Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Mar Drugs ; 20(9)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36135748

RESUMEN

N-methyl-D-aspartate (NMDA) receptors play a critical role in activity-dependent dendritic arborization, spinogenesis, and synapse formation by stimulating calcium-dependent signaling pathways. Previously, we have shown that brevetoxin 2 (PbTx-2), a voltage-gated sodium channel (VGSC) activator, produces a concentration-dependent increase in intracellular sodium [Na+]I and increases NMDA receptor (NMDAR) open probabilities and NMDA-induced calcium (Ca2+) influxes. The objective of this study is to elucidate the downstream signaling mechanisms by which the sodium channel activator PbTx-2 influences neuronal morphology in murine cerebrocortical neurons. PbTx-2 and NMDA triggered distinct Ca2+-influx pathways, both of which involved the NMDA receptor 2B (GluN2B). PbTx-2-induced neurite outgrowth in day in vitro 1 (DIV-1) neurons required the small Rho GTPase Rac1 and was inhibited by both a PAK1 inhibitor and a PAK1 siRNA. PbTx-2 exposure increased the phosphorylation of PAK1 at Thr-212. At DIV-5, PbTx-2 induced increases in dendritic protrusion density, p-cofilin levels, and F-actin throughout the dendritic arbor and soma. Moreover, PbTx-2 increased miniature excitatory post-synaptic currents (mEPSCs). These data suggest that the stimulation of neurite outgrowth, spinogenesis, and synapse formation produced by PbTx-2 are mediated by GluN2B and PAK1 signaling.


Asunto(s)
Neuronas , Receptores de N-Metil-D-Aspartato , Quinasas p21 Activadas , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Animales , Calcio/metabolismo , Toxinas Marinas , Ratones , N-Metilaspartato , Proyección Neuronal , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxocinas , ARN Interferente Pequeño/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sodio/metabolismo , Agonistas de los Canales de Sodio/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Quinasas p21 Activadas/metabolismo , Proteínas de Unión al GTP rho/metabolismo
2.
Pestic Biochem Physiol ; 186: 105171, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35973763

RESUMEN

We explored the potential of two sodium channel activators, veratrine and aconitine, as both insecticides and synergists of natural pyrethrins (NP) on Aedes aegypti adults and larvae. Aconitine was more toxic than veratrine, with an LD50 of 157 ng/mg compared to 376 ng/mg, on the pyrethroid-susceptible Orlando strain, but only aconitine showed significant resistance in the pyrethroid-resistant Puerto Rico strain (RR = 14.6 in topical application and 8.8 in larval bioassay). When applied in mixtures with piperonyl butoxide (PBO) and NP, large synergism values were obtained on the Orlando strain. Aconitine + PBO mixture synergized NP 21.8-fold via topical adult application and 10.2-fold in larval bioassays, whereas veratrine + PBO synergized NP 5.3-fold via topical application and 30.5-fold in larval bioassays. Less synergism of NP was observed on the resistant Puerto Rico strain, with acontine + PBO synergizing NP only 4.1-fold in topical application (8-fold in larval bioassays) and veratrine + PBO synergizing NP 9.5-fold in topical application (13.3-fold in larval bioassays). When alkaloids were applied directly to the mosquito larval nervous system, veratrine was nearly equipotent on both strains, while aconitine was less active on pyrethroid-resistant nerve preparations (no block at 10 µM compared to block at 1 µM on the susceptible strain). The nerve blocking effect of NP was significantly synergized by both compounds on the pyrethroid-susceptible strain by about 10-fold, however only veratrine synergized NP block on the pyrethroid-resistant strain, also showing 10-fold synergism). These results highlight the potential of site II sodium channel activators as insecticides and their ability to synergize pyrethroids, which may extend the commercial lifetime of these chemistries so essential to public health vector control.


Asunto(s)
Insecticidas , Piretrinas , Agonistas de los Canales de Sodio , Aconitina/farmacología , Aedes/efectos de los fármacos , Animales , Resistencia a los Insecticidas , Insecticidas/farmacología , Larva/efectos de los fármacos , Control de Mosquitos/métodos , Butóxido de Piperonilo/farmacología , Piretrinas/farmacología , Agonistas de los Canales de Sodio/farmacología , Veratrina/farmacología
3.
Molecules ; 27(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35011282

RESUMEN

The brown widow spider, Latrodectus geometricus, is a predator of a variety of agricultural insects and is also hazardous for humans. Its venom is a true pharmacopeia representing neurotoxic peptides targeting the ion channels and/or receptors of both vertebrates and invertebrates. The lack of transcriptomic information, however, limits our knowledge of the diversity of components present in its venom. The purpose of this study was two-fold: (1) carry out a transcriptomic analysis of the venom, and (2) investigate the bioactivity of the venom using an electrophysiological bioassay. From 32,505 assembled transcripts, 8 toxin families were classified, and the ankyrin repeats (ANK), agatoxin, centipede toxin, ctenitoxin, lycotoxin, scorpion toxin-like, and SCP families were reported in the L. geometricus venom gland. The diversity of L. geometricus venom was also uncovered by the transcriptomics approach with the presence of defensins, chitinases, translationally controlled tumor proteins (TCTPs), leucine-rich proteins, serine proteases, and other important venom components. The venom was also chromatographically purified, and the activity contained in the fractions was investigated using an electrophysiological bioassay with the use of a voltage clamp on ion channels in order to find if the neurotoxic effects of the spider venom could be linked to a particular molecular target. The findings show that U24-ctenitoxin-Pn1a involves the inhibition of the insect sodium (Nav) channels, BgNav and DmNav. This study provides an overview of the molecular diversity of L. geometricus venom, which can be used as a reference for the venom of other spider species. The venom composition profile also increases our knowledge for the development of novel insecticides targeting voltage-gated sodium channels.


Asunto(s)
Perfilación de la Expresión Génica , Canales de Sodio/genética , Venenos de Araña/genética , Arañas/genética , Transcriptoma , Animales , Biología Computacional , Bases de Datos Genéticas , Femenino , Ontología de Genes , Proteoma , Proteómica/métodos , Agonistas de los Canales de Sodio , Canales de Sodio/metabolismo
4.
Biochem Biophys Res Commun ; 527(1): 71-75, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32446393

RESUMEN

Acid-sensing ion channels (ASICs) have been implicated in many physiological and patho-physiological processes like synaptic plasticity, inflammation, pain perception, stroke-induced brain damage and, drug-seeking behaviour. Although ASICs have been shown to be modulated by gasotransmitters like nitric oxide (NO), their regulation by hydrogen sulfide (H2S) is not known. Here, we present strong evidence that H2S potentiates ASICs-mediated currents. Low pH-induced current in Chinese hamster ovary (CHO) cells, expressing homomeric either ASIC1a, ASIC2a or ASIC3, increased significantly by an H2S donor NaHS. The effect was reversed by washing the cells with NaHS-free external solution of pH 7.4. MTSES, a membrane impermeable cysteine thiol-modifier failed to abrogate the effect of NaHS on ASIC1a, suggesting that the target cysteine residues are not in the extracellular region of the channel. The effect of NaHS is not mediated through NO, as the basal NO level in cells did not change following NaHS application. This previously unknown mechanism of ASICs-modulation by H2S adds a new dimension to the ASICs in health and disease.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Sulfuro de Hidrógeno/farmacología , Animales , Células CHO , Cricetulus , Concentración de Iones de Hidrógeno , Óxido Nítrico/metabolismo , Técnicas de Placa-Clamp , Agonistas de los Canales de Sodio/farmacología
5.
Acta Pharmacol Sin ; 41(8): 1049-1057, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32107467

RESUMEN

Endothelin-1 (ET-1), an endogenous vasoactive peptide, has been found to play an important role in peripheral pain signaling. Acid-sensing ion channels (ASICs) are key sensors for extracellular protons and contribute to pain caused by tissue acidosis. It remains unclear whether an interaction exists between ET-1 and ASICs in primary sensory neurons. In this study, we reported that ET-1 enhanced the activity of ASICs in rat dorsal root ganglia (DRG) neurons. In whole-cell voltage-clamp recording, ASIC currents were evoked by brief local application of pH 6.0 external solution in the presence of TRPV1 channel blocker AMG9810. Pre-application with ET-1 (1-100 nM) dose-dependently increased the proton-evoked ASIC currents with an EC50 value of 7.42 ± 0.21 nM. Pre-application with ET-1 (30 nM) shifted the concentration-response curve of proton upwards with a maximal current response increase of 61.11% ± 4.33%. We showed that ET-1 enhanced ASIC currents through endothelin-A receptor (ETAR), but not endothelin-B receptor (ETBR) in both DRG neurons and CHO cells co-expressing ASIC3 and ETAR. ET-1 enhancement was inhibited by blockade of G-protein or protein kinase C signaling. In current-clamp recording, pre-application with ET-1 (30 nM) significantly increased acid-evoked firing in rat DRG neurons. Finally, we showed that pharmacological blockade of ASICs by amiloride or APETx2 significantly alleviated ET-1-induced flinching and mechanical hyperalgesia in rats. These results suggest that ET-1 sensitizes ASICs in primary sensory neurons via ETAR and PKC signaling pathway, which may contribute to peripheral ET-1-induced nociceptive behavior in rats.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Endotelina-1/farmacología , Células Receptoras Sensoriales/efectos de los fármacos , Agonistas de los Canales de Sodio/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Células CHO , Cricetulus , Ganglios Espinales/citología , Hiperalgesia/inducido químicamente , Masculino , Ratas Sprague-Dawley , Receptor de Endotelina A/metabolismo , Transducción de Señal/efectos de los fármacos
6.
Bioorg Med Chem ; 26(12): 3158-3165, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-29699911

RESUMEN

A series of new 6-styryl-naphthalene-2-amidrazone derivatives were synthesized and evaluated as potential ASIC1a inhibitors. Among them, compound 5e showed the most activity to inhibit [Ca2+]i. elevation in acid-induced articular chondrocytes. Together with the important role of ASIC1a in the pathogenesis of tissue acidification diseases including rheumatoid arthritis, these results might provide a meaningful hint or inspiration in developing drugs targeting at tissue acidification diseases.


Asunto(s)
Ácidos Carboxílicos/química , Diseño de Fármacos , Agonistas de los Canales de Sodio/síntesis química , Canales Iónicos Sensibles al Ácido/química , Canales Iónicos Sensibles al Ácido/metabolismo , Animales , Calcio/metabolismo , Ácidos Carboxílicos/síntesis química , Ácidos Carboxílicos/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Condrocitos/citología , Condrocitos/metabolismo , Naftalenos/química , Ratas , Agonistas de los Canales de Sodio/química , Agonistas de los Canales de Sodio/farmacología , Relación Estructura-Actividad
7.
J Biol Chem ; 291(9): 4638-48, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26637352

RESUMEN

1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), the first organochlorine insecticide, and pyrethroid insecticides are sodium channel agonists. Although the use of DDT is banned in most of the world due to its detrimental impact on the ecosystem, indoor residual spraying of DDT is still recommended for malaria control in Africa. Development of resistance to DDT and pyrethroids is a serious global obstacle for managing disease vectors. Mapping DDT binding sites is necessary for understanding mechanisms of resistance and modulation of sodium channels by structurally different ligands. The pioneering model of the housefly sodium channel visualized the first receptor for pyrethroids, PyR1, in the II/III domain interface and suggested that DDT binds within PyR1. Previously, we proposed the second pyrethroid receptor, PyR2, at the I/II domain interface. However, whether DDT binds to both pyrethroid receptor sites remains unknown. Here, using computational docking of DDT into the Kv1.2-based mosquito sodium channel model, we predict that two DDT molecules can bind simultaneously within PyR1 and PyR2. The bulky trichloromethyl group of each DDT molecule fits snugly between four helices in the bent domain interface, whereas two p-chlorophenyl rings extend into two wings of the interface. Model-driven mutagenesis and electrophysiological analysis confirmed these propositions and revealed 10 previously unknown DDT-sensing residues within PyR1 and PyR2. Our study proposes a dual DDT-receptor model and provides a structural background for rational development of new insecticides.


Asunto(s)
Aedes , DDT/metabolismo , Proteínas de Insectos/metabolismo , Insecticidas/metabolismo , Modelos Moleculares , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Agonistas de los Canales de Sodio/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Sitios de Unión , DDT/química , Proteínas de Insectos/agonistas , Proteínas de Insectos/química , Insecticidas/química , Canal de Potasio Kv.1.2/química , Canal de Potasio Kv.1.2/metabolismo , Ligandos , Conformación Molecular , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Método de Montecarlo , Mutación , Canal de Sodio Activado por Voltaje NAV1.1/química , Estructura Terciaria de Proteína , Receptores de Neurotransmisores/química , Receptores de Neurotransmisores/metabolismo , Alineación de Secuencia , Agonistas de los Canales de Sodio/química , Homología Estructural de Proteína
8.
J Pharmacol Sci ; 133(3): 184-186, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28259560

RESUMEN

Acid-sensing ion channels (ASICs) are proton-sensitive sodium channels that open in response to lowered extracellular pH and are expressed in the central and peripheral nervous systems. The ASIC3 subtype is found primarily in the periphery where the channel mediates pain signals caused by ischemia and inflammation. Here, we provide identify 4-chlorophenylguanidine (4-CPG) as an ASIC3 positive allosteric modulator and newest member of the growing group of guanidine modulators of ASICs. Furthermore, the 4-CPG reversed the effects of ASIC3 desensitization. The molecule 4-CPG offers a novel chemical backbone for the design of new ASIC3 ligands to study ASIC3 in vivo.


Asunto(s)
Canales Iónicos Sensibles al Ácido/fisiología , Guanidina/análogos & derivados , Agonistas de los Canales de Sodio/farmacología , Animales , Células CHO , Cricetulus , Guanidina/farmacología , Concentración de Iones de Hidrógeno
9.
Nature ; 479(7373): 410-4, 2011 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-22094702

RESUMEN

Natural products that elicit discomfort or pain represent invaluable tools for probing molecular mechanisms underlying pain sensation. Plant-derived irritants have predominated in this regard, but animal venoms have also evolved to avert predators by targeting neurons and receptors whose activation produces noxious sensations. As such, venoms provide a rich and varied source of small molecule and protein pharmacophores that can be exploited to characterize and manipulate key components of the pain-signalling pathway. With this in mind, here we perform an unbiased in vitro screen to identify snake venoms capable of activating somatosensory neurons. Venom from the Texas coral snake (Micrurus tener tener), whose bite produces intense and unremitting pain, excites a large cohort of sensory neurons. The purified active species (MitTx) consists of a heteromeric complex between Kunitz- and phospholipase-A2-like proteins that together function as a potent, persistent and selective agonist for acid-sensing ion channels (ASICs), showing equal or greater efficacy compared with acidic pH. MitTx is highly selective for the ASIC1 subtype at neutral pH; under more acidic conditions (pH < 6.5), MitTx massively potentiates (>100-fold) proton-evoked activation of ASIC2a channels. These observations raise the possibility that ASIC channels function as coincidence detectors for extracellular protons and other, as yet unidentified, endogenous factors. Purified MitTx elicits robust pain-related behaviour in mice by activation of ASIC1 channels on capsaicin-sensitive nerve fibres. These findings reveal a mechanism whereby snake venoms produce pain, and highlight an unexpected contribution of ASIC1 channels to nociception.


Asunto(s)
Venenos Elapídicos/química , Venenos Elapídicos/farmacología , Elapidae , Proteínas del Tejido Nervioso/metabolismo , Dolor/inducido químicamente , Multimerización de Proteína , Canales de Sodio/metabolismo , Canales Iónicos Sensibles al Ácido , Secuencia de Aminoácidos , Animales , Capsaicina/farmacología , Células Cultivadas , Miembro Posterior/efectos de los fármacos , Miembro Posterior/fisiopatología , Humanos , Concentración de Iones de Hidrógeno , Activación del Canal Iónico/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Nocicepción/efectos de los fármacos , Nocicepción/fisiología , Oocitos , Dolor/metabolismo , Dolor/fisiopatología , Estructura Cuaternaria de Proteína , Protones , Ratas , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Agonistas de los Canales de Sodio , Canales de Sodio/deficiencia , Canales de Sodio/genética , Canales Catiónicos TRPV/metabolismo , Xenopus laevis
10.
Neurochem Res ; 41(4): 631-45, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26582234

RESUMEN

In recent years, research of acid sensing ion channels (ASICs) has increased tremendously, especially studies focusing on ASIC1a, which plays a critical role in many important physiologic and pathological functions. This review will discuss factors regulating ASIC1a expression and activity in various conditions and will provide a theoretical basis for clinical development and application of ASIC1a modifiers.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Bloqueadores del Canal Iónico Sensible al Ácido/farmacología , Animales , Humanos , Oxidación-Reducción , Transducción de Señal , Agonistas de los Canales de Sodio/farmacología
11.
J Neural Transm (Vienna) ; 122(8): 1203-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25645866

RESUMEN

Local perfusion of the sodium channel activator veratrine in mouse prelimbic medial prefrontal cortex (PL) induced c-Fos immunoreactivity in the sub-regions of amygdala. Co-perfusion of the NMDA receptor antagonist MK-801 diminished the c-Fos expression. Significant correlations were observed between c-Fos immunoreactivity and behavioral measures in the open-field test. The PL stimulation activates a neural network projecting to the amygdala via NMDA receptor-mediated glutamatergic neurotransmission. Anxiety-like behavior induced after the PL stimulation may be partly mediated through the activation of amygdala.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Ansiedad/metabolismo , Corteza Prefrontal/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Amígdala del Cerebelo/efectos de los fármacos , Animales , Ansiedad/tratamiento farmacológico , Maleato de Dizocilpina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Inmunohistoquímica , Masculino , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Fotomicrografía , Corteza Prefrontal/efectos de los fármacos , Agonistas de los Canales de Sodio/administración & dosificación , Veratrina/administración & dosificación
12.
Anaesthesist ; 64(5): 381-4, 2015 May.
Artículo en Alemán | MEDLINE | ID: mdl-25812545

RESUMEN

This article reports the case of a 62-year-old male patient who ingested the roots of Monkshood (Aconitum napellus) and white hellebore (Veratrum album) dissolved in alcohol with a suicidal intention and suffered cardiotoxic and neurotoxic symptoms. After contacting the Poison Information Centre ventricular arrhythmia was treated with high-dose magnesium sulphate as the only antiarrhythmic agent and subsequently a stable sinus rhythm could be established after approximately 3 h. Aconitum napellus is considered the most poisonous plant in Europe and it is found in gardens, the Alps and the Highlands. Poisoning is mainly caused by the alkaloid aconite that leads to persistent opening and activation of voltage-dependent sodium channels resulting in severe cardiac and neurological toxicity. As no specific antidote is known so far, poisoning is associated with a high mortality. The therapy with high-dose magnesium sulphate is based on in vitro and animal experiments as well as limited clinical case reports.


Asunto(s)
Aconitum/envenenamiento , Antiarrítmicos/uso terapéutico , Sulfato de Magnesio/uso terapéutico , Veratrum/envenenamiento , Alcaloides/envenenamiento , Antiarrítmicos/administración & dosificación , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/tratamiento farmacológico , Electrocardiografía , Cardiopatías/inducido químicamente , Cardiopatías/tratamiento farmacológico , Humanos , Sulfato de Magnesio/administración & dosificación , Masculino , Persona de Mediana Edad , Síndromes de Neurotoxicidad/tratamiento farmacológico , Agonistas de los Canales de Sodio/envenenamiento , Canales de Sodio/efectos de los fármacos , Intento de Suicidio , Taquicardia/inducido químicamente , Taquicardia/tratamiento farmacológico
13.
Eur Heart J ; 34(20): 1506-16, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23425522

RESUMEN

AIMS: Non-cardiac drugs that impair cardiac repolarization (electrocardiographic QT prolongation) are associated with an increased sudden cardiac arrest (SCA) risk. Emerging evidence suggests that non-cardiac drugs that impair cardiac depolarization and excitability (electrocardiographic QRS prolongation) also increase the risk for SCA. Nortriptyline, which blocks the SCN5A-encoded cardiac sodium channel, may exemplify such drugs. We aimed to study whether nortriptyline increases the risk for SCA, and to establish the underlying mechanisms. METHODS AND RESULTS: We studied QRS durations during rest/exercise in an index patient who experienced ventricular tachycardia during exercise while using nortriptyline, and compared them with those of 55 controls with/without nortriptyline and 24 controls with Brugada syndrome (BrS) without nortriptyline, who carried an SCN5A mutation. We performed molecular-genetic (exon-trapping) and functional (patch-clamp) experiments to unravel the mechanisms of QRS prolongation by nortriptyline and the SCN5A mutation found in the index patient. We conducted a prospective community-based study among 944 victims of ECG-documented SCA and 4354-matched controls to determine the risk for SCA associated with nortriptyline use. Multiple mechanisms may act in concert to increase the risk for SCA during nortriptyline use. Pharmacological (nortriptyline), genetic (loss-of-function SCN5A mutation), and/or functional (sodium channel inactivation at fast heart rates) factors conspire to reduce the cardiac sodium current and increase the risk for SCA. Nortriptyline use in the community was associated with a 4.5-fold increase in the risk for SCA [adjusted OR: 4.5 (95% CI: 1.1-19.5)], particularly when other sodium channel-blocking factors were present. CONCLUSIONS: Nortriptyline increases the risk for SCA in the general population, particularly in the presence of genetic and/or non-genetic factors that decrease cardiac excitability by blocking the cardiac sodium channel.


Asunto(s)
Muerte Súbita Cardíaca/etiología , Nortriptilina/efectos adversos , Agonistas de los Canales de Sodio/efectos adversos , Adulto , Anciano , Estudios de Casos y Controles , Electrocardiografía , Femenino , Eliminación de Gen , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.5/genética , Estudios Prospectivos , Factores de Riesgo , Taquicardia Ventricular/inducido químicamente
14.
Am J Physiol Cell Physiol ; 302(7): C943-65, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22277752

RESUMEN

The epithelial Na(+) channel (ENaC) and acid-sensitive ion channel (ASIC) branches of the ENaC/degenerin superfamily of cation channels have drawn increasing attention as potential therapeutic targets in a variety of diseases and conditions. Originally thought to be solely expressed in fluid absorptive epithelia and in neurons, it has become apparent that members of this family exhibit nearly ubiquitous expression. Therapeutic opportunities range from hypertension, due to the role of ENaC in maintaining whole body salt and water homeostasis, to anxiety disorders and pain associated with ASIC activity. As a physiologist intrigued by the fundamental mechanics of salt and water transport, it was natural that Dale Benos, to whom this series of reviews is dedicated, should have been at the forefront of research into the amiloride-sensitive sodium channel. The cloning of ENaC and subsequently the ASIC channels has revealed a far wider role for this channel family than was previously imagined. In this review, we will discuss the known and potential roles of ENaC and ASIC subunits in the wide variety of pathologies in which these channels have been implicated. Some of these, such as the role of ENaC in Liddle's syndrome are well established, others less so; however, all are related in that the fundamental defect is due to inappropriate channel activity.


Asunto(s)
Agonistas del Canal de Sodio Epitelial , Bloqueadores del Canal de Sodio Epitelial , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Agonistas de los Canales de Sodio , Canales Iónicos Sensibles al Ácido , Animales , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/metabolismo , Canales Epiteliales de Sodio/metabolismo , Humanos , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Terapia Molecular Dirigida , Proteínas del Tejido Nervioso/metabolismo , Canales de Sodio/metabolismo
15.
J Physiol ; 589(Pt 24): 6173-89, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22005681

RESUMEN

We found previously that static contraction of the hindlimb muscles of rats whose femoral artery was ligated evoked a larger reflex pressor response (i.e. exercise pressor reflex) than did static contraction of the contralateral hindlimb muscles which were freely perfused. Ligating a femoral artery in rats results in blood flow patterns to the muscles that are remarkably similar to those displayed by humans with peripheral artery disease. Using decerebrated rats, we tested the hypothesis that the augmented exercise pressor reflex in rats with a ligated femoral artery is attenuated by blockade of the acid sensing ion channel (ASIC) 3. We found that femoral arterial injection of either amiloride (5 and 50 µg kg(-1)) or APETx2 (100 µg kg(-1)) markedly attenuated the reflex in rats with a ligated femoral artery. In contrast, these ASIC antagonists had only modest effects on the reflex in rats with freely perfused hindlimbs. Tests of specificity of the two antagonists revealed that the low dose of amiloride and APETx2 greatly attenuated the pressor response to lactic acid, an ASIC agonist, but did not attenuate the pressor response to capsaicin, a TRPV1 agonist. In contrast, the high dose of amiloride attenuated the pressor responses to lactic acid, but also attenuated the pressor response to capsaicin. We conclude that ASIC3 on thin fibre muscle afferents plays an important role in evoking the exercise pressor reflex in rats with a compromised arterial blood supply to the working muscles.


Asunto(s)
Barorreflejo/fisiología , Proteínas del Tejido Nervioso/fisiología , Condicionamiento Físico Animal/fisiología , Canales de Sodio/fisiología , Canales Iónicos Sensibles al Ácido , Amilorida/farmacología , Animales , Barorreflejo/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Capsaicina/farmacología , Venenos de Cnidarios/farmacología , Arteria Femoral/fisiopatología , Arteria Femoral/cirugía , Frecuencia Cardíaca/efectos de los fármacos , Miembro Posterior , Ácido Láctico/farmacología , Ligadura , Masculino , Contracción Muscular/fisiología , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/fisiología , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Fármacos del Sistema Sensorial/farmacología , Agonistas de los Canales de Sodio , Bloqueadores de los Canales de Sodio/farmacología
16.
Proc Natl Acad Sci U S A ; 105(39): 15142-7, 2008 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-18809926

RESUMEN

The S4 transmembrane segments of voltage-gated ion channels move outward on depolarization, initiating a conformational change that opens the pore, but the mechanism of S4 movement is unresolved. One structural model predicts sequential formation of ion pairs between the S4 gating charges and negative charges in neighboring S2 and S3 transmembrane segments during gating. Here, we show that paired cysteine substitutions for the third gating charge (R3) in S4 and D60 in S2 of the bacterial sodium channel NaChBac form a disulfide bond during activation, thus "locking" the S4 segment and inducing slow inactivation of the channel. Disulfide locking closely followed the kinetics and voltage dependence of activation and was reversed by hyperpolarization. Activation of D60C:R3C channels is favored compared with single cysteine mutants, and mutant cycle analysis revealed strong free-energy coupling between these residues, further supporting interaction of R3 and D60 during gating. Our results demonstrate voltage-dependent formation of an ion pair during activation of the voltage sensor in real time and suggest that this interaction catalyzes S4 movement and channel activation.


Asunto(s)
Bacillus/metabolismo , Proteínas Bacterianas/agonistas , Proteínas Bacterianas/metabolismo , Cisteína/metabolismo , Disulfuros/metabolismo , Activación del Canal Iónico , Agonistas de los Canales de Sodio , Canales de Sodio/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Cisteína/genética , Datos de Secuencia Molecular , Mutación , Canales de Sodio/genética
17.
Proc Natl Acad Sci U S A ; 105(50): 19980-5, 2008 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-19052238

RESUMEN

Some inherited periodic paralyses are caused by mutations in skeletal muscle Na(V)1.4 sodium channels that alter channel gating and impair action potential generation. In the case of hypokalemic periodic paralysis, mutations of one of the outermost two gating charges in the S4 voltage sensor in domain II of the Na(V)1.4 alpha subunit induce gating pore current, resulting in a leak of sodium or protons through the voltage sensor that causes depolarization, sodium overload, and contractile failure correlated with low serum potassium. Potassium-sensitive normokalemic periodic paralysis (NormoPP) is caused by mutations in the third gating charge in domain II of the Na(V)1.4 channel. Here, we report that these mutations in rat Na(V)1.4 (R669Q/G/W) cause gating pore current that is activated by depolarization and therefore is conducted in the activated state of the voltage sensor. In addition, we find that this gating pore current is retained in the slow-inactivated state and is deactivated only at hyperpolarized membrane potentials. Gating pore current through the mutant voltage sensor of slow-inactivated NormoPP channels would cause increased sodium influx at the resting membrane potential and during trains of action potentials, depolarize muscle fibers, and lead to contractile failure and cellular pathology in NormoPP.


Asunto(s)
Activación del Canal Iónico , Proteínas Musculares/fisiología , Parálisis Periódicas Familiares/fisiopatología , Canales de Sodio/fisiología , Sodio/metabolismo , Animales , Activación del Canal Iónico/genética , Potenciales de la Membrana , Proteínas Musculares/agonistas , Proteínas Musculares/genética , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Mutación , Oocitos , Parálisis Periódicas Familiares/genética , Potasio/metabolismo , Ratas , Agonistas de los Canales de Sodio , Canales de Sodio/genética , Xenopus
18.
Neuropharmacology ; 197: 108745, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34375627

RESUMEN

The voltage-sensitive sodium channel NaV1.1 plays a critical role in regulating excitability of GABAergic neurons and mutations in the corresponding gene are associated to Dravet syndrome and other forms of epilepsy. The activity of this channel is regulated by several protein kinases. To identify novel regulatory kinases we screened a library of activated kinases and we found that AKT1 was able to directly phosphorylate NaV1.1. In vitro kinase assays revealed that the phosphorylation site was located in the C-terminal part of the large intracellular loop connecting domains I and II of NaV1.1, a region that is known to be targeted by other kinases like PKA and PKC. Electrophysiological recordings revealed that activated AKT1 strongly reduced peak Na+ currents and displaced the inactivation curve to more negative potentials in HEK-293 cell stably expressing NaV1.1. These alterations in current amplitude and steady-state inactivation were mimicked by SC79, a specific activator of AKT1, and largely reverted by triciribine, a selective inhibitor. Neurons expressing endogenous NaV1.1 in primary cultures were identified by expressing a fluorescent protein under the NaV1.1 promoter. There, we also observed a strong decrease in the current amplitude after addition of SC79, but small effects on the inactivation parameters. Altogether, we propose a novel mechanism that might regulate the excitability of neural networks in response to AKT1, a kinase that plays a pivotal role under physiological and pathological conditions, including epileptogenesis.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.1/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Animales , Fenómenos Electrofisiológicos , Epilepsias Mioclónicas/genética , Células HEK293 , Humanos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Red Nerviosa/efectos de los fármacos , Neuronas/metabolismo , Fosforilación , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-akt/agonistas , Proteínas Proto-Oncogénicas c-akt/genética , Ratas , Ribonucleósidos/farmacología , Agonistas de los Canales de Sodio/farmacología , Bloqueadores de los Canales de Sodio/farmacología
19.
Eur J Pharmacol ; 901: 174090, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33831414

RESUMEN

The mineralocorticoid hormone aldosterone stimulates sodium reabsorption in the collecting ducts by increasing the activity of the epithelial sodium channel (ENaC). Being a rate-liming channel the loss of function mutations caused Pseudohypoaldosteronism 1 (PHA1). Despite elevated plasma aldosterone in PHA 1 patients the modulation of PHA 1 causing ENaC mutants with hormone has never been studied. After recording control ENaC current in PHA1 causing ENaC stop codon mutants we demonstrated the activation of aldosterone in the whole cell as well as single channel patch clamp assays. Single channel recoding experiments demonstrated that aldosterone can increase the open probability of all analyzed PHA 1 stop codon mutants and WT. Additionally, we demonstrated by western blot experiments that aldosterone can increase the expression of WT and PHA 1 stop codon mutants. Extensive whole cell patch clamp experiments demonstrated that C-terminal γ ENaC domain is necessary for aldosterone to activate whole cell current in HEK-293 cells. This novel finding of γ ENaC C-terminus dependent activation of whole cell current by aldosterone could alter our understanding of ENaC-mediated sodium reabsorption in the aldosterone-sensitive distal nephron (ASDN).


Asunto(s)
Aldosterona/farmacología , Canales Epiteliales de Sodio/efectos de los fármacos , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/metabolismo , Agonistas de los Canales de Sodio/farmacología , Codón de Terminación/efectos de los fármacos , Células HEK293 , Humanos , Túbulos Renales Distales/efectos de los fármacos , Mutación , Nefronas/efectos de los fármacos , Técnicas de Placa-Clamp
20.
J Cereb Blood Flow Metab ; 41(11): 2897-2906, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34013806

RESUMEN

Using the cranial window technique, we investigated acute effects of head cooling on cerebral vascular functions in newborn pigs. Head cooling lowered the rectal and extradural brain temperatures to 34.3 ± 0.6°C and 26.1 ± 0.6°C, respectively. During the 3-h hypothermia period, responses of pial arterioles to endothelium-dependent dilators bradykinin and glutamate were reduced, whereas the responses to hypercapnia and an endothelium-independent dilator sodium nitroprusside (SNP) remained intact. All vasodilator responses were restored after rewarming, suggesting that head cooling did not produce endothelial injury. We tested the hypothesis that the cold-sensitive TRPM8 channel is involved in attenuation of cerebrovascular functions. TRPM8 is immunodetected in cerebral vessels and in the brain parenchyma. During normothermia, the TRPM8 agonist icilin produced constriction of pial arterioles that was antagonized by the channel blocker AMTB. Icilin reduced dilation of pial arterioles to bradykinin and glutamate but not to hypercapnia and SNP, thus mimicking the effects of head cooling on vascular functions. AMTB counteracted the impairment of endothelium-dependent vasodilation caused by hypothermia or icilin. Overall, mild hypothermia produced by head cooling leads to acute reversible reduction of selected endothelium-dependent cerebral vasodilator functions via TRPM8 activation, whereas cerebral arteriolar smooth muscle functions are largely preserved.


Asunto(s)
Encéfalo/irrigación sanguínea , Circulación Cerebrovascular/efectos de los fármacos , Endotelio/efectos de los fármacos , Hipotermia Inducida/efectos adversos , Canales Catiónicos TRPM/efectos de los fármacos , Animales , Animales Recién Nacidos , Arteriolas/efectos de los fármacos , Arteriolas/fisiopatología , Temperatura Corporal/fisiología , Bradiquinina/análisis , Circulación Cerebrovascular/fisiología , Endotelio/fisiopatología , Femenino , Ácido Glutámico/análisis , Cabeza , Hipercapnia/fisiopatología , Hipotermia Inducida/métodos , Masculino , Nitroprusiato/metabolismo , Nitroprusiato/farmacología , Pirimidinonas/farmacología , Recalentamiento/efectos adversos , Agonistas de los Canales de Sodio/farmacología , Porcinos , Canales Catiónicos TRPM/inmunología , Canales Catiónicos TRPM/metabolismo , Vasodilatación/efectos de los fármacos , Vasodilatadores/metabolismo , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda