Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 503
Filtrar
1.
RNA ; 29(9): 1400-1410, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37279998

RESUMEN

Unique chemical and physical properties are introduced by inserting selenocysteine (Sec) at specific sites within proteins. Recombinant and facile production of eukaryotic selenoproteins would benefit from a yeast expression system; however, the selenoprotein biosynthetic pathway was lost in the evolution of the kingdom Fungi as it diverged from its eukaryotic relatives. Based on our previous development of efficient selenoprotein production in bacteria, we designed a novel Sec biosynthesis pathway in Saccharomyces cerevisiae using Aeromonas salmonicida translation components. S. cerevisiae tRNASer was mutated to resemble A. salmonicida tRNASec to allow recognition by S. cerevisiae seryl-tRNA synthetase as well as A. salmonicida selenocysteine synthase (SelA) and selenophosphate synthetase (SelD). Expression of these Sec pathway components was then combined with metabolic engineering of yeast to enable the production of active methionine sulfate reductase enzyme containing genetically encoded Sec. Our report is the first demonstration that yeast is capable of selenoprotein production by site-specific incorporation of Sec.


Asunto(s)
Saccharomyces cerevisiae , Codón de Terminación/genética , Codón de Terminación/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Aeromonas salmonicida/genética , Ingeniería de Proteínas , ARN de Transferencia de Cisteína/química , ARN de Transferencia de Cisteína/genética , ARN de Transferencia de Cisteína/metabolismo , Humanos , Conformación de Ácido Nucleico
2.
Infect Immun ; 92(8): e0001124, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38920386

RESUMEN

Cold shock proteins (Csp) are pivotal nucleic acid binding proteins known for their crucial roles in the physiology and virulence of various bacterial pathogens affecting plant, insect, and mammalian hosts. However, their significance in bacterial pathogens of teleost fish remains unexplored. Aeromonas salmonicida subsp. salmonicida (hereafter A. salmonicida) is a psychrotrophic pathogen and the causative agent of furunculosis in marine and freshwater fish. Four csp genes (cspB, cspD, cspA, and cspC) have been identified in the genome of A. salmonicida J223 (wild type). Here, we evaluated the role of DNA binding proteins, CspB and CspD, in A. salmonicida physiology and virulence in lumpfish (Cyclopterus lumpus). A. salmonicida ΔcspB, ΔcspD, and the double ΔcspBΔcspD mutants were constructed and characterized. A. salmonicida ΔcspB and ΔcspBΔcspD mutants showed a faster growth at 28°C, and reduced virulence in lumpfish. A. salmonicida ΔcspD showed a slower growth at 28°C, biofilm formation, lower survival in low temperatures and freezing conditions (-20°C, 0°C, and 4°C), deficient in lipopolysaccharide synthesis, and low virulence in lumpfish. Additionally, ΔcspBΔcspD mutants showed less survival in the presence of bile compared to the wild type. Transcriptome analysis revealed that 200, 37, and 921 genes were differentially expressed in ΔcspB, ΔcspD, and ΔcspBΔcspD, respectively. In ΔcspB and ΔcspBΔcspD virulence genes in the chromosome and virulence plasmid were downregulated. Our analysis indicates that CspB and CspD mostly act as a transcriptional activator, influencing cell division (e.g., treB), virulence factors (e.g., aexT), and ultimately virulence.


Asunto(s)
Aeromonas salmonicida , Proteínas Bacterianas , Enfermedades de los Peces , Animales , Aeromonas salmonicida/patogenicidad , Aeromonas salmonicida/genética , Aeromonas salmonicida/metabolismo , Virulencia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Enfermedades de los Peces/microbiología , Proteínas y Péptidos de Choque por Frío/genética , Proteínas y Péptidos de Choque por Frío/metabolismo , Regulación Bacteriana de la Expresión Génica , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Perciformes/microbiología , Forunculosis/microbiología
3.
Glycobiology ; 34(9)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39107988

RESUMEN

Infections pose a challenge for the fast growing aquaculture sector. Glycosphingolipids are cell membrane components that pathogens utilize for attachment to the host to initiate infection. Here, we characterized rainbow trout glycosphingolipids from five mucosal tissues using mass spectrometry and nuclear magnetic resonance and investigated binding of radiolabeled Aeromonas salmonicida to the glycosphingolipids on thin-layer chromatograms. 12 neutral and 14 acidic glycosphingolipids were identified. The glycosphingolipids isolated from the stomach and intestine were mainly neutral, whereas glycosphingolipids isolated from the skin, gills and pyloric caeca were largely acidic. Many of the acidic structures were poly-sialylated with shorter glycan structures in the skin compared to the other tissues. The sialic acids found were Neu5Ac and Neu5Gc. Most of the glycosphingolipids had isoglobo and ganglio core chains, or a combination of these. The epitopes on the rainbow trout glycosphingolipid glycans differed between epithelial sites leading to differences in pathogen binding. A major terminal epitope was fucose, that occurred attached to GalNAc in a α1-3 linkage but also in the form of HexNAc-(Fuc-)HexNAc-R. A. salmonicida were shown to bind to neutral glycosphingolipids from the gill and intestine. This study is the first to do a comprehensive investigation of the rainbow trout glycosphingolipids and analyze binding of A. salmonicida to glycosphingolipids. The structural information paves the way for identification of ways of interfering in pathogen colonization processes to protect against infections in aquaculture and contributes towards understanding A. salmonicida infection mechanisms.


Asunto(s)
Aeromonas salmonicida , Glicoesfingolípidos , Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/microbiología , Oncorhynchus mykiss/metabolismo , Aeromonas salmonicida/metabolismo , Aeromonas salmonicida/química , Glicoesfingolípidos/metabolismo , Glicoesfingolípidos/química , Membrana Mucosa/microbiología , Membrana Mucosa/metabolismo
4.
Fish Shellfish Immunol ; 147: 109456, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38369070

RESUMEN

Aeromonas salmonicida is one of the most harmful pathogens in finfish aquaculture worldwide. Immunostimulants such as ß-glucans are used to enhance the immunity of cultured fish. However, their effects on fish physiology are not completely understood. In the present work, we evaluated the effect of a single intraperitoneal (ip) injection of zymosan A on fish survival against A. salmonicida infection. A single administration of this compound protected fish against A. salmonicida challenge and reduce the bacterial load in the head kidney one week after its administration. Transcriptome analyses of head kidney samples revealed several molecular mechanisms involved in the protection conferred by zymosan A and their regulation by long noncoding RNAs. The transcriptome profile of turbot exposed only to zymosan A was practically unaltered one week after ip injection. However, the administration of this immunostimulant induced significant transcriptomic changes once the fish were in contact with the bacteria and increased the survival of the infected turbot. Our results suggest that the restraint of the infection-induced inflammatory response, the management of apoptotic cell death, cell plasticity and cellular processes involving cytoskeleton dynamics support the protective effects of zymosan A. All this information provides insights on the cellular and molecular mechanisms involved in the protective effects of this widely used immunostimulant.


Asunto(s)
Aeromonas salmonicida , Enfermedades de los Peces , Peces Planos , Infecciones por Bacterias Gramnegativas , ARN Largo no Codificante , Animales , Zimosan , Aeromonas salmonicida/fisiología , Inflamación , Perfilación de la Expresión Génica , Adyuvantes Inmunológicos
5.
Fish Shellfish Immunol ; 153: 109863, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39209005

RESUMEN

Aeromonas salmonicida is a common pathogenic bacterial species found in both freshwater and marine fish, leading to significant economic losses in the aquaculture industry. YidC is an accessory to SecYEG and is essential for the SecYEG transporter to insert into the bacterial membrane. However, the roles of the yidC gene on the host immune response remain unclear. Here, we compared the pathogenicity of yidC gene-deleted (ΔyidC) strain and wild-type (SRW-OG1) strain of mesophilic A. salmonicida to Orange-spotted grouper (Epinephelus coioides), and explored the impacts of yidC gene on the immune response of E. coioides to mesophilic A. salmonicida infection by using Red/ET recombineering. In this study, the E. coioides in the Secondary infected group had a 53.9 % higher survival rate than those in the Primary infected group. In addition, the adhesion ability of ΔyidC strain decreased by about 83.36 % compared with that of the wild-type (SRW-OG1) strain. Further comparison of the biological phenotype of SRW-OG1 and ΔyidC revealed that this yidC gene could regulate the expression of genes related to iron metabolism and have no effect on bacterial growth under the limited iron concentration. In the low concentration of Fe3+ and Fe2+ environment, SRW-OG1 can obtain iron ions by regulating yidC. Based on the above results, yidC gene contributed to the pathogenicity of mesophilic A. salmonicida to E. coioides, deletion of yidC gene promoted the inflammation and immune response of E. coioides to mesophilic A. salmonicida infection.


Asunto(s)
Aeromonas salmonicida , Proteínas Bacterianas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Virulencia , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/microbiología , Aeromonas salmonicida/fisiología , Aeromonas salmonicida/patogenicidad , Proteínas Bacterianas/genética , Lubina/inmunología , Lubina/genética , Inmunidad Innata/genética
6.
Fish Shellfish Immunol ; 152: 109733, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38944251

RESUMEN

Mucosal tissues appear to be more important in fish than in mammals due to living in a microbial-rich aquatic milieu, yet the complex interaction between the immune and the neuroendocrine system in these tissues remains elusive. The aim of this work was to investigate the mucosal immune response in immunized rainbow trout vaccinated with Alpha ject vaccine (bivalent), kept in fresh water (FW) or transferred to seawater (SW), and to evaluate their response to acute stress (chasing). Acute stress resulted in higher levels of plasma cortisol (Sham + Stress and Vaccine + Stress). A similar response was observed in skin mucus, but it was lower in Vaccine + Stress compared with stressed fish. With a few exceptions, minimal alterations were detected in the transcriptomic profile of stress-immune gene in the skin of vaccinated and stressed fish in both FW and SW. In the gills, the stress elicited activation of key stress-immune components (gr1, mr, ß-ar, hsp70, c3, lysozyme, α-enolase, nadph oxidase, il1ß, il6, tnfα, il10 and tgfß1) in FW, but fewer immune changes were induced by the vaccine (nadph oxidase, il6, tnfα, il10 and igt) in both SW and FW. In the intestine, an array of immune genes was activated by the vaccine particularly those related with B cells (igm, igt) and T cells (cd8α) in FW with no stimulation observed in SW. Therefore, our survey on the transcriptomic mucosal response demonstrates that the immune protection conferred by the vaccine to the intestine is modulated in SW. Overall, our results showed: i) plasma and skin mucus cortisol showed no additional stress effect induced by prolonged SW acclimation, ii) the stress and immune response were different among mucosal tissues which indicates a tissue-specific response to specific antigens/stressor. Further, the results suggest that the systemic immune organs may be more implicated in infectious events in SW (as few changes were observed in the mucosal barriers of immunized fish in SW) than in FW.


Asunto(s)
Aeromonas salmonicida , Vacunas Bacterianas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Inmunidad Mucosa , Oncorhynchus mykiss , Estrés Fisiológico , Vibrio , Animales , Oncorhynchus mykiss/inmunología , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Estrés Fisiológico/inmunología , Enfermedades de los Peces/inmunología , Vibrio/fisiología , Vibrio/inmunología , Aeromonas salmonicida/fisiología , Aeromonas salmonicida/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/inmunología , Aclimatación/inmunología , Vibriosis/veterinaria , Vibriosis/inmunología , Vibriosis/prevención & control , Agua de Mar/química
7.
Fish Shellfish Immunol ; 152: 109757, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002556

RESUMEN

The development and growth of fish farming are hindered by viral and bacterial infectious diseases, which necessitate effective disease control measures. Furunculosis, primarily caused by Aeromonas salmonicida, stands out as a significant bacterial disease affecting salmonid fish farms, particularly rainbow trout. Vaccination has emerged as a crucial tool in combating this disease. The objective of this experiment was to assess and compare the efficacy and duration of different vaccine protocols against furunculosis in large trout under controlled rearing conditions, utilizing single and booster administrations via intraperitoneal, oral, and immersion routes. Among the various vaccination protocols tested, only those involving intraperitoneal injection, administered at least once, proved truly effective in preventing the expression of clinical signs of furunculosis and reducing mortality rates. A single intraperitoneal administration provided protection for up to 2352°-days, equivalent to approximately 5 months in water at 16 °C. However, intraperitoneal vaccination may lead to reduced growth in the fish due to resultant intraperitoneal adhesions. Additionally, protocols incorporating booster doses via intraperitoneal injection demonstrated efficacy regardless of the administration route of the primary vaccination. Nevertheless, the use of booster vaccinations via the intraperitoneal route did not confer any significant advantage over a single intraperitoneal injection in terms of efficacy.


Asunto(s)
Aeromonas salmonicida , Enfermedades de los Peces , Forunculosis , Infecciones por Bacterias Gramnegativas , Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/inmunología , Forunculosis/prevención & control , Forunculosis/inmunología , Aeromonas salmonicida/inmunología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/inmunología , Inyecciones Intraperitoneales/veterinaria , Autovacunas/administración & dosificación , Autovacunas/inmunología , Vacunación/veterinaria , Administración Oral , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/inmunología
8.
Fish Shellfish Immunol ; 153: 109862, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39209006

RESUMEN

Aeromonas salmonicida is an opportunistic pathogen with relevance for aquaculture. Fish epithelia are covered by a mucus layer, composed mainly by highly glycosylated mucins, which are the first point of contact between fish and pathogens. Quorum sensing (QS), a bacterial communication mechanism through secreted autoinducer signals that governs gene expression, influences bacterial growth and virulence. The main A. salmonicida autoinducers are mediated by the luxS and asaI genes, corresponding to inter- and intraspecies communication, respectively. The aim of this study was to determine the effect of the mucins that pathogens encounter during colonization of the gill and skin on A. salmonicida QS. We found that expression of A. salmonicida asaI, but not luxS, was increased after culture at 20 °C compared to 10 °C. Rainbow trout gill and skin mucins up-regulated asaI expression 2-fold but down-regulated luxS 10-fold. The downregulation of luxS was reflected by a reduction in autoinducer-2 secretion. Mucins isolated from skin had a stronger inhibitory effect than mucins isolated from gills on both luxS expression and A1-2 secretion, consistent with a higher relative abundance of N-Acetylneuraminic acid on skin mucins than on gill mucins. Reduction of AI-2 production by mucins or luxS-deletion lead to a reduced A. salmonicida auto-aggregation. Furthermore, after colonization of the gill, luxS was down regulated whereas asaI expression was upregulated. Both in vivo and in vitro, the expression of luxS and asaI were thus differentially regulated, frequently in an inverse manner. The strong AI-2 inhibiting effect of the skin mucins is likely part of the mucin-based defense against pathogens.


Asunto(s)
Aeromonas salmonicida , Homoserina , Mucinas , Oncorhynchus mykiss , Percepción de Quorum , Animales , Oncorhynchus mykiss/inmunología , Aeromonas salmonicida/fisiología , Mucinas/genética , Mucinas/metabolismo , Homoserina/análogos & derivados , Liasas de Carbono-Azufre/genética , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Proteínas Bacterianas/genética , Lactonas , Piel/inmunología , Piel/microbiología , Branquias/inmunología , Branquias/metabolismo
9.
Fish Shellfish Immunol ; 151: 109711, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901685

RESUMEN

Aeromonas salmonicida is one of the most prevalent pathogens that causes huge economic losses to aquaculture. Effective vaccination is the first choice for preventing infection. Bacterial ghost (BG), an empty bacterial shell devoid of cytoplasm, is a promising vaccine antigen with distinct advantages. Herein, we established strategies for producing a substantial yield of A. salmonicida ghost (ASG) and investigated the immune-protective properties of it. As a result, 2.84 mg/ml NaOH was discovered to be capable of inducing considerable amounts of ASG. Furthermore, the ASG vaccine elicited adaptive immunity in turbots after rapid activation of innate immunity. Even though formalin-killed cells (FKC) produced a few more antibodies than ASG, ASG ultimately provided a much stronger immune protection effect because it strengthened cellular immunity, with a relative percentage survival (RPS) of 50.1 % compared to FKC. These findings demonstrated that ASG effectively activated cell-mediated immunity, which helped get rid of microorganisms inside cells. Therefore, this study presented novel perspectives for future research on furunculosis vaccine products based on ASG as an antigen.


Asunto(s)
Aeromonas salmonicida , Vacunas Bacterianas , Enfermedades de los Peces , Peces Planos , Infecciones por Bacterias Gramnegativas , Aeromonas salmonicida/inmunología , Animales , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Peces Planos/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/prevención & control , Forunculosis/prevención & control , Forunculosis/inmunología , Forunculosis/microbiología , Inmunidad Innata , Inmunidad Adaptativa , Inmunidad Celular , Vacunación/veterinaria
10.
Fish Shellfish Immunol ; 151: 109738, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971350

RESUMEN

Antimicrobial peptides (AMPs) are an alternative to antibiotics for treatment and prevention of infections with a lower risk of bacterial resistance. Pituitary adenylate cyclase activating polypeptide (PACAP) is an outstanding AMP with versatile effects including antimicrobial activity and modulation of immune responses. The objective of this research was to study PACAP immunomodulatory effect on rainbow trout cell lines infected with Aeromonas salmonicida. PACAP from Clarias gariepinus (PACAP1) and a modified PACAP (PACAP5) were tested. RT-qPCR results showed that il1b and il8 expression in RTgutGC was significantly downregulated while tgfb expression was upregulated after PACAP treatment. Importantly, the concentration of IL-1ß and IFN-γ increased in the conditioned media of RTS11 cells incubated with PACAP1 and exposed to A. salmonicida. There was a poor correlation between gene expression and protein concentration, suggesting a stimulation of the translation of IL-1ß protein from previously accumulated transcripts or the cleavage of accumulated IL-1ß precursor. In-silico studies of PACAP-receptor interactions showed a turn of the peptide characteristic of PACAP-PAC1 interaction, correlated with the higher number of interactions observed with this specific receptor, which is also in agreement with the higher PACAP specificity described for PAC1 compared to VPAC1 and VPACA2. Finally, the in silico analysis revealed nine amino acids related to the PACAP receptor-associated functionality.


Asunto(s)
Aeromonas salmonicida , Citocinas , Proteínas de Peces , Oncorhynchus mykiss , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Animales , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Aeromonas salmonicida/fisiología , Oncorhynchus mykiss/inmunología , Oncorhynchus mykiss/genética , Citocinas/genética , Citocinas/metabolismo , Línea Celular , Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Bagres/inmunología , Bagres/genética , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Inmunidad Innata/genética , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/genética
11.
Fish Shellfish Immunol ; 153: 109840, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39153579

RESUMEN

Infectious diseases have significantly impacted Atlantic salmon aquaculture worldwide. Modulating fish immunity with immunostimulant-containing functional feeds could be an effective strategy in mitigating disease problems. Previously, we characterized the impact of polyriboinosinic polyribocytidylic acid (pIC) and formalin-killed typical Aeromonas salmonicida bacterin on miRNA expression in Atlantic salmon fed a commercial diet with and without immunostimulant CpG. A set of miRNA biomarkers of Atlantic salmon head kidney responding to pIC and/or bacterin immune stimulations was identified (Xue et al., 2019) [1]. Herein, we report a complementary qPCR study that investigated the impact of the pIC, bacterin and dietary CpG on the expression of immune-relevant mRNAs (n = 31) using the same samples as in the previous study (Xue et al., 2019) [1]. Twenty-six of these genes were predicted target transcripts of the pIC- and/or bacterin-responsive miRNAs identified in the earlier study. The current data showed that pIC and/or bacterin stimulations significantly modulated the majority of the qPCR-analyzed genes involved in various immune pathways. Some genes responded to both stimulations (e.g. tnfa, il10rb, ifng, irf9, cxcr3, campb) while others appeared to be stimulation specific [e.g. irf3, irf7a, il1r1, mxa, mapk3 (pIC only); clra (bacterin only)]. A. salmonicida bacterin stimulation produced a strong inflammatory response (e.g. higher expression of il1b, il8a and tnfa), while salmon stimulated with pIC showed robust interferon responses (both type I and II). Furthermore, the current data indicated significant down-regulation of immune-relevant transcripts (e.g. tlr9, irf5, il1r1, hsp90ab1, itgb2) by dietary immunostimulant CpG, especially among pre-injection and PBS-injected fish. Together with our prior miRNA study, the present research provided complementary information on Atlantic salmon anti-viral and anti-bacterial immune responses and on how dietary CpG may modulate these responses.


Asunto(s)
Adyuvantes Inmunológicos , Aeromonas salmonicida , Alimentación Animal , Dieta , ARN Mensajero , Salmo salar , Animales , Salmo salar/inmunología , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/administración & dosificación , Alimentación Animal/análisis , Dieta/veterinaria , ARN Mensajero/genética , ARN Mensajero/metabolismo , Aeromonas salmonicida/fisiología , Inmunidad Innata/efectos de los fármacos , Biomarcadores , Enfermedades de los Peces/inmunología , Suplementos Dietéticos/análisis , Oligodesoxirribonucleótidos/farmacología , Oligodesoxirribonucleótidos/administración & dosificación , MicroARNs/genética , Riñón Cefálico/inmunología , Poli I-C/farmacología , Poli I-C/administración & dosificación
12.
Dis Aquat Organ ; 159: 29-35, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087617

RESUMEN

The Clinical and Laboratory Standards Institute has published epidemiological cut-off values for susceptibility data generated at 22°°C and read after 44-48 h for florfenicol, oxolinic acid and oxytetracycline against Aeromonas salmonicida. The cut-off values for the minimum inhibitory concentration (MIC) and disc diffusion were derived from data obtained by 1 laboratory and 2 laboratories respectively. The present work reports the generation of susceptibility data from additional laboratories and the calculation of provisional cut-off values from aggregations of these data with previously published data. With respect to MIC data, the provisional cut-off values, derived from aggregations of the data from 4 laboratories, were ≤4 µg ml-1 for florfenicol, ≤0.0625 µg ml-1 for oxolinic acid and ≤1 µg ml-1 for oxytetracycline. For disc diffusion data, the provisional cut-off values derived from aggregations of the data from 5 laboratories were ≥30 mm for florfenicol, ≥32 mm for oxolinic acid and ≥25 mm for oxytetracycline. In addition, a cut-off value of ≥29 mm for ampicillin was derived from the aggregation of data from 4 laboratories.


Asunto(s)
Aeromonas salmonicida , Antibacterianos , Pruebas de Sensibilidad Microbiana , Aeromonas salmonicida/efectos de los fármacos , Antibacterianos/farmacología , Animales , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/epidemiología , Farmacorresistencia Bacteriana , Tianfenicol/análogos & derivados , Tianfenicol/farmacología
13.
J Fish Dis ; 47(7): e13944, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38523320

RESUMEN

Aeromonas salmonicida, a widely distributed aquatic pathogen causing furunculosis in fish, exhibits varied virulence, posing challenges in infectious disease and immunity studies, notably in vaccine efficacy assessment. Lumpfish (Cyclopterus lumpus) has become a valuable model for marine pathogenesis studies. This study evaluated several antigen preparations against A. salmonicida J223, a hypervirulent strain of teleost fish, including lumpfish. The potential immune protective effect of A. salmonicida bacterins in the presence and absence of the A-layer and extracellular products was tested in lumpfish. Also, we evaluated the impact of A. salmonicida outer membrane proteins (OMPs) and iron-regulated outer membrane proteins (IROMPs) on lumpfish immunity. The immunized lumpfish were intraperitoneally (i.p.) challenged with 104 A. salmonicida cells/dose at 8 weeks-post immunization (wpi). Immunized and non-immunized fish died within 2 weeks post-challenge. Our analyses showed that immunization with A. salmonicida J223 bacterins and antigen preparations did not increase IgM titres. In addition, adaptive immunity biomarker genes (e.g., igm, mhc-ii and cd4) were down-regulated. These findings suggest that A. salmonicida J223 antigen preparations hinder lumpfish immunity. Notably, many fish vaccines are bacterin-based, often lacking efficacy evaluation. This study offers crucial insights for finfish vaccine approval and regulations.


Asunto(s)
Inmunidad Adaptativa , Aeromonas salmonicida , Vacunas Bacterianas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Aeromonas salmonicida/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/prevención & control , Vacunas Bacterianas/inmunología , Forunculosis/inmunología , Forunculosis/prevención & control , Forunculosis/microbiología , Perciformes/inmunología , Antígenos Bacterianos/inmunología
14.
J Fish Dis ; 47(2): e13885, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37947250

RESUMEN

Here, we provide evidence that the freshwater parasitic copepod, Salmincola californiensis, acts as a vector for Aeromonas salmonicida. While investigating the effects of S. californiensis on Chinoook salmon (Oncorhynchus tshawytscha), we tangentially observed that fish infected with the copepod developed furunculosis, caused by A. salmonicida. This occurred despite being reared in pathogen-free well water in a research facility with no prior history of spontaneous infection. We further investigated the possibility of S. californiensis to serve as a vector for the bacterium via detection of fluorescently labelled A. salmonicida inside the egg sacs from copepods in which the fish hosts were experimentally infected with GFP-A449 A. salmonicida. We then evaluated copepod egg sacs that were collected from adult Chinook salmon from a freshwater hatchery with A. salmonicida infections confirmed by either culture or PCR. The bacterium was cultured on tryptic soy agar plates from 75% of the egg sacs, and 61% were positive by PCR. These three separate experiments indicate an alternative tactic of transmission in addition to direct transmission of A. salmonicida in captivity. The copepod may play an important role in transmission of the bacterium when fish are more dispersed, such as in the wild.


Asunto(s)
Aeromonas salmonicida , Aeromonas , Copépodos , Enfermedades de los Peces , Forunculosis , Infecciones por Bacterias Gramnegativas , Salmonidae , Animales , Forunculosis/microbiología , Enfermedades de los Peces/microbiología , Salmón/microbiología , Agua Dulce , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/microbiología
15.
J Fish Dis ; 47(11): e14001, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39011626

RESUMEN

Studying inflammatory responses induced by vaccination can contribute to a more detailed understanding of underlying immune mechanisms in lumpfish (Cyclopterus lumpus). Tissue samples from lumpfish intraperitoneally immunized with a divalent oil-adjuvanted vaccine (Aeromonas salmonicida and Vibrio salmonicida) at water temperatures of 5, 10, and 15°C were collected at 630 day degrees and 18 weeks post injection. The relative amount of secretory and membrane-bound immunoglobulin M (IgM) gene transcripts in the head kidney was determined by qPCR. Vaccine-induced inflammatory lesions were assessed on histological sections of abdominal pancreatic/intestinal tissue from vaccinated fish in all three temperature groups. Inflammatory cells forming dense aggregations in lesions showed proliferative activity, many of which were identified as eosinophilic-granulocyte-like cells. IgM+ cells were scattered in inflammatory tissue dominated by connective tissue, showing no difference in numbers between lesions from fish vaccinated at 5, 10, and 15°C. Relative gene expression analysis of secretory and membrane-bound IgM revealed low overall expression in the head kidney of vaccinated fish at both 630 day-degrees and 18 weeks post injection. The results of this study indicate that the vaccine stimulated prolonged local inflammatory responses at the injection site, which were not influenced by temperature.


Asunto(s)
Aeromonas salmonicida , Vacunas Bacterianas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Temperatura , Vibriosis , Animales , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Aeromonas salmonicida/inmunología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/inmunología , Inyecciones Intraperitoneales/veterinaria , Vibriosis/veterinaria , Vibriosis/prevención & control , Vibriosis/inmunología , Inflamación/veterinaria , Perciformes/inmunología , Inmunoglobulina M , Aliivibrio salmonicida/inmunología , Vacunación/veterinaria , Riñón Cefálico/inmunología
16.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39063205

RESUMEN

Hsp40-Hsp70 typically function in concert as molecular chaperones, and their roles in post-infection immune responses are increasingly recognized. However, in the economically important fish species Scophthalmus maximus (turbot), there is still a lack in the systematic identification, interaction models, and binding site analysis of these proteins. Herein, 62 Hsp40 genes and 16 Hsp70 genes were identified in the turbot at a genome-wide level and were unevenly distributed on 22 chromosomes through chromosomal distribution analysis. Phylogenetic and syntenic analysis provided strong evidence in supporting the orthologies and paralogies of these HSPs. Protein-protein interaction and expression analysis was conducted to predict the expression profile after challenging with Aeromonas salmonicida. dnajb1b and hspa1a were found to have a co-expression trend under infection stresses. Molecular docking was performed using Auto-Dock Tool and PyMOL for this pair of chaperone proteins. It was discovered that in addition to the interaction sites in the J domain, the carboxyl-terminal domain of Hsp40 also plays a crucial role in its interaction with Hsp70. This is important for the mechanistic understanding of the Hsp40-Hsp70 chaperone system, providing a theoretical basis for turbot disease resistance breeding, and effective value for the prevention of certain diseases in turbot.


Asunto(s)
Enfermedades de los Peces , Peces Planos , Proteínas del Choque Térmico HSP40 , Proteínas HSP70 de Choque Térmico , Filogenia , Animales , Peces Planos/inmunología , Peces Planos/genética , Peces Planos/microbiología , Peces Planos/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/genética , Enfermedades de los Peces/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteínas de Peces/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/genética , Simulación del Acoplamiento Molecular , Aeromonas salmonicida/inmunología , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética
17.
Microb Pathog ; 185: 106394, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37858632

RESUMEN

Zebrafish (Danio rerio) is an excellent model to study bacterial infections in fish and their treatment. We used zebrafish as a model of infection for Aeromonas salmonicida subsp. salmonicida (hereinafter A. salmonicida), the causative agent of fish furunculosis. The infection process of A. salmonicida was studied by immersion of zebrafish larvae in 2 different doses of the bacteria and the fish mortality was monitored for three days. The bacterium caused a high mortality (65 %) in zebrafish larvae only when they were exposed to a high bacterial concentration (107 bacterial cells/mL). To evaluate the use of fluorescence microscopy to follow A. salmonicida infection in vivo, two different fluorescent strains generated by labeling an A. salmonicida strain with either, the green fluorescent protein (GFP), or with a previously reported siderophore amonabactin-sulforhodamine B conjugate (AMB-SRB), were used. The distribution of both labeled bacterial strains in the larvae tissues was evaluated by conventional and confocal fluorescence microscopy. The fluorescent signal showed a greater intensity with the GFP-labeled bacteria, so it could be observed using conventional fluorescence microscopy. Since the AMB-SRB labeled bacteria showed a weaker signal, the larvae were imaged using a laser scanning confocal microscope after 48 h of exposure to the bacteria. Both fluorescent signals were mainly observed in the larvae digestive tract, suggesting that this is the main colonization route of zebrafish for waterborne A. salmonicida. This is the first report of the use of a siderophore-fluorophore conjugate to study a bacterial infection in fish. The use of a siderophore-fluorophore conjugate has the advantage that it is a specific marker and that does not require genetic manipulation of the bacteria.


Asunto(s)
Aeromonas salmonicida , Enfermedades de los Peces , Animales , Sideróforos/metabolismo , Pez Cebra , Colorantes Fluorescentes/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Aeromonas salmonicida/genética , Enfermedades de los Peces/microbiología
18.
Microb Pathog ; 179: 106100, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37028687

RESUMEN

This study reports the polyphasic identification, characterization of virulence potential, and antibiotic susceptibility of Aeromonas salmonicida subspecies salmonicida COFCAU_AS, isolated from an aquaculture system in India. The physiological, biochemical, 16s rRNA gene sequencing and PAAS PCR test identified the strain as Aeromonas salmonicida. The MIY PCR tests established the subspecies as 'salmonicida'. The in vitro tests showed the isolated bacterium as haemolytic with casein, lipid, starch, and gelatin hydrolysis activity, indicating its pathogenic attributes. It also showed the ability to produce slime and biofilm, and additionally, it possessed an A-layer surface protein. In vivo pathogenicity test was performed to determine the LD50 dose of the bacterium in Labeo rohita fingerlings (14.42 ± 1.01 g), which was found to be 106.9 cells fish-1. The bacteria-challenged fingerlings showed skin lesions, erythema at the base of the fins, dropsy, and ulcer. Almost identical clinical signs and mortalities were observed when the same LD50 dose was injected into other Indian major carp species, L. catla and Cirrhinus mrigala. Out of the twelve virulent genes screened, the presence of nine genes viz., aerA, act, ast, alt, hlyA, vapA, exsA, fstA, and lip were detected, whereas ascV, ascC, and ela genes were absent. The A. salmonicida subsp. salmonicida COFCAU_AS was resistant to antibiotics such as penicillin G, rifampicin, ampicillin, and vancomycin while highly sensitive to amoxiclav, nalidixic acid, chloramphenicol, ciprofloxacin, and tetracycline. In summary, we have isolated a virulent A. salmonicida subsp. salmonicida from a tropical aquaculture pond which can cause significant mortality and morbidity in Indian major carp species.


Asunto(s)
Aeromonas salmonicida , Aeromonas , Enfermedades de los Peces , Animales , Aeromonas salmonicida/genética , Virulencia/genética , ARN Ribosómico 16S/genética , Acuicultura , Antibacterianos/farmacología , Enfermedades de los Peces/microbiología
19.
Genome ; 66(5): 108-115, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36780641

RESUMEN

All the 36 known species to date of the genus Aeromonas are mesophilic except the species Aeromonas salmonicida, which includes both psychrophilic and mesophilic subspecies. For 20 years, more and more mesophilic A. salmonicida strains have been discovered. Only A. salmonicida subsp. pectinolytica has officially been classified as a mesophilic subspecies. Most mesophiles have been isolated in hot countries. We present, for the first time, the characterization of two new mesophilic isolates from Quebec (Canada). Phenotypic and genomic characterizations were carried out on these strains, isolated from dead fish from a fish farm. Isolates 19-K304 and 19-K308 are clearly mesophiles, virulent to the amoeba Dictyostelium discoideum, a surrogate host, and close to strain Y577, isolated in India. To our knowledge, this is the first time that mesophilic strains isolated from different countries are so similar. The major difference between the isolates is the presence of plasmid pY47-3, a cryptic plasmid that sometimes presents in mesophilic strains. More importantly, our extensive phylogenetic analysis reveals two well-defined clades of mesophilic strains with psychrophiles associated with one of these clades. This helps to have a better understanding of the evolution of this species and the apparition of psychrophilic subspecies.


Asunto(s)
Aeromonas salmonicida , Dictyostelium , Animales , Aeromonas salmonicida/genética , Filogenia , Canadá , Análisis por Conglomerados
20.
Fish Shellfish Immunol ; 135: 108664, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36893926

RESUMEN

Furunculosis caused by Aeromonas salmonicida subsp salmonicida (Ass) is a medically and economically important bacterial disease in salmonid farms that requires therapeutic measures to prevent and control the disease. Evaluation of the effectiveness of traditional measures such as antibiotics or vaccines usually requires infecting fish experimentally. The objective of this study is to develop a method of infectious challenge of large (250-g) Rainbow trout by immersion close to natural infection conditions. We compare mortality, morbidity and anti-Ass antibody production of Rainbow trout following different bathing times (2, 4, 8 and 24 h) at a final bacterial concentration of 106 CFU/mL. One hundred sixty fish divided in five groups corresponding to the 4 bathing times and the non-challenged group were studied. The 24 h contact duration resulted in the infection of all fish, with a mortality rate of 53.25%. The challenged fish developed acute infection with symptoms and lesions (inappetance, altering of swimming behaviour, presence of boils) similar to those observed in furunculosis, and produced antibodies against the bacterium at 4 weeks after challenging, in contrast with the non-challenged group.


Asunto(s)
Aeromonas salmonicida , Aeromonas , Enfermedades de los Peces , Forunculosis , Infecciones por Bacterias Gramnegativas , Oncorhynchus mykiss , Animales , Inmersión
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda