287 unique transcripts were retrieved. We selected 16 color-related genes (from the transcriptome results) for qRT-PCR to validate the results, and the expression trends of the selected genes were largely consistent with the transcriptome analysis results, with a consistency of 0.875. According to the results of the transcriptome analysis, the validation, and previous studies, we obtained sequences of genes related to anthocyanins, including CHS, CHI, ANS, UFGT, UGT75c1, DFR, BZ1, F3H, F3'H, LAR, ANR, FLS, and those of several transcription factors, including MYB1, BHLH, and WD40. Verifying specific regulation by one or several of these genes in the control of leaf color requires further research. The acquisition of transcriptomic information, especially information concerning anthocyanin biosynthesis-related genes and their base sequences, can provide a theoretical basis for the study of the molecular mechanisms determining changes in leaf color in Acer and is of great importance to the breeding of new cultivars.


Asunto(s)
Acer , Antocianinas , Antocianinas/genética , Transcriptoma , Acer/genética , Acer/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Fitomejoramiento , Perfilación de la Expresión Génica/métodos
14.
Plant J ; 104(3): 662-678, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32772482

RESUMEN

Acer truncatum (purpleblow maple) is a woody tree species that produces seeds with high levels of valuable fatty acids (especially nervonic acid). However, the lack of a complete genome sequence has limited both basic and applied research on A. truncatum. We describe a high-quality draft genome assembly comprising 633.28 Mb (contig N50 = 773.17 kb; scaffold N50 = 46.36 Mb) with at least 28 438 predicted genes. The genome underwent an ancient triplication, similar to the core eudicots, but there have been no recent whole-genome duplication events. Acer yangbiense and A. truncatum are estimated to have diverged about 9.4 million years ago. A combined genomic, transcriptomic, metabonomic, and cell ultrastructural analysis provided new insights into the biosynthesis of very long-chain monounsaturated fatty acids. In addition, three KCS genes were found that may contribute to regulating nervonic acid biosynthesis. The KCS paralogous gene family expanded to 28 members, with 10 genes clustered together and distributed in the 0.27-Mb region of pseudochromosome 4. Our chromosome-scale genomic characterization may facilitate the discovery of agronomically important genes and stimulate functional genetic research on A. truncatum. Furthermore, the data presented also offer important foundations from which to study the molecular mechanisms influencing the production of nervonic acids.


Asunto(s)
Acer/genética , Ácidos Grasos Monoinsaturados/metabolismo , Genoma de Planta , Acer/metabolismo , Centrómero/genética , Elementos Transponibles de ADN , Ácidos Grasos/biosíntesis , Ácidos Grasos/genética , Regulación de la Expresión Génica de las Plantas , Genómica/métodos , Heterocigoto , Filogenia , Proteínas de Plantas/genética , Semillas/genética , Semillas/metabolismo , Secuenciación Completa del Genoma
15.
BMC Genomics ; 22(1): 383, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34034673

RESUMEN

BACKGROUND: Leaf color is an important ornamental trait of colored-leaf plants. The change of leaf color is closely related to the synthesis and accumulation of anthocyanins in leaves. Acer pseudosieboldianum is a colored-leaf tree native to Northeastern China, however, there was less knowledge in Acer about anthocyanins biosynthesis and many steps of the pathway remain unknown to date. RESULTS: Anthocyanins metabolite and transcript profiling were conducted using HPLC and ESI-MS/MS system and high-throughput RNA sequencing respectively. The results demonstrated that five anthocyanins were detected in this experiment. It is worth mentioning that Peonidin O-hexoside and Cyanidin 3, 5-O-diglucoside were abundant, especially Cyanidin 3, 5-O-diglucoside displayed significant differences in content change at two periods, meaning it may be play an important role for the final color. Transcriptome identification showed that a total of 67.47 Gb of clean data were obtained from our sequencing results. Functional annotation of unigenes, including comparison with COG and GO databases, yielded 35,316 unigene annotations. 16,521 differentially expressed genes were identified from a statistical analysis of differentially gene expression. The genes related to leaf color formation including PAL, ANS, DFR, F3H were selected. Also, we screened out the regulatory genes such as MYB, bHLH and WD40. Combined with the detection of metabolites, the gene pathways related to anthocyanin synthesis were analyzed. CONCLUSIONS: Cyanidin 3, 5-O-diglucoside played an important role for the final color. The genes related to leaf color formation including PAL, ANS, DFR, F3H and regulatory genes such as MYB, bHLH and WD40 were selected. This study enriched the available transcriptome information for A. pseudosieboldianum and identified a series of differentially expressed genes related to leaf color, which provides valuable information for further study on the genetic mechanism of leaf color expression in A. pseudosieboldianum.


Asunto(s)
Acer , Antocianinas , Acer/genética , Acer/metabolismo , China , Color , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espectrometría de Masas en Tándem , Transcriptoma
16.
Plant Cell Environ ; 44(11): 3494-3508, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33822389

RESUMEN

Determining the fate of CO2 respired in woody tissues is necessary to understand plant respiratory physiology and to evaluate CO2 recycling mechanisms. An aqueous 13 C-enriched CO2 solution was infused into the stem of 3-4 m tall trees to estimate efflux and assimilation of xylem-transported CO2 via cavity ring-down laser spectroscopy and isotope ratio mass spectrometry, respectively. Different tree locations (lower stem, upper stem and leafy shoots) and tissues (xylem, bark and leaves) were monitored in species with tracheid, diffuse- and ring-porous wood anatomy (cedar, maple and oak, respectively). Radial xylem CO2 diffusivity and xylem [CO2 ] were lower in cedar relative to maple and oak trees, thereby limiting label diffusion. Part of the labeled 13 CO2 was assimilated in cedar (8.7%) and oak (20.6%) trees, mostly in xylem and bark tissues of the stem, while limited solution uptake in maple trees hindered the detection of label assimilation. Little label reached foliar tissues, suggesting substantial label loss along the stem-branch transition following reductions in the radial diffusive pathway. Differences in respiration rates and radial xylem CO2 diffusivity (lower in conifer relative to angiosperm species) might reconcile discrepancies in efflux and assimilation of xylem-transported CO2 so far observed between taxonomic clades.


Asunto(s)
Dióxido de Carbono/metabolismo , Árboles/metabolismo , Madera/anatomía & histología , Xilema/metabolismo , Acer/anatomía & histología , Acer/metabolismo , Transporte Biológico , Quercus/anatomía & histología , Quercus/metabolismo , Especificidad de la Especie , Thuja/anatomía & histología , Thuja/metabolismo , Árboles/anatomía & histología
17.
Plant Cell Physiol ; 61(6): 1158-1167, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32267948

RESUMEN

Desiccation tolerance is a developmental program enabling seed survival in a dry state and is common in seeds categorized as orthodox. We focused on NAD and its phosphorylated form (NADP) because their continual switching between reduced (NAD(P)H) and oxidized (NAD(P)+) forms is involved in the modulation of redox signaling and the determination of the reducing power and further antioxidant responses. Norway maple and sycamore seeds representing the orthodox and recalcitrant categories, respectively, were used as models in a comparison of responses to water loss. The process of desiccation up to 10% water content (WC) was monitored in Norway maple seeds, while dehydration up to 30% WC was monitored in desiccation-sensitive sycamore seeds. Norway maple and sycamore seeds, particularly their embryonic axes, exhibited a distinct redox status during dehydration and desiccation. High NADPH levels, NAD+ accumulation, low and stable NAD(P)H/NAD(P)+ ratios expressed as reducing power and high NADPH-dependent enzyme activity were reported in Norway maple seeds and were considered attributes of orthodox-type seeds. The contrasting results of sycamore seeds contributed to their low antioxidant capacity and high sensitivity to desiccation. NADPH deficiency, low NADPH-dependent enzyme activity and lack of NAD+ accumulation were primary features of sycamore seeds, with implications for their NAD(P)H/NAD(P)+ ratios and reducing power and with effects on many seed traits. Thus, we propose that the distinct levels of pyridine nucleotides and their redox status contribute to orthodox and recalcitrant phenotype differentiation in seeds by affecting cellular redox signaling, metabolism and the antioxidant system.


Asunto(s)
Acer/metabolismo , NADP/metabolismo , Oxidación-Reducción , Semillas/metabolismo , Acer/fisiología , Deshidratación , NADP/fisiología , Semillas/fisiología
18.
BMC Plant Biol ; 20(1): 410, 2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32883206

RESUMEN

BACKGROUND: To fully elucidate the roles and mechanisms of plant hormones in leaf senescence, we adopted an integrated analysis of both non-senescing and senescing leaves from red maple with transcriptome and metabolome data. RESULTS: Transcription and metabolite profiles were generated through a combination of deep sequencing, third-generation sequencing data analysis, and ultrahigh-performance liquid chromatograph Q extractive mass spectrometry (UHPLC-QE-MS), respectively. We investigated the accumulation of compounds and the expression of biosynthesis and signaling genes for eight hormones. The results revealed that ethylene and abscisic acid concentrations increased during the leaf senescence process, while the contents of cytokinin, auxin, jasmonic acid, and salicylic acid continued to decrease. Correlation tests between the hormone content and transcriptional changes were analyzed, and in six pathways, genes closely linked with leaf senescence were identified. CONCLUSIONS: These results will enrich our understanding of the mechanisms of plant hormones that regulate leaf senescence in red maple, while establishing a foundation for the genetic modification of Acer in the future.


Asunto(s)
Acer/genética , Redes y Vías Metabólicas , Metaboloma , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Transcriptoma , Acer/crecimiento & desarrollo , Acer/metabolismo , Perfilación de la Expresión Génica , Redes y Vías Metabólicas/genética , Metabolómica , Reguladores del Crecimiento de las Plantas/genética , Hojas de la Planta/genética , Transcripción Genética
19.
Mol Vis ; 26: 691-704, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33088173

RESUMEN

Purpose: The present study aimed to determine whether the administration of Acer palmatum thumb. leaf extract (KIOM-2015E) protects against the degeneration of rat retinal ganglion cells after ischemia/reperfusion (I/R) induced by midbrain cerebral artery occlusion (MCAO). Methods: Sprague-Dawley rats were subjected to 90 min of MCAO, which produces transient ischemia in both the retina and brain due to the use of an intraluminal filament that blocks the ophthalmic and middle cerebral arteries. This was followed by reperfusion under anesthesia with isoflurane. The day after surgery, the eyes were treated three times (eye drop) or one time (oral administration) daily with KIOM-2015E for five days. Retinal histology was assessed in flat mounts and vertical sections to determine the effect of KIOM-2015E on I/R injury. Results: A significant loss of brain-specific homeobox/POU domain protein 3A (Brn3a) and neuron-specific class III beta-tubulin (Tuj-1) fluorescence and a marked increase in glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS) expression were observed after five days in the PBS-treated MCAO group compared to the sham-operated control group. However, KIOM-2015E treatment reduced (1) MCAO-induced upregulation of GFAP and GS, (2) retinal ganglion cell loss, (3) nerve fiber degeneration, and (4) the number of TUNEL-positive cells. KIOM-2015E application also increased staining for parvalbumin (a marker of horizontal cell associated calcium-binding protein and amacrine cells) and recoverin (a marker of photoreceptor expression) in rats subjected to MCAO-induced retinal damage. Conclusions: Our findings indicated that KIOM-2015E treatment exerted protective effects against retinal damage following MCAO injury and that this extract may aid in the development of novel therapeutic strategies for retinal diseases, such as glaucoma and age-related macular disease.


Asunto(s)
Acer/metabolismo , Apoptosis/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Daño por Reperfusión/metabolismo , Degeneración Retiniana/prevención & control , Células Ganglionares de la Retina/efectos de los fármacos , Acer/química , Animales , Cromatografía Líquida de Alta Presión , Regulación hacia Abajo , Proteína Ácida Fibrilar de la Glía/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Masculino , Fibras Nerviosas/patología , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/complicaciones , Daño por Reperfusión/mortalidad , Degeneración Retiniana/complicaciones , Degeneración Retiniana/metabolismo , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/patología , Factor de Transcripción Brn-3B/metabolismo , Tubulina (Proteína)/metabolismo , Regulación hacia Arriba
20.
New Phytol ; 222(4): 1846-1861, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30548617

RESUMEN

In trees, dead and living cells of secondary xylem (wood) function collectively, rendering cell-to-cell communication challenging. Water and solutes are transported over long distances from the roots to the above-ground organs via vessels, the main component of wood, and then radially over short distances to the neighboring cells. This enables proper functioning of trees and integrates whole-plant activity. In this study, tracer loading, immunolocalization experiments and inhibitor assays were used to decipher the mechanisms enabling transport in wood of Acer pseudoplatanus (maple), Fraxinus excelsior (ash) and Populus tremula × tremuloides (poplar) trees. We show that tracer uptake from dead water-conducting vessels, elements of the apoplasm, to living vessel-associated cells (VACs) of the xylem parenchyma of the symplasm system proceeds via the endocytic pathway, including clathrin-mediated and clathrin-independent processes. These findings enhance our understanding of the transport pathways in complex wood tissue, providing experimental evidence of the involvement of VACs and endocytosis in radial uptake from vessels.


Asunto(s)
Endocitosis , Madera/metabolismo , Acer/metabolismo , Transporte Biológico , Brefeldino A/farmacología , Clatrina/metabolismo , Colorantes/metabolismo , Fraxinus/metabolismo , Modelos Biológicos , Haz Vascular de Plantas/citología , Populus/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda