Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Cell ; 180(4): 655-665.e18, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32004463

RESUMEN

Human endocannabinoid systems modulate multiple physiological processes mainly through the activation of cannabinoid receptors CB1 and CB2. Their high sequence similarity, low agonist selectivity, and lack of activation and G protein-coupling knowledge have hindered the development of therapeutic applications. Importantly, missing structural information has significantly held back the development of promising CB2-selective agonist drugs for treating inflammatory and neuropathic pain without the psychoactivity of CB1. Here, we report the cryoelectron microscopy structures of synthetic cannabinoid-bound CB2 and CB1 in complex with Gi, as well as agonist-bound CB2 crystal structure. Of important scientific and therapeutic benefit, our results reveal a diverse activation and signaling mechanism, the structural basis of CB2-selective agonists design, and the unexpected interaction of cholesterol with CB1, suggestive of its endogenous allosteric modulating role.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Receptor Cannabinoide CB1/química , Receptor Cannabinoide CB2/química , Transducción de Señal , Regulación Alostérica , Sitio Alostérico , Animales , Células CHO , Agonistas de Receptores de Cannabinoides/química , Cannabinoides/química , Cannabinoides/farmacología , Línea Celular Tumoral , Colesterol/química , Colesterol/farmacología , Cricetinae , Cricetulus , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Humanos , Simulación de Dinámica Molecular , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Células Sf9 , Spodoptera
2.
J Biol Chem ; 298(4): 101764, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35227761

RESUMEN

Cannabinoid receptor 1 (CB1) is a therapeutically relevant drug target for controlling pain, obesity, and other central nervous system disorders. However, full agonists and antagonists of CB1 have been reported to cause serious side effects in patients. Therefore, partial agonists have emerged as a viable alternative as they can mitigate overstimulation and side effects. One of the key bottlenecks in the design of partial agonists, however, is the lack of understanding of the molecular mechanism of partial agonism itself. In this study, we examine two mechanistic hypotheses for the origin of partial agonism in cannabinoid receptors and predict the mechanistic basis of partial agonism exhibited by Δ9-Tetrahydrocannabinol (THC) against CB1. In particular, we inspect whether partial agonism emerges from the ability of THC to bind in both agonist and antagonist-binding poses or from its ability to only partially activate the receptor. We used extensive molecular dynamics simulations and Markov state modeling to capture the THC binding in both antagonist and agonist-binding poses in the CB1 receptor. Furthermore, we predict that binding of THC in the agonist-binding pose leads to rotation of toggle switch residues and causes partial outward movement of intracellular transmembrane helix 6 (TM6). Our simulations also suggest that the alkyl side chain of THC plays a crucial role in determining partial agonism by stabilizing the ligand in the agonist and antagonist-like poses within the pocket. Taken together, this study provides important insights into the mechanistic origin of the partial agonism of THC.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Dronabinol , Receptor Cannabinoide CB1 , Agonistas de Receptores de Cannabinoides/química , Agonistas de Receptores de Cannabinoides/farmacología , Dronabinol/química , Dronabinol/farmacología , Humanos , Ligandos , Simulación de Dinámica Molecular , Receptor Cannabinoide CB1/química , Receptor Cannabinoide CB1/efectos de los fármacos
3.
Anal Chem ; 95(2): 703-713, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36599091

RESUMEN

With synthetic cannabinoid receptor agonist (SCRA) use still prevalent across Europe and structurally advanced generations emerging, it is imperative that drug detection methods advance in parallel. SCRAs are a chemically diverse and evolving group, which makes rapid detection challenging. We have previously shown that fluorescence spectral fingerprinting (FSF) has the potential to provide rapid assessment of SCRA presence directly from street material with minimal processing and in saliva. Enhancing the sensitivity and discriminatory ability of this approach has high potential to accelerate the delivery of a point-of-care technology that can be used confidently by a range of stakeholders, from medical to prison staff. We demonstrate that a range of structurally distinct SCRAs are photochemically active and give rise to distinct FSFs after irradiation. To explore this in detail, we have synthesized a model series of compounds which mimic specific structural features of AM-694. Our data show that FSFs are sensitive to chemically conservative changes, with evidence that this relates to shifts in the electronic structure and cross-conjugation. Crucially, we find that the photochemical degradation rate is sensitive to individual structures and gives rise to a specific major product, the mechanism and identification of which we elucidate through density-functional theory (DFT) and time-dependent DFT. We test the potential of our hybrid "photochemical fingerprinting" approach to discriminate SCRAs by demonstrating SCRA detection from a simulated smoking apparatus in saliva. Our study shows the potential of tracking photochemical reactivity via FSFs for enhanced discrimination of SCRAs, with successful integration into a portable device.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Drogas Ilícitas , Humanos , Agonistas de Receptores de Cannabinoides/química , Sistemas de Atención de Punto , Detección de Abuso de Sustancias/métodos
4.
Int J Legal Med ; 137(4): 1059-1069, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37072496

RESUMEN

Synthetic cannabinoid receptor agonists (SCRAs, "Spice") are a diverse group of recreational drugs, with their structural and pharmacological variability still evolving. Forensic toxicologists often rely on previous reports to assess their role in intoxication cases. This work provides detailed information on the "Spice"-related fatalities around Munich, Germany, from 2014 to 2020. All cases underwent an autopsy. Pharmaceutical and illicit drugs were detected and quantified in post-mortem peripheral blood or liver by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Based on circumstantial evidence, only those cases for which a prior consumption was suspected underwent additional analyses for SCRAs and other new psychoactive substances in post-mortem blood, liver or antemortem specimens. Drug concentrations, pathological findings at autopsy and case histories were considered to assess and rank the SCRAs' involvement in each death. Concentration ranges for the individual substances in blood were defined and their distribution patterns over the investigated period were determined and correlated with their legal status and local police seizures. We identified 41 different SCRAs among 98 fatalities. 91.8% were male, at a median age of 36 years. SCRAs played a causative role in 51%, contributory role in 26%, and an insignificant role in 23% of cases. In correlation with local police seizures and legal status, 5F-ADB was the most prevalent in our cases, followed by 5F-MDMB-PICA and AB-CHMINACA. Cumyl-CBMICA and 5F-MDMB-P7AICA were among the least frequently detected SCRAs. "Spice"-related fatalities and SCRAs' causative role have significantly decreased among our cases since the German New Psychoactive Substances Act.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Drogas Ilícitas , Masculino , Humanos , Adulto , Femenino , Agonistas de Receptores de Cannabinoides/química , Agonistas de Receptores de Cannabinoides/farmacología , Cromatografía Liquida , Autopsia , Estudios Retrospectivos , Espectrometría de Masas en Tándem
5.
Nature ; 547(7664): 468-471, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28678776

RESUMEN

The cannabinoid receptor 1 (CB1) is the principal target of the psychoactive constituent of marijuana, the partial agonist Δ9-tetrahydrocannabinol (Δ9-THC). Here we report two agonist-bound crystal structures of human CB1 in complex with a tetrahydrocannabinol (AM11542) and a hexahydrocannabinol (AM841) at 2.80 Å and 2.95 Å resolution, respectively. The two CB1-agonist complexes reveal important conformational changes in the overall structure, relative to the antagonist-bound state, including a 53% reduction in the volume of the ligand-binding pocket and an increase in the surface area of the G-protein-binding region. In addition, a 'twin toggle switch' of Phe2003.36 and Trp3566.48 (superscripts denote Ballesteros-Weinstein numbering) is experimentally observed and appears to be essential for receptor activation. The structures reveal important insights into the activation mechanism of CB1 and provide a molecular basis for predicting the binding modes of Δ9-THC, and endogenous and synthetic cannabinoids. The plasticity of the binding pocket of CB1 seems to be a common feature among certain class A G-protein-coupled receptors. These findings should inspire the design of chemically diverse ligands with distinct pharmacological properties.


Asunto(s)
Agonistas de Receptores de Cannabinoides/química , Dronabinol/análogos & derivados , Droperidol/análogos & derivados , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/química , Sitios de Unión , Agonistas de Receptores de Cannabinoides/síntesis química , Agonistas de Receptores de Cannabinoides/farmacología , Cristalografía por Rayos X , Dronabinol/síntesis química , Dronabinol/química , Dronabinol/farmacología , Droperidol/síntesis química , Droperidol/química , Droperidol/farmacología , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo
6.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37834323

RESUMEN

Synthetic cannabinoid receptor agonists (SCRAs) have become a wide group of new psychoactive substances since the 2010s. For the last few years, the X-ray structures of the complexes of cannabinoid receptor I (CB1) with SCRAs as well as the complexes of CB1 with its antagonist have been published. Based on those data, SCRA-CB1 interactions are analyzed in detail, using molecular modeling and molecular dynamics simulations. The molecular mechanism of the conformational transformation of the transmembrane domain of CB1 caused by its interaction with SCRA is studied. These conformational changes allosterically modulate the CB1-Gi complex, providing activation of the Gi protein. Based on the X-ray-determined structures of the CB1-ligand complexes, a stable apo conformation of inactive CB1 with a relatively low potential barrier of receptor activation was modeled. For that model, molecular dynamic simulations of SCRA binding to CB1 led to the active state of CB1, which allowed us to explore the key features of this activation and the molecular mechanism of the receptor's structural transformation. The simulated CB1 activation is in accordance with the previously published experimental data for the activation at protein mutations or structural changes of ligands. The key feature of the suggested activation mechanism is the determination of the stiff core of the CB1 transmembrane domain and the statement that the entire conformational transformation of the receptor to the active state is caused by a shift of alpha helix TM7 relative to this core. The shift itself is caused by protein-ligand interactions. It was verified via steered molecular dynamics simulations of the X-ray-determined structures of the inactive receptor, which resulted in the active conformation of CB1 irrespective of the placement of agonist ligand in the receptor's active site.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Simulación de Dinámica Molecular , Agonistas de Receptores de Cannabinoides/farmacología , Agonistas de Receptores de Cannabinoides/química , Ligandos , Receptores de Cannabinoides , Receptor Cannabinoide CB1
7.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37047385

RESUMEN

Cannabinoid Receptor 2 (CB2) is a promising target for treating inflammatory diseases. We designed derivatives of 3-carbamoyl-2-pyridone and 1,8-naphthyridin-2(1H)-one-3-carboxamide CB2-selective agonists with reduced lipophilicity. The new compounds were measured for their affinity (radioligand binding) and ability to elicit cyclic adenosine monophosphate (cAMP) signalling and ß-arrestin-2 translocation with temporal resolution (BRET-based biosensors). For the 3-carbamoyl-2-pyridone derivatives, we found that modifying the previously reported compound UOSS77 (also known as S-777469) by appending a PEG2-alcohol via a 3-carbomylcyclohexyl carboxamide (UOSS75) lowered lipophilicity, and preserved binding affinity and signalling profile. The 1,8-naphthyridin-2(1H)-one-3-carboxamide UOMM18, containing a cis configuration at the 3-carboxamide cyclohexyl and with an alcohol on the 4-position of the cyclohexyl, had lower lipophilicity but similar CB2 affinity and biological activity to previously reported compounds of this class. Relative to CP55,940, the new compounds acted as partial agonists and did not exhibit signalling bias. Interestingly, while all compounds shared similar temporal trajectories for maximal efficacy, differing temporal trajectories for potency were observed. Consequently, when applied at sub-maximal concentrations, CP55,940 tended to elicit sustained (cAMP) or increasing (arrestin) responses, whereas responses to the new compounds tended to be transient (cAMP) or sustained (arrestin). In future studies, the compounds characterised here may be useful in elucidating the consequences of differential temporal signalling profiles on CB2-mediated physiological responses.


Asunto(s)
Arrestina , Ciclohexanoles , Arrestina/metabolismo , Transducción de Señal , AMP Cíclico/metabolismo , Piridonas , Receptores de Cannabinoides/metabolismo , Receptor Cannabinoide CB2/metabolismo , Receptor Cannabinoide CB1/metabolismo , Agonistas de Receptores de Cannabinoides/farmacología , Agonistas de Receptores de Cannabinoides/química
8.
Molecules ; 28(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36838749

RESUMEN

The discovery of natural drug metabolites is a leading contributor to fulfilling the sustainable development goal of finding solutions to global health challenges. Depsidones are a class of polyketides that have been separated from lichens, fungi, sponges, and plants and possess various bioactivities, including cytotoxic, antimicrobial, antimalarial, antituberculosis, acetylcholinesterase and α-glucosidase inhibition, and anti-inflammatory effects. Endocannabinoid receptors (CB1 and CB2) are G-protein-coupled receptors (GPCRs), and their activation mediates many physiological processes. CB1 is the dominant subtype in the central nervous system, while CB2 is mainly expressed in the immune system. The two receptors exhibit high heterogeneity, making developing selective ligands a great challenge. Attempts to develop CB2 selective agonists for treating inflammatory diseases and neuropathic pain have not been successful due to the high homology of the binding sites of the CB receptors. In this work, 235 depsidones from various sources were investigated for the possibility of identifying CB2-selective agonists by performing multiple docking studies, including induced fit docking and Prime/molecular mechanics-generalized Born surface area (MM-GBSA) calculations to predict the binding mode and free energy. Simplicildone J (10), lobaric acid (110), mollicellin Q (101), garcinisidone E (215), mollicellin P (100), paucinervin Q (149), and boremexin C (161) had the highest binding scores (-12.134 kcal/mol, -11.944 kcal/mol, -11.479 kcal/mol, -11.394 kcal/mol, -11.322 kcal/mol, -11.305 kcal/mol, and -11.254 kcal/mol, respectively) when screened against the CB2 receptor (PDB ID: 6KPF). The molecular dynamic simulation was performed on the compounds with the highest binding scores. The computational outcomes show that garcinisidone E (215) and paucinervin Q (149) could be substantial candidates for CB2 receptor activation and warrant further in vivo and in vitro investigations.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Simulación de Dinámica Molecular , Agonistas de Receptores de Cannabinoides/química , Receptor Cannabinoide CB2 , Acetilcolinesterasa , Ligandos , Receptor Cannabinoide CB1 , Simulación del Acoplamiento Molecular
9.
Molecules ; 27(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36500256

RESUMEN

Cannabinoid type 1 (hCB1) and type 2 (hCB2) receptors are pleiotropic and crucial targets whose signaling contributes to physiological homeostasis and its restoration after injury. Being predominantly expressed in peripheral tissues, hCB2R represents a safer therapeutic target than hCB1R, which is highly expressed in the brain, where it regulates processes related to cognition, memory, and motor control. The development of hCB2R ligands represents a therapeutic opportunity for treating diseases such as pain, inflammation and cancer. Identifying new selective scaffolds for cannabinoids and determining the structural determinants responsible for agonism and antagonism are priorities in drug design. In this work, a series of N-[1,3-dialkyl(aryl)-2-oxoimidazolidin-4-ylidene]-aryl(alkyl)sulfonamides is designed and synthesized and their affinity for human hCB1R and hCB2R is determined. Starting with a scaffold selected from the NIH Psychoactive Drug Screening Program Repository, through a combination of molecular modeling and structure-activity relationship studies, we were able to identify the chemical features leading to finely tuned hCB2R selectivity. In addition, an in silico model capable of predicting the functional activity of hCB2R ligands was proposed and validated. The proposed receptor activation/deactivation model enabled the identification of four pure hCB2R-selective agonists that can be used as a starting point for the development of more potent ligands.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Cannabinoides , Humanos , Unión Proteica , Ligandos , Agonistas de Receptores de Cannabinoides/química , Relación Estructura-Actividad , Sulfonamidas , Receptor Cannabinoide CB2 , Receptor Cannabinoide CB1
10.
Molecules ; 27(9)2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35566369

RESUMEN

1,8-naphthyridine-3-carboxamide structures were previously identified as a promising scaffold from which to obtain CB2R agonists with anticancer and anti-inflammatory activity. This work describes the synthesis and functional characterization of new 1,8-naphthyridin-2(1H)-one-3-carboxamides with high affinity and selectivity for CB2R. The new compounds were able to pharmacologically modulate the cAMP response without modulating CB2R-dependent ß-arrestin2 recruitment. These structures were also evaluated for their anti-cancer activity against SH-SY5Y and SK-N-BE cells. They were able to reduce the cell viability of both neuroblastoma cancer cell lines with micromolar potency (IC50 of FG158a = 11.8 µM and FG160a = 13.2 µM in SH-SY5Y cells) by a CB2R-mediated mechanism. Finally, in SH-SY5Y cells one of the newly synthesized compounds, FG158a, was able to modulate ERK1/2 expression by a CB2R-mediated effect, thus suggesting that this signaling pathway might be involved in its potential anti-cancer effect.


Asunto(s)
Cannabinoides , Neuroblastoma , Agonistas de Receptores de Cannabinoides/química , Supervivencia Celular , Humanos , Neuroblastoma/tratamiento farmacológico , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2
11.
Molecules ; 28(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36615238

RESUMEN

Cannabinoid receptor ligands are renowned as being therapeutically crucial for treating diverse health disorders. Phenylspirodrimanes are meroterpenoids with unique and varied structural scaffolds, which are mainly reported from the Stachybotrys genus and display an array of bioactivities. In this work, 114 phenylspirodrimanes reported from Stachybotrys chartarum were screened for their CB2 agonistic potential using docking and molecular dynamic simulation studies. Compound 56 revealed the highest docking score (-11.222 kcal/mol) compared to E3R_6KPF (native agonist, gscore value -12.12 kcal/mol). The molecular docking and molecular simulation results suggest that compound 56 binds to the putative binding site in the CB2 receptor with good affinity involving key interacting amino acid residues similar to that of the native ligands, E3R. The molecular interactions displayed π-π stacking with Phe183 and hydrogen bond interactions with Thr114, Leu182, and Ser285. These findings identified the structural features of these metabolites that might lead to the design of selective novel ligands for CB2 receptors. Additionally, phenylspirodrimanes should be further investigated for their potential as a CB2 ligand.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Simulación de Dinámica Molecular , Receptor Cannabinoide CB2 , Terpenos , Sitios de Unión , Agonistas de Receptores de Cannabinoides/farmacología , Agonistas de Receptores de Cannabinoides/química , Ligandos , Simulación del Acoplamiento Molecular , Receptor Cannabinoide CB2/metabolismo , Terpenos/química , Terpenos/farmacología
12.
Molecules ; 27(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35209170

RESUMEN

A series of novel cannabinoid-type derivatives were synthesized by the coupling of (1S,4R)-(+) and (1R,4S)-(-)-fenchones with various resorcinols/phenols. The fenchone-resorcinol derivatives were fluorinated using Selectfluor and demethylated using sodium ethanethiolate in dimethylformamide (DMF). The absolute configurations of four compounds were determined by X-ray single crystal diffraction. The fenchone-resorcinol analogs possessed high affinity and selectivity for the CB2 cannabinoid receptor. One of the analogues synthesized, 2-(2',6'-dimethoxy-4'-(2″-methyloctan-2″-yl)phenyl)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol (1d), had a high affinity (Ki = 3.51 nM) and selectivity for the human CB2 receptor (hCB2). In the [35S]GTPγS binding assay, our lead compound was found to be a highly potent and efficacious hCB2 receptor agonist (EC50 = 2.59 nM, E(max) = 89.6%). Two of the fenchone derivatives were found to possess anti-inflammatory and analgesic properties. Molecular-modeling studies elucidated the binding interactions of 1d within the CB2 binding site.


Asunto(s)
Canfanos/química , Canfanos/farmacología , Agonistas de Receptores de Cannabinoides/química , Agonistas de Receptores de Cannabinoides/farmacología , Diseño de Fármacos , Norbornanos/química , Norbornanos/farmacología , Receptor Cannabinoide CB2/química , Canfanos/síntesis química , Agonistas de Receptores de Cannabinoides/síntesis química , Técnicas de Química Sintética , Relación Dosis-Respuesta a Droga , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Norbornanos/síntesis química , Unión Proteica , Receptor Cannabinoide CB2/agonistas , Análisis Espectral , Relación Estructura-Actividad
13.
Molecules ; 27(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163968

RESUMEN

As cannabinoid CB2 receptors (CB2R) possess various pharmacological effects-including anti-epilepsy, analgesia, anti-inflammation, anti-fibrosis, and regulation of bone metabolism-without the psychoactive side effects induced by cannabinoid CB1R activation, they have become the focus of research and development of new target drugs in recent years. The present study was intended to (1) establish a double luciferase screening system for a CB2R modulator; (2) validate the agonistic activities of the screened compounds on CB2R by determining cAMP accumulation using HEK293 cells that are stably expressing CB2R; (3) predict the binding affinity between ligands and CB2 receptors and characterize the binding modes using molecular docking; (4) analyze the CB2 receptors-ligand complex stability, conformational behavior, and interaction using molecular dynamics; and (5) evaluate the regulatory effects of the screened compounds on bone metabolism in osteoblasts and osteoclasts. The results demonstrated that the screening system had good stability and was able to screen cannabinoid CB2R modulators from botanical compounds. Altogether, nine CB2R agonists were identified by screening from 69 botanical compounds, and these CB2R agonists exhibited remarkable inhibitory effects on cAMP accumulation and good affinity to CB2R, as evidenced by the molecular docking and molecular dynamics. Five of the nine CB2R agonists could stimulate osteoblastic bone formation and inhibit osteoclastic bone resorption. All these findings may provide useful clues for the development of novel anti-osteoporotic drugs and help elucidate the mechanism underlying the biological activities of CB2R agonists identified from the botanical materials.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Evaluación Preclínica de Medicamentos/métodos , Receptor Cannabinoide CB2/agonistas , Animales , Antiinflamatorios/farmacología , Agonistas de Receptores de Cannabinoides/química , Moduladores de Receptores de Cannabinoides/farmacología , Cannabinoides/farmacología , China , Células HEK293 , Humanos , Ligandos , Ratones , Modelos Moleculares , Simulación del Acoplamiento Molecular , Células RAW 264.7 , Receptor Cannabinoide CB2/metabolismo
14.
J Am Chem Soc ; 143(2): 736-743, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33399457

RESUMEN

Cannabinoid receptor 2 (CB2) is a promising target for the treatment of neuroinflammation and other diseases. However, a lack of understanding of its complex signaling in cells and tissues complicates the therapeutic exploitation of CB2 as a drug target. We show for the first time that benchmark CB2 agonist HU308 increases cytosolic Ca2+ levels in AtT-20(CB2) cells via CB2 and phospholipase C. The synthesis of photoswitchable derivatives of HU308 from the common building block 3-OTf-HU308 enables optical control over this pathway with spatiotemporal precision, as demonstrated in a real-time Ca2+ fluorescence assay. Our findings reveal a novel messenger pathway by which HU308 and its derivatives affect cellular excitability, and they demonstrate the utility of chemical photoswitches to control and monitor CB2 signaling in real-time.


Asunto(s)
Calcio/metabolismo , Agonistas de Receptores de Cannabinoides/farmacología , Cannabinoides/farmacología , Receptor Cannabinoide CB2/agonistas , Agonistas de Receptores de Cannabinoides/síntesis química , Agonistas de Receptores de Cannabinoides/química , Cannabinoides/síntesis química , Cannabinoides/química , Humanos , Estructura Molecular , Procesos Fotoquímicos
15.
Bioorg Med Chem ; 50: 116421, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34634617

RESUMEN

Allosteric modulators of cannabinoid 1 receptor (CB1R) show translational promise over orthosteric ligands due to their potential to elicit therapeutic benefit without cannabimimetic side effects. The prototypic 2-phenylindole CB1R allosteric modulator, GAT211 (1), demonstrates preclinical efficacy in various disease models. The limited systematic structure-activity relationship (SAR) data at the C2 position of the indole ring within GAT211 invites the opportunity for further modifications to improve GAT211's pharmacological profile while serving to amplify and variegate this library of therapeutically attractive agents. These considerations prompted this focused SAR study in which we substituted the GAT211 C2-phenyl ring with heteroaromatic substituents. The synthesized GAT211 analogs were then evaluated in vitro as CB1R allosteric modulators in cAMP and ß-arrestin2 assays with CP55,940 as the orthosteric ligand. Furan and thiophene rings (15c-f and 15m) were the best-tolerated substituents at the C2 position of GAT211 for engagement with human CB1R (hCB1R). The SAR around the novel ligands reported allowed direct experimental characterization of the interaction profile of that pharmacophore with its binding domain in functional, human CB1R, thus offering guidance for accessing subsequent-generation hCB1R allosteric modulators as potential therapeutics. The most potent analog, 15d, markedly promoted orthosteric ligand binding to hCB1R. Pharmacological profiling in the GTPγS and mouse vas deferens assays demonstrated that 15d behaves as a CB1R agonist-positive allosteric modulator (ago-PAM), as confirmed electrophysiologically in autoptic neurons. In vivo, 15d was efficacious as a topical agent that significantly reduced intraocular pressure (IOP) in the ocular normotensive murine model of glaucoma. Since elevated IOP is a decisive risk factor for glaucoma and attendant vision loss, our data support the proposition that the 2-phenylindole class of CB1R ago-PAMs has therapeutic potential for glaucoma and other diseases where potentiation of CB1R signaling may be therapeutic.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Diseño de Fármacos , Indoles/farmacología , Receptor Cannabinoide CB1/agonistas , Regulación Alostérica/efectos de los fármacos , Agonistas de Receptores de Cannabinoides/síntesis química , Agonistas de Receptores de Cannabinoides/química , Relación Dosis-Respuesta a Droga , Humanos , Indoles/síntesis química , Indoles/química , Presión Intraocular/efectos de los fármacos , Estructura Molecular , Receptor Cannabinoide CB1/metabolismo , Relación Estructura-Actividad
16.
Int J Mol Sci ; 22(2)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435517

RESUMEN

GPR55 is a GPCR of the non-CB1/CB2 cannabinoid receptor family, which is activated by lysophosphatidylinositol (LPI) and stimulates the proliferation of cancer cells. Anandamide, a bioactive lipid endocannabinoid, acts as a biased agonist of GPR55 and induces cancer cell death, but is unstable and psychoactive. We hypothesized that other endocannabinoids and structurally similar compounds, which are more hydrolytically stable, could also induce cancer cell death via GPR55 activation. We chemically synthesized and tested a set of fatty acid amides and esters for cell death induction via GPR55 activation. The most active compounds appeared to be N-acyl dopamines, especially N-docosahexaenoyl dopamine (DHA-DA). Using a panel of cancer cell lines and a set of receptor and intracellular signal transduction machinery inhibitors together with cell viability, Ca2+, NO, ROS (reactive oxygen species) and gene expression measurement, we showed for the first time that for these compounds, the mechanism of cell death induction differed from that published for anandamide and included neuronal nitric oxide synthase (nNOS) overstimulation with concomitant oxidative stress induction. The combination of DHA-DA with LPI, which normally stimulates cancer proliferation and is increased in cancer setting, had an increased cytotoxicity for the cancer cells indicating a therapeutic potential.


Asunto(s)
Antineoplásicos/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Dopamina/análogos & derivados , Activadores de Enzimas/farmacología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Receptores de Cannabinoides/metabolismo , Animales , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Agonistas de Receptores de Cannabinoides/química , Línea Celular Tumoral , Dopamina/química , Dopamina/farmacología , Activadores de Enzimas/química , Ácidos Grasos/química , Ácidos Grasos/farmacología , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Células PC12 , Ratas
17.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34681877

RESUMEN

The activation of the human cannabinoid receptor type II (CB2R) is known to mediate analgesic and anti-inflammatory processes without the central adverse effects related to cannabinoid receptor type I (CB1R). In this work we describe the synthesis and evaluation of a novel series of N-aryl-2-pyridone-3-carboxamide derivatives tested as human cannabinoid receptor type II (CB2R) agonists. Different cycloalkanes linked to the N-aryl pyridone by an amide group displayed CB2R agonist activity as determined by intracellular [cAMP] levels. The most promising compound 8d exhibited a non-toxic profile and similar potency (EC50 = 112 nM) to endogenous agonists Anandamide (AEA) and 2-Arachidonoylglycerol (2-AG) providing new information for the development of small molecules activating CB2R. Molecular docking studies showed a binding pose consistent with two structurally different agonists WIN-55212-2 and AM12033 and suggested structural requirements on the pyridone substituents that can satisfy the orthosteric pocket and induce an agonist response. Our results provide additional evidence to support the 2-pyridone ring as a suitable scaffold for the design of CB2R agonists and represent a starting point for further optimization and development of novel compounds for the treatment of pain and inflammation.


Asunto(s)
Agonistas de Receptores de Cannabinoides/química , Agonistas de Receptores de Cannabinoides/farmacología , Piridonas/química , Receptor Cannabinoide CB2/agonistas , Animales , Ácidos Araquidónicos/química , Ácidos Araquidónicos/farmacología , Benzoxazinas/química , Benzoxazinas/farmacología , Sitios de Unión , Células CHO , Agonistas de Receptores de Cannabinoides/síntesis química , Supervivencia Celular/efectos de los fármacos , Cricetulus , AMP Cíclico/metabolismo , Evaluación Preclínica de Medicamentos , Endocannabinoides/química , Endocannabinoides/farmacología , Glicéridos/química , Glicéridos/farmacología , Células HL-60 , Células Hep G2 , Humanos , Simulación del Acoplamiento Molecular , Morfolinas/química , Morfolinas/farmacología , Naftalenos/química , Naftalenos/farmacología , Alcamidas Poliinsaturadas/química , Alcamidas Poliinsaturadas/farmacología , Piridonas/farmacología , Receptor Cannabinoide CB2/química , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/metabolismo , Relación Estructura-Actividad
18.
Molecules ; 26(17)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34500853

RESUMEN

The CB1 cannabinoid receptor is a G-protein coupled receptor highly expressed throughout the central nervous system that is a promising target for the treatment of various disorders, including anxiety, pain, and neurodegeneration. Despite the wide therapeutic potential of CB1, the development of drug candidates is hindered by adverse effects, rapid tolerance development, and abuse potential. Ligands that produce biased signaling-the preferential activation of a signaling transducer in detriment of another-have been proposed as a strategy to dissociate therapeutic and adverse effects for a variety of G-protein coupled receptors. However, biased signaling at the CB1 receptor is poorly understood due to a lack of strongly biased agonists. Here, we review studies that have investigated the biased signaling profile of classical cannabinoid agonists and allosteric ligands, searching for a potential therapeutic advantage of CB1 biased signaling in different pathological states. Agonist and antagonist bound structures of CB1 and proposed mechanisms of action of biased allosteric modulators are used to discuss a putative molecular mechanism for CB1 receptor activation and biased signaling. Current studies suggest that allosteric binding sites on CB1 can be explored to yield biased ligands that favor or hinder conformational changes important for biased signaling.


Asunto(s)
Agonistas de Receptores de Cannabinoides/química , Receptor Cannabinoide CB1/química , Sitio Alostérico , Sistema Nervioso Central/metabolismo , Humanos , Indoles/química , Ligandos , Modelos Moleculares , Piperidinas/química , Pregnenolona/química , Unión Proteica , Conformación Proteica , Transducción de Señal
19.
Molecules ; 26(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807614

RESUMEN

In vitro pharmacokinetic studies were conducted on enantiomer pairs of twelve valinate or tert-leucinate indole and indazole-3-carboxamide synthetic cannabinoid receptor agonists (SCRAs) detected on the illicit drug market to investigate their physicochemical parameters and structure-metabolism relationships (SMRs). Experimentally derived Log D7.4 ranged from 2.81 (AB-FUBINACA) to 4.95 (MDMB-4en-PINACA) and all SCRAs tested were highly protein bound, ranging from 88.9 ± 0.49% ((R)-4F-MDMB-BINACA) to 99.5 ± 0.08% ((S)-MDMB-FUBINACA). Most tested SCRAs were cleared rapidly in vitro in pooled human liver microsomes (pHLM) and pooled cryopreserved human hepatocytes (pHHeps). Intrinsic clearance (CLint) ranged from 13.7 ± 4.06 ((R)-AB-FUBINACA) to 2944 ± 95.9 mL min-1 kg-1 ((S)-AMB-FUBINACA) in pHLM, and from 110 ± 34.5 ((S)-AB-FUBINACA) to 3216 ± 607 mL min-1 kg-1 ((S)-AMB-FUBINACA) in pHHeps. Predicted Human in vivo hepatic clearance (CLH) ranged from 0.34 ± 0.09 ((S)-AB-FUBINACA) to 17.79 ± 0.20 mL min-1 kg-1 ((S)-5F-AMB-PINACA) in pHLM and 1.39 ± 0.27 ((S)-MDMB-FUBINACA) to 18.25 ± 0.12 mL min-1 kg-1 ((S)-5F-AMB-PINACA) in pHHeps. Valinate and tert-leucinate indole and indazole-3-carboxamide SCRAs are often rapidly metabolised in vitro but are highly protein bound in vivo and therefore predicted in vivo CLH is much slower than CLint. This is likely to give rise to longer detection windows of these substances and their metabolites in urine, possibly as a result of accumulation of parent drug in lipid-rich tissues, with redistribution into the circulatory system and subsequent metabolism.


Asunto(s)
Agonistas de Receptores de Cannabinoides/química , Agonistas de Receptores de Cannabinoides/farmacocinética , Proteínas Sanguíneas/metabolismo , Cannabinoides/química , Cannabinoides/farmacocinética , Células Cultivadas , Simulación por Computador , Estabilidad de Medicamentos , Semivida , Hepatocitos/efectos de los fármacos , Humanos , Drogas Ilícitas , Inactivación Metabólica , Indazoles/química , Indazoles/farmacocinética , Indoles/química , Microsomas Hepáticos/efectos de los fármacos , Estereoisomerismo , Relación Estructura-Actividad , Valina/análogos & derivados , Valina/química , Valina/farmacocinética
20.
Molecules ; 27(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35011295

RESUMEN

The endocannabinoid system (ECS) exerts immunosuppressive effects, which are mostly mediated by cannabinoid receptor 2 (CBR2), whose expression on leukocytes is higher than CBR1, mainly localized in the brain. Targeted CBR2 activation could limit inflammation, avoiding CBR1-related psychoactive effects. Herein, we evaluated in vitro the biological activity of a novel, selective and high-affinity CBR2 agonist, called JT11, studying its potential CBR2-mediated anti-inflammatory effect. Trypan Blue and MTT assays were used to test the cytotoxic and anti-proliferative effect of JT11 in Jurkat cells. Its pro-apoptotic activity was investigated analyzing both cell cycle and poly PARP cleavage. Finally, we evaluated its impact on LPS-induced ERK1/2 and NF-kB-p65 activation, TNF-α, IL-1ß, IL-6 and IL-8 release in peripheral blood mononuclear cells (PBMCs) from healthy donors. Selective CB2R antagonist SR144528 and CBR2 knockdown were used to further verify the selectivity of JT11. We confirmed selective CBR2 activation by JT11. JT11 regulated cell viability and proliferation through a CBR2-dependent mechanism in Jurkat cells, exhibiting a mild pro-apoptotic activity. Finally, it reduced LPS-induced ERK1/2 and NF-kB-p65 phosphorylation and pro-inflammatory cytokines release in human PBMCs, proving to possess in vitro anti-inflammatory properties. JT11 as CBR2 ligands could enhance ECS immunoregulatory activity and our results support the view that therapeutic strategies targeting CBR2 signaling could be promising for the treatment of chronic inflammatory diseases.


Asunto(s)
Antiinflamatorios/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/metabolismo , Animales , Antiinflamatorios/química , Apoptosis/efectos de los fármacos , Agonistas de Receptores de Cannabinoides/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citocinas/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Estructura Molecular , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda