Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Nature ; 629(8011): 370-375, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600390

RESUMEN

Roads are expanding at the fastest pace in human history. This is the case especially in biodiversity-rich tropical nations, where roads can result in forest loss and fragmentation, wildfires, illicit land invasions and negative societal effects1-5. Many roads are being constructed illegally or informally and do not appear on any existing road map6-10; the toll of such 'ghost roads' on ecosystems is poorly understood. Here we use around 7,000 h of effort by trained volunteers to map ghost roads across the tropical Asia-Pacific region, sampling 1.42 million plots, each 1 km2 in area. Our intensive sampling revealed a total of 1.37 million km of roads in our plots-from 3.0 to 6.6 times more roads than were found in leading datasets of roads globally. Across our study area, road building almost always preceded local forest loss, and road density was by far the strongest correlate11 of deforestation out of 38 potential biophysical and socioeconomic covariates. The relationship between road density and forest loss was nonlinear, with deforestation peaking soon after roads penetrate a landscape and then declining as roads multiply and remaining accessible forests largely disappear. Notably, after controlling for lower road density inside protected areas, we found that protected areas had only modest additional effects on preventing forest loss, implying that their most vital conservation function is limiting roads and road-related environmental disruption. Collectively, our findings suggest that burgeoning, poorly studied ghost roads are among the gravest of all direct threats to tropical forests.


Asunto(s)
Automóviles , Conservación de los Recursos Naturales , Agricultura Forestal , Bosques , Árboles , Clima Tropical , Asia , Conservación de los Recursos Naturales/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias , Árboles/crecimiento & desarrollo , Conjuntos de Datos como Asunto , Agricultura Forestal/métodos , Agricultura Forestal/estadística & datos numéricos , Agricultura Forestal/tendencias
2.
Nature ; 631(8021): 563-569, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39020035

RESUMEN

The uptake of carbon dioxide (CO2) by terrestrial ecosystems is critical for moderating climate change1. To provide a ground-based long-term assessment of the contribution of forests to terrestrial CO2 uptake, we synthesized in situ forest data from boreal, temperate and tropical biomes spanning three decades. We found that the carbon sink in global forests was steady, at 3.6 ± 0.4 Pg C yr-1 in the 1990s and 2000s, and 3.5 ± 0.4 Pg C yr-1 in the 2010s. Despite this global stability, our analysis revealed some major biome-level changes. Carbon sinks have increased in temperate (+30 ± 5%) and tropical regrowth (+29 ± 8%) forests owing to increases in forest area, but they decreased in boreal (-36 ± 6%) and tropical intact (-31 ± 7%) forests, as a result of intensified disturbances and losses in intact forest area, respectively. Mass-balance studies indicate that the global land carbon sink has increased2, implying an increase in the non-forest-land carbon sink. The global forest sink is equivalent to almost half of fossil-fuel emissions (7.8 ± 0.4 Pg C yr-1 in 1990-2019). However, two-thirds of the benefit from the sink has been negated by tropical deforestation (2.2 ± 0.5 Pg C yr-1 in 1990-2019). Although the global forest sink has endured undiminished for three decades, despite regional variations, it could be weakened by ageing forests, continuing deforestation and further intensification of disturbance regimes1. To protect the carbon sink, land management policies are needed to limit deforestation, promote forest restoration and improve timber-harvesting practices1,3.


Asunto(s)
Dióxido de Carbono , Secuestro de Carbono , Bosques , Internacionalidad , Árboles , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análisis , Cambio Climático , Conservación de los Recursos Naturales , Ecosistema , Agricultura Forestal/legislación & jurisprudencia , Agricultura Forestal/estadística & datos numéricos , Agricultura Forestal/tendencias , Combustibles Fósiles/efectos adversos , Combustibles Fósiles/provisión & distribución , Taiga , Árboles/metabolismo , Árboles/crecimiento & desarrollo , Clima Tropical
3.
Nature ; 626(7998): 327-334, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38109939

RESUMEN

The pulp and paper industry is an important contributor to global greenhouse gas emissions1,2. Country-specific strategies are essential for the industry to achieve net-zero emissions by 2050, given its vast heterogeneities across countries3,4. Here we develop a comprehensive bottom-up assessment of net greenhouse gas emissions of the domestic paper-related sectors for 30 major countries from 1961 to 2019-about 3.2% of global anthropogenic greenhouse gas emissions from the same period5-and explore mitigation strategies through 2,160 scenarios covering key factors. Our results show substantial differences across countries in terms of historical emissions evolution trends and structure. All countries can achieve net-zero emissions for their pulp and paper industry by 2050, with a single measure for most developed countries and several measures for most developing countries. Except for energy-efficiency improvement and energy-system decarbonization, tropical developing countries with abundant forest resources should give priority to sustainable forest management, whereas other developing countries should pay more attention to enhancing methane capture rate and reducing recycling. These insights are crucial for developing net-zero strategies tailored to each country and achieving net-zero emissions by 2050 for the pulp and paper industry.


Asunto(s)
Agricultura Forestal , Efecto Invernadero , Gases de Efecto Invernadero , Industrias , Internacionalidad , Papel , Desarrollo Sostenible , Madera , Efecto Invernadero/prevención & control , Efecto Invernadero/estadística & datos numéricos , Gases de Efecto Invernadero/análisis , Gases de Efecto Invernadero/aislamiento & purificación , Industrias/legislación & jurisprudencia , Industrias/estadística & datos numéricos , Metano/análisis , Metano/aislamiento & purificación , Reciclaje/estadística & datos numéricos , Reciclaje/tendencias , Países Desarrollados , Países en Desarrollo , Bosques , Agricultura Forestal/métodos , Agricultura Forestal/tendencias , Desarrollo Sostenible/tendencias , Clima Tropical
4.
Nature ; 620(7975): 807-812, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37612395

RESUMEN

The United Nations recently agreed to major expansions of global protected areas (PAs) to slow biodiversity declines1. However, although reserves often reduce habitat loss, their efficacy at preserving animal diversity and their influence on biodiversity in surrounding unprotected areas remain unclear2-5. Unregulated hunting can empty PAs of large animals6, illegal tree felling can degrade habitat quality7, and parks can simply displace disturbances such as logging and hunting to unprotected areas of the landscape8 (a phenomenon called leakage). Alternatively, well-functioning PAs could enhance animal diversity within reserves as well as in nearby unprotected sites9 (an effect called spillover). Here we test whether PAs across mega-diverse Southeast Asia contribute to vertebrate conservation inside and outside their boundaries. Reserves increased all facets of bird diversity. Large reserves were also associated with substantially enhanced mammal diversity in the adjacent unprotected landscape. Rather than PAs generating leakage that deteriorated ecological conditions elsewhere, our results are consistent with PAs inducing spillover that benefits biodiversity in surrounding areas. These findings support the United Nations goal of achieving 30% PA coverage by 2030 by demonstrating that PAs are associated with higher vertebrate diversity both inside their boundaries and in the broader landscape.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Objetivos , Clima Tropical , Naciones Unidas , Animales , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/tendencias , Mamíferos , Agricultura Forestal/legislación & jurisprudencia , Agricultura Forestal/métodos , Agricultura Forestal/tendencias
5.
Nature ; 620(7972): 110-115, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37407827

RESUMEN

After agriculture, wood harvest is the human activity that has most reduced the storage of carbon in vegetation and soils1,2. Although felled wood releases carbon to the atmosphere in various steps, the fact that growing trees absorb carbon has led to different carbon-accounting approaches for wood use, producing widely varying estimates of carbon costs. Many approaches give the impression of low, zero or even negative greenhouse gas emissions from wood harvests because, in different ways, they offset carbon losses from new harvests with carbon sequestration from growth of broad forest areas3,4. Attributing this sequestration to new harvests is inappropriate because this other forest growth would occur regardless of new harvests and typically results from agricultural abandonment, recovery from previous harvests and climate change itself. Nevertheless some papers count gross emissions annually, which assigns no value to the capacity of newly harvested forests to regrow and approach the carbon stocks of unharvested forests. Here we present results of a new model that uses time discounting to estimate the present and future carbon costs of global wood harvests under different scenarios. We find that forest harvests between 2010 and 2050 will probably have annualized carbon costs of 3.5-4.2 Gt CO2e yr-1, which approach common estimates of annual emissions from land-use change due to agricultural expansion. Our study suggests an underappreciated option to address climate change by reducing these costs.


Asunto(s)
Secuestro de Carbono , Conservación de los Recursos Naturales , Agricultura Forestal , Bosques , Árboles , Madera , Carbono/metabolismo , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/tendencias , Agricultura Forestal/economía , Agricultura Forestal/métodos , Agricultura Forestal/tendencias , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Madera/economía , Madera/metabolismo , Desarrollo Sostenible/tendencias , Cambio Climático , Agricultura/tendencias
6.
Nature ; 585(7826): 545-550, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32968258

RESUMEN

To constrain global warming, we must strongly curtail greenhouse gas emissions and capture excess atmospheric carbon dioxide1,2. Regrowing natural forests is a prominent strategy for capturing additional carbon3, but accurate assessments of its potential are limited by uncertainty and variability in carbon accumulation rates2,3. To assess why and where rates differ, here we compile 13,112 georeferenced measurements of carbon accumulation. Climatic factors explain variation in rates better than land-use history, so we combine the field measurements with 66 environmental covariate layers to create a global, one-kilometre-resolution map of potential aboveground carbon accumulation rates for the first 30 years of natural forest regrowth. This map shows over 100-fold variation in rates across the globe, and indicates that default rates from the Intergovernmental Panel on Climate Change (IPCC)4,5 may underestimate aboveground carbon accumulation rates by 32 per cent on average and do not capture eight-fold variation within ecozones. Conversely, we conclude that maximum climate mitigation potential from natural forest regrowth is 11 per cent lower than previously reported3 owing to the use of overly high rates for the location of potential new forest. Although our data compilation includes more studies and sites than previous efforts, our results depend on data availability, which is concentrated in ten countries, and data quality, which varies across studies. However, the plots cover most of the environmental conditions across the areas for which we predicted carbon accumulation rates (except for northern Africa and northeast Asia). We therefore provide a robust and globally consistent tool for assessing natural forest regrowth as a climate mitigation strategy.


Asunto(s)
Secuestro de Carbono , Carbono/metabolismo , Agricultura Forestal/estadística & datos numéricos , Agricultura Forestal/tendencias , Bosques , Mapeo Geográfico , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Conservación de los Recursos Naturales , Recolección de Datos , Restauración y Remediación Ambiental , Calentamiento Global/prevención & control , Internacionalidad , Cinética
7.
Nature ; 583(7814): 72-77, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32612223

RESUMEN

Forests provide a series of ecosystem services that are crucial to our society. In the European Union (EU), forests account for approximately 38% of the total land surface1. These forests are important carbon sinks, and their conservation efforts are vital for the EU's vision of achieving climate neutrality by 20502. However, the increasing demand for forest services and products, driven by the bioeconomy, poses challenges for sustainable forest management. Here we use fine-scale satellite data to observe an increase in the harvested forest area (49 per cent) and an increase in biomass loss (69 per cent) over Europe for the period of 2016-2018 relative to 2011-2015, with large losses occurring on the Iberian Peninsula and in the Nordic and Baltic countries. Satellite imagery further reveals that the average patch size of harvested area increased by 34 per cent across Europe, with potential effects on biodiversity, soil erosion and water regulation. The increase in the rate of forest harvest is the result of the recent expansion of wood markets, as suggested by econometric indicators on forestry, wood-based bioenergy and international trade. If such a high rate of forest harvest continues, the post-2020 EU vision of forest-based climate mitigation may be hampered, and the additional carbon losses from forests would require extra emission reductions in other sectors in order to reach climate neutrality by 20503.


Asunto(s)
Agricultura Forestal/estadística & datos numéricos , Agricultura Forestal/tendencias , Bosques , Biodiversidad , Biomasa , Secuestro de Carbono , Monitoreo del Ambiente , Política Ambiental/economía , Política Ambiental/legislación & jurisprudencia , Europa (Continente) , Unión Europea/economía , Agricultura Forestal/economía , Agricultura Forestal/legislación & jurisprudencia , Calentamiento Global/prevención & control , Historia del Siglo XXI , Imágenes Satelitales , Madera/economía
15.
Nature ; 560(7720): 639-643, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089903

RESUMEN

Land change is a cause and consequence of global environmental change1,2. Changes in land use and land cover considerably alter the Earth's energy balance and biogeochemical cycles, which contributes to climate change and-in turn-affects land surface properties and the provision of ecosystem services1-4. However, quantification of global land change is lacking. Here we analyse 35 years' worth of satellite data and provide a comprehensive record of global land-change dynamics during the period 1982-2016. We show that-contrary to the prevailing view that forest area has declined globally5-tree cover has increased by 2.24 million km2 (+7.1% relative to the 1982 level). This overall net gain is the result of a net loss in the tropics being outweighed by a net gain in the extratropics. Global bare ground cover has decreased by 1.16 million km2 (-3.1%), most notably in agricultural regions in Asia. Of all land changes, 60% are associated with direct human activities and 40% with indirect drivers such as climate change. Land-use change exhibits regional dominance, including tropical deforestation and agricultural expansion, temperate reforestation or afforestation, cropland intensification and urbanization. Consistently across all climate domains, montane systems have gained tree cover and many arid and semi-arid ecosystems have lost vegetation cover. The mapped land changes and the driver attributions reflect a human-dominated Earth system. The dataset we developed may be used to improve the modelling of land-use changes, biogeochemical cycles and vegetation-climate interactions to advance our understanding of global environmental change1-4,6.


Asunto(s)
Planeta Tierra , Ecosistema , Monitoreo del Ambiente , Actividades Humanas/estadística & datos numéricos , Agricultura/estadística & datos numéricos , Agricultura/tendencias , Cambio Climático/estadística & datos numéricos , Agricultura Forestal/estadística & datos numéricos , Agricultura Forestal/tendencias , Actividades Humanas/tendencias , Imágenes Satelitales , Árboles/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda