Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
1.
Molecules ; 29(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39064851

RESUMEN

Pyrrolizidine alkaloids (PAs) are toxic compounds that occur naturally in certain plants, however, there are many secondary pathways causing PA contamination of other plants, including medicinal herbs and plant-based food products, which pose a risk of human intoxication. It is proven that chronic exposure to PAs causes serious adverse health consequences resulting from their cytotoxicity and genotoxicity. This review briefly presents PA occurrence, structures, chemistry, and toxicity, as well as a set of analytical methods. Recently developed sensitive electrochemical and chromatographic methods for the determination of PAs in honey, teas, herbs, and spices were summarized. The main strategies for improving the analytical efficiency of PA determination are related to the use of mass spectrometric (MS) detection; therefore, this review focuses on advances in MS-based methods. Raising awareness of the potential health risks associated with the presence of PAs in food and herbal medicines requires ongoing research in this area, including the development of sensitive methods for PA determination and rigorous legal regulations of PA intake from herbal products. The maximum levels of PAs in certain products are regulated by the European Commission; however, the precise knowledge about which products contain trace but significant amounts of these alkaloids is still insufficient.


Asunto(s)
Productos Biológicos , Alcaloides de Pirrolicidina , Alcaloides de Pirrolicidina/análisis , Humanos , Productos Biológicos/análisis , Productos Biológicos/química , Plantas Medicinales/química , Espectrometría de Masas/métodos , Contaminación de Alimentos/análisis , Toxinas Biológicas/análisis
2.
Molecules ; 28(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37513219

RESUMEN

Pyrrolizidine alkaloids (PAs) are secondary metabolites produced by over 6000 plant species worldwide. PAs enter the food chain through accidental co-harvesting of PA-containing weeds and through soil transfer from the living plant to surrounding acceptor plants. In animal studies, 1,2-unsaturated PAs have proven to be genotoxic carcinogens. According to the scientific opinion expressed by the 2017 EFSA, the foods with the highest levels of PA contamination were honey, tea, herbal infusions, and food supplements. Following the EFSA's recommendations, data on the presence of PAs in relevant food were monitored and collected. On 1 July 2022, the Commission Regulation (EU) 2020/2040 came into force, repealed by Commission Regulation (EU) 2023/915, setting maximum levels for the sum of pyrrolizidine alkaloids in certain food. A total of 602 food samples were collected from the Italian market between 2019 and 2022 and were classified as honey, pollen, dried tea, dried herbal infusions, dried herbs, and fresh borage leaves. The food samples were analyzed for their PA content via an in-house LC-MS/MS method that can detect PAs according to Regulation 2023/915. Overall, 42% of the analyzed samples were PA-contaminated, 14% exceeded the EU limits, and the items most frequently contaminated included dried herbs and tea. In conclusion, the number of food items containing considerable amounts of PAs may cause concern because they may contribute to human exposure, especially considering vulnerable populations-most importantly, children and pregnant women.


Asunto(s)
Miel , Alcaloides de Pirrolicidina , Embarazo , Animales , Niño , Femenino , Humanos , Alcaloides de Pirrolicidina/análisis , Cromatografía Liquida , Espectrometría de Masas en Tándem , Miel/análisis , Plantas/metabolismo , , Contaminación de Alimentos/análisis
3.
Cell Biol Toxicol ; 38(2): 325-345, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33884520

RESUMEN

Pyrrolizidine alkaloids (PAs) are a large group of highly toxic chemical compounds, which are found as cross-contaminants in numerous food products (e.g., honey), dietary supplements, herbal teas, and pharmaceutical herbal medicines. PA contaminations are responsible for serious hepatotoxicity and hepatocarcinogenesis. Health authorities have to set legal limit values to guarantee the safe consumption of plant-based nutritional and medical products without harmful health. Toxicological and chemical analytical methods are conventionally applied to determine legally permitted limit values for PAs. In the present investigation, we applied a highly sensitive transcriptomic approach to investigate the effect of low concentrations of five PAs (lasiocarpine, riddelliine, lycopsamine, echimidine, and monocrotaline) on human cytochrome P450 3A4-overexpressing HepG2 clone 9 hepatocytes. The transcriptomic profiling of deregulated gene expression indicated that the PAs disrupted important signaling pathways related to cell cycle regulation and DNA damage repair in the transfected hepatocytes, which may explain the carcinogenic PA effects. As PAs affected the expression of genes that involved in cell cycle regulation, we applied flow cytometric cell cycle analyses to verify the transcriptomic data. Interestingly, PA treatment led to an arrest in the S phase of the cell cycle, and this effect was more pronounced with more toxic PAs (i.e., lasiocarpine and riddelliine) than with the less toxic monocrotaline. Using immunofluorescence, high fractions of cells were detected with chromosome congression defects upon PA treatment, indicating mitotic failure. In conclusion, the tested PAs revealed threshold concentrations, above which crucial signaling pathways were deregulated resulting in cell damage and carcinogenesis. Cell cycle arrest and DNA damage repair point to the mutagenicity of PAs. The disturbance of chromosome congression is a novel mechanism of Pas, which may also contribute to PA-mediated carcinogenesis. Transcriptomic, cell cycle, and immunofluorescence analyses should supplement the standard techniques in toxicology to unravel the biological effects of PA exposure in liver cells as the primary target during metabolization of PAs.


Asunto(s)
Alcaloides de Pirrolicidina , Transcriptoma , Carcinogénesis , Ciclo Celular , Células Clonales/química , Daño del ADN , Células Hep G2 , Humanos , Monocrotalina , Alcaloides de Pirrolicidina/análisis , Alcaloides de Pirrolicidina/toxicidad , Transcriptoma/genética
4.
Anal Bioanal Chem ; 414(28): 8107-8124, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36183043

RESUMEN

1,2-Unsaturated pyrrolizidine alkaloids (PA), their corresponding N-oxides (PANO), and tropane alkaloids (TA) are toxic secondary plant metabolites. Their possible transfer into the milk of dairy cows has been studied in feeding trials; however, only few data on the occurrence of these toxins in milk are available. In this study, the development of a sensitive analytical approach for the simultaneous detection and quantification of a broad range of 54 PA/PANO as well as of the TA atropine and scopolamine in milk of dairy cows is presented. The method optimisation focused on sensitivity and separation of PA/PANO isomers. Milk samples were extracted using liquid-liquid extraction with aqueous formic acid and n-hexane, followed by a cation-exchange solid-phase extraction for purification. Reversed phase liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis was performed using alkaline solvent conditions. Validation proved low limits of detection and quantification of 0.005 to 0.054 µg/L and of 0.009 to 0.123 µg/L, respectively. For 51 of the 54 tested PA/PANO and both TA, the recovery rates ranged from 64 to 127% with repeatability (RSDr) values below 15% at concentration levels of 0.05 and 0.50 µg/L and below 8% at a concentration level of 3.00 µg/L. Only three PANO did not match the validation criteria and were therefore regarded as semiquantitative. The final method was applied to 15 milk samples obtained from milk vending stations at farms and from local marketers in Bavaria, Germany. In three of the milk samples, traces of PA were detected.


Asunto(s)
Alcaloides de Pirrolicidina , Animales , Cromatografía Liquida/métodos , Alcaloides de Pirrolicidina/análisis , Leche/química , Espectrometría de Masas en Tándem/métodos , Tropanos/análisis , Cromatografía Líquida de Alta Presión
5.
J Sep Sci ; 45(4): 960-967, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34863040

RESUMEN

The nutritional and medicinal properties of honey have been well-documented. However, honey has occasionally been contaminated with hepatotoxic pyrrolizidine alkaloids as a result of bees foraging on the flowers of pyrrolizidine alkaloid plants. This study establishes a simple and rapid method to determine the marker pyrrolizidine alkaloids in honey using high-performance counter-current chromatography and an off-line electrospray ionization-tandem mass spectrometry, in order to identify the botanical sources responsible for the contamination. The honey sample was initially liquid-liquid extracted (sulfuric acid/hexane, 2:3, v/v) to enrich the pyrrolizidine alkaloids and subsequently purified by a semi-preparative high-performance counter-current chromatography using a solvent system, hexane/butanol/1% aqueous ammonia, 1:1:2, v/v, based on partition coefficient measurements of the target alkaloids. The recovered fractions were profiled by injecting them sequentially into an off-line electrospray ionization-tandem mass spectrometry device to monitor the preparative molecular weight based on elution and extrusion modes. The monitored lycopsamine-type pyrrolizidine alkaloids and their N-oxides (m/z 300, 316; lycopsamine, intermedine, rinderine, and echinatine) were used as the phytochemical markers to identify plants like Chromolaena odorata, Ageratum spp., or Heliotropium spp. to be responsible for the pyrrolizidine alkaloid contamination. Identification of these pyrrolizidine alkaloid plants could guide beekeepers in locating their beehives in order to minimize their potential liver damaging effects.


Asunto(s)
Miel , Alcaloides de Pirrolicidina , Animales , Distribución en Contracorriente , Ghana , Miel/análisis , Alcaloides de Pirrolicidina/análisis , Espectrometría de Masa por Ionización de Electrospray
6.
Arch Toxicol ; 96(8): 2299-2317, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35610518

RESUMEN

Pyrrolizidine alkaloids (PAs) are produced by various plant species and have been detected as contaminants in food and feed. Monitoring programmes should include PAs that are present in relevant matrices and that exhibit a high toxic potential. The aim of the present study was to use a bioassay-directed analysis approach to identify relevant PAs not yet included in monitoring programmes. To that end, extracts of Heliotropium europaeum and H. popovii were prepared and analysed with LC-MS/MS for the presence of 35 PAs included in monitoring programmes, as well as for genotoxic activity in the HepaRG/γH2AX assay. Europine, heliotrine and lasiocarpine were found to be the most abundant PAs. The extracts showed a higher γH2AX activity than related artificial mixtures of quantified known PAs, which might point to the presence of unknown toxic PAs. The H. europaeum extract was fractionated and γH2AX activities of individual fractions were determined. Fractions were further analysed applying LC-Orbitrap-MS analysis and Compound Discoverer software, identifying various candidate PAs responsible for the non-explained genotoxic activity. Altogether, the results obtained show that bioassay-directed analysis allows identification of candidate PAs that can be included in monitoring programmes.


Asunto(s)
Alcaloides de Pirrolicidina , Espectrometría de Masas en Tándem , Bioensayo , Cromatografía Liquida , Alcaloides de Pirrolicidina/análisis , Alcaloides de Pirrolicidina/toxicidad
7.
Environ Monit Assess ; 194(4): 250, 2022 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-35249161

RESUMEN

Pyrrolizidine alkaloids (PA) are secondary plant defense compounds and known pre-toxins when containing a 1,2-double bond. They are commonly produced by various plants and may thus be present in bee pollen which may be consumed by humans as food supplements. In this study, PA were determined in bee pollen samples from 57 locations in Southern Germany sampled by means of pollen traps in July 2019. Samples were analyzed by using palynological methodology and solid-phase extraction (SPE) followed by LC-MS/MS. In total, 52 pollen samples featured total pyrrolizidine alkaloids (ΣPA) with concentrations up to 48,000 ng/g bee pollen, while the N-oxides (NO) echinatine-NO and rinderine-NO clearly dominated. In contrast, the palynological analysis only detected 33 samples with pollen from PA-producing plants. Accordingly, the results showed that palynological analysis is not sufficient to determine PA in pollen. In addition, a risk assessment was followed to estimate the risk of the detected PA concentrations to humans.


Asunto(s)
Alcaloides de Pirrolicidina , Espectrometría de Masas en Tándem , Animales , Abejas , Cromatografía Liquida/métodos , Monitoreo del Ambiente , Alemania , Polen/química , Alcaloides de Pirrolicidina/análisis , Alcaloides de Pirrolicidina/química , Espectrometría de Masas en Tándem/métodos
8.
J Sep Sci ; 44(17): 3237-3247, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34240803

RESUMEN

Pyrrolizidine alkaloids are toxins having hepatotoxic and carcinogenic effects on human health. A ultra high performance liquid chromatography tandem mass spectrometry technique was developed for the first time for the simultaneous determination of eight pyrrolizidine alkaloids, including four diastereoisomers (intermedine, lycopsamine, rinderine, and echinatine) and their respective N-oxide forms, in different parts of Eupatorium lindleyanum. The risk assessment method for pyrrolizidine alkaloids in Eupatorium lindleyanum was explored using the margin of exposure strategy for the first time based on a real-life exposure scenario. Differences were found in all eight pyrrolizidine alkaloids in various parts of Eupatorium lindleyanum. Besides, the total levels of pyrrolizidine alkaloids in Eupatorium lindleyanum followed the order of root > flower > stem > leaf. Moreover, the risk assessment data revealed that the deleterious effects on human health were unlikely at exposure times of less than 200, 37, and 12 days during the lifetimes of Eupatorium lindleyanum leaves, stems, and flowers, respectively. This study reported both the contents of and risk associated with Eupatorium lindleyanum pyrrolizidine alkaloids. The comprehensive application of the novel ultra high performance liquid chromatography tandem mass spectrometry technique alongside the risk assessment approach provided a scientific basis for quality evaluation and rational utilization of toxic pyrrolizidine alkaloids in Eupatorium lindleyanum to improve public health safety.


Asunto(s)
Eupatorium/química , Componentes Aéreos de las Plantas/química , Alcaloides de Pirrolicidina/análisis , Administración Oral , Cromatografía Líquida de Alta Presión , Humanos , Conformación Molecular , Alcaloides de Pirrolicidina/administración & dosificación , Alcaloides de Pirrolicidina/efectos adversos , Medición de Riesgo , Espectrometría de Masas en Tándem
9.
Mikrochim Acta ; 188(1): 11, 2021 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-33389211

RESUMEN

An ultrasensitive and rapid fluorescent immunoassay based on a broad-spectrum monoclonal antibody (mAb) was developed to detect pyrrolizidine alkaloids (PAs) in honey samples. First, Discovery Studio software was used to analyze and predict the target hapten, and retrorsine (RTS) was selected to react with succinic anhydride (HS) for hapten synthesization. A sensitive and broad-spectrum monoclonal antibody (mAb 13E1) was obtained for nine PAs. Then, fluorescent gold nanoclusters (AuNCs) were conjugated with mAb as a label probe and used in establishing a qualitative and quantitative lateral flow immunoassay (AuNCs-LFIA) for the determination of four PAs (retrorsine, platyphylline, senecionine, integerrimine) in honey within 14 min. The limits of detection (LOD) were 0.083 µg/kg. The recovery in spiked honey samples were 87.98-119.57%, with coefficients of variation of ≤ 11.5%. A total of 45 commercial import honey samples from nine different countries were tested through AuNCs-LFIA and UPLC-MS/MS method, and satisfactory consistency (R2 = 0.995) was obtained. The rates of positive samples were 55.56% (25/45), and the average concentrations of four PAs were 3.24-46.47 µg/kg. This ultrasensitive multi-PA method provides an alternative analytical tool for evaluating the human risk posed by the consumption of PA-contaminated honey.


Asunto(s)
Colorantes Fluorescentes/química , Fluoroinmunoensayo/métodos , Nanopartículas del Metal/química , Alcaloides de Pirrolicidina/análisis , Animales , Anticuerpos Monoclonales de Origen Murino/inmunología , Femenino , Contaminación de Alimentos/análisis , Oro/química , Haptenos/inmunología , Miel/análisis , Límite de Detección , Ratones Endogámicos BALB C , Alcaloides de Pirrolicidina/inmunología , Programas Informáticos
10.
J Environ Manage ; 290: 112629, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33901824

RESUMEN

Disposal of noxious plant residues is a challenge for farmers and land management dealing with contaminated biomasses. Recent studies confirm the potential threat of transferring toxic plant constituents like pyrrolizidine alkaloids (PAs) from plant residues to non-toxic succeeding agricultural crops via the soil. We studied the degree of biochemical degradation of PAs in the two most important processes, composting and biomethanization. We used lab composting and biogas batches to investigate the potential of PA-degradation of two common PA-containing plants, Lappula squarrosa and Senecio jacobaea. The experiments demonstrated a virtually complete loss of PAs in three months during the composting process and a rapid decomposition of PAs from 3112.6 µg/kg to less than 21.5 µg/kg in L. squarrosa and from 6350.2 µg/kg to less than 539.6 µg/kg in S. jacobaea during biomethanization. The information obtained is a first guide on how to re-utilize PA-contaminated plant matter in a circular bioeconomy.


Asunto(s)
Venenos , Alcaloides de Pirrolicidina , Senecio , Biodegradación Ambiental , Alcaloides de Pirrolicidina/análisis , Suelo
11.
J Environ Sci Health B ; 56(7): 685-694, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34264805

RESUMEN

This article presents the determination of eight pyrrolizidine alkaloids (PAs) by LC-MS/MS in honeys, pollen, and Senecio brasiliensis (Asteraceae) samples, all from Santa Catarina state, Brazil. In addition, the Box-Behnken design was used to perform an optimized sample preparation on pollens and S. brasiliensis parts. Senecionine and its N-oxide, besides retrorsine N-oxide, were determined in six of the seven honeys samples. Pollen from species of the Asteraceae, Fabaceae, and Boraginaceae families were found with greater predominance in three of the seven honeys samples. In these three honeys samples were also found the highest PAs levels. In beehive pollen, flower, and leaf of S. brasiliensis, the total levels of PAs and their N-oxides reached 221, 14.1 × 104, and 14.8 × 104 mg kg-1, respectively. In honeys, these compounds are chemical contaminants and therefore undesirable when the sum exceeds 71 µg kg-1, according to EFSA. On the other hand, although PAs are naturally present in plant and pollen of some species (Senecio, Crotalaria, Bacharis, Ecchium, Mimosa scabrella, Vernonia), it is important to monitor their levels in plants but also in honeys, and other beehive products since these compounds are transferred to the final product.


Asunto(s)
Miel , Alcaloides de Pirrolicidina , Senecio , Cromatografía Liquida , Contaminación de Alimentos/análisis , Miel/análisis , Humanos , Polen/química , Alcaloides de Pirrolicidina/análisis , Espectrometría de Masas en Tándem
12.
Anal Bioanal Chem ; 412(26): 7155-7167, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32803302

RESUMEN

Setting of maximum limits for a number of plant alkaloids is under discussion in the EU. The novel method developed and optimized in this study enables simultaneous determination of 21 tropane alkaloids (TAs) and 33 pyrrolizidine (PAs) together with their N-oxides (PANOs). For analysis of aqueous-methanolic extract, reversed phase ultra-high-performance liquid chromatography and tandem mass spectrometry (RP-U-HPLC-MS/MS) was employed. The method was validated for frequently contaminated matrices (i) sorghum, (ii) oregano, and (iii) mixed herbal tea. The recoveries at two spiking levels were in the range of 82-115%, 80-106%, and 78-117%, respectively, and repeatabilities were less than 19% for all analyte/matrix combinations. As regards the achieved limits of quantification (LOQ), their values were in the range of 0.5-10 µg kg-1. The crucial problem encountered during method development, co-elution of multiple groups of isomeric alkaloids, was overcome by subsequent sample separation in the second chromatographic system, hydrophilic interaction liquid chromatography (HILIC), providing different separation selectivity. Lycopsamine, echinatine, and indicine (co-elution group 1) and N-oxides of indicine and intermedine (co-elution group 2), which could not be resolved on the commonly used RP column, were possible to separate fully by using the HILIC system.


Asunto(s)
Alcaloides/análisis , Contaminación de Alimentos/análisis , Plantas/química , Alcaloides de Pirrolicidina/análisis , Tropanos/análisis , Cromatografía Líquida de Alta Presión/métodos , Isomerismo , Límite de Detección , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos
13.
J Sep Sci ; 43(23): 4322-4337, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32991052

RESUMEN

Hepatotoxic and genotoxic pyrrolizidine alkaloids have been involved in the acute poisoning of animals and humans. Crotalaria (Fabaceae) species contain these alkaloids. In this work, the diversity and distribution of pyrrolizidine alkaloids in roots, leaves, flowers, and seeds of Crotalaria pallida, Crotalaria maypurensis, Crotalaria retusa, Crotalaria spectabilis, Crotalaria incana, and Crotalaria nitens were studied. Matrix solid-phase dispersion and ultra-high-performance liquid chromatography coupled with Orbitrap mass spectrometry were successfully employed in pyrrolizidine alkaloids extraction and analysis, respectively. Forty-five pyrrolizidine alkaloids were detected and their identification was based on the mass spectrometry accurate mass measurement and fragmentation pattern analysis. The cyclic retronecine-type diesters monocrotaline, crotaleschenine, integerrimine, usaramine, and their N-oxides were predominantly present. Five novel alkaloids were identified for the first time in Crotalaria species, namely 14-hydroxymonocrotaline, 12-acetylcrotaleschenine, 12-acetylmonocrotaline, 12-acetylintegerrimine, and dihydrointegerrimine. Due to a lack of commercially available standards, the response factor of monocrotaline was used for quantification of pyrrolizidine alkaloids and their N-oxides. Seeds and flowers possessed higher pyrrolizidine alkaloids amounts than roots and leaves. Due to their 1,2-unsaturated pyrrolizidine alkaloids content, the ingestion of Crotalaria plant seeds or other parts through herbal products, infusions, or natural remedies is a serious health threat to humans and livestock.


Asunto(s)
Crotalaria/química , Alcaloides de Pirrolicidina/análisis , Cromatografía Líquida de Alta Presión , Flores/química , Espectrometría de Masas , Estructura Molecular , Hojas de la Planta/química , Raíces de Plantas/química , Semillas/química
14.
Arch Toxicol ; 94(11): 3759-3774, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32880719

RESUMEN

Pyrrolizidine alkaloids (PA) exert their toxic effects only after bioactivation. Although their toxicity has already been studied and metabolic pathways including important metabolites were described, the quantification of the latter revealed a large unknown portion of the metabolized PA. In this study, the qualitative and quantitative metabolite profiles of structurally different PAs in rat and human liver microsomes were investigated. Between five metabolites for europine and up to 48 metabolites for lasiocarpine were detected. Proposals for the chemical structure of each metabolite were derived based on fragmentation patterns using high-resolution mass spectrometry. The metabolite profiles of the diester PAs showed a relatively good agreement between both species. The metabolic reactions were summarized into three groups: dehydrogenation, oxygenation, and shortening of necic acid(s). While dehydrogenation of the necine base is considered as bioactivation, both other routes are considered as detoxification steps. The most abundant changes found for open chained diesters were dealkylations, while the major metabolic pathway for cyclic diesters was oxygenation especially at the nitrogen atom. In addition, all diester PAs formed several dehydrogenation products, via the insertion of a second double bond in the necine base, including the formation of glutathione conjugates. In rat liver microsomes, all investigated PAs formed dehydropyrrolizidine metabolites with the highest amount formed by lasiocarpine, whereas in human liver microsomes, these metabolites could only be detected for diesters. Our findings demonstrate that an extensive analysis of PA metabolism can provide the basis for a better understanding of PA toxicity and support future risk assessment.


Asunto(s)
Microsomas Hepáticos/metabolismo , Alcaloides de Pirrolicidina/análisis , Alcaloides de Pirrolicidina/metabolismo , Animales , Biotransformación , Cromatografía Líquida de Alta Presión , Humanos , Masculino , Alcaloides de Pirrolicidina/química , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem
15.
Molecules ; 25(16)2020 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-32784926

RESUMEN

Rindera graeca is a Greek endemic plant of the Boraginaceae family which has never been studied before. Consequently, this study attempted to phytochemically examine the aerial parts of this species. Nine phenolic secondary metabolites were identified, consisting of seven caffeic acid derivatives and two flavonol glucosides, namely rutin and quercetin-3-rutinoside-7-rhamnoside. These flavonoids, together with rosmarinic acid, were isolated via column chromatography and structurally determined through spectral analysis. Quercetin-3-rutinoside-7-rhamnoside is an unusual triglycoside, which is identified for the first time in Rindera genus and among Boraginaceae plants. This metabolite was further examined with thermal analysis and its 3D structure was simulated, revealing some intriguing information on its interaction with biological membrane models, which might have potential applications in microcirculation-related conditions. R. graeca was also analyzed for its pyrrolizidine alkaloids content, and it was found to contain echinatine together with echinatine N-oxide and rinderine N-oxide. Additionally, the total phenolic and flavonoid contents of R. graeca methanol extract were determined, along with free radical inhibition assays. High total phenolic content and almost complete inhibition at experimental doses at the free radical assays indicate a potent antioxidant profile for this plant. Overall, through phytochemical analysis and biological activity assays, insight was gained on an endemic Greek species of the little-studied Rindera genus, while its potential for further applications has been assessed.


Asunto(s)
Antioxidantes/farmacología , Boraginaceae/química , Flavonoides/análisis , Fitoquímicos/análisis , Extractos Vegetales/análisis , Alcaloides de Pirrolicidina/análisis , Cinamatos/análisis , Depsidos/análisis , Fenoles/análisis , Hojas de la Planta/química , Quercetina/análogos & derivados , Quercetina/análisis , Ácido Rosmarínico
16.
Zhongguo Zhong Yao Za Zhi ; 45(1): 92-97, 2020 Jan.
Artículo en Zh | MEDLINE | ID: mdl-32237416

RESUMEN

Pyrrolizidine alkaloids(PAs) are a kind of natural toxins, which can cause severe hepatotoxicity, pulmonary toxicity, genotoxicity, neurotoxicity, embryotoxicity and even death. Therefore, international organizations and countries such as World Health Organization have paid great attention to herbal medicines and preparations containing PAs. PAs are widely distributed in Chinese herb medicines and contained in hundreds of traditional Chinese medicine preparations. The content of adonifoline, the main PAs in Senecionis Scandentis Herba, shall be less than 0.004% in herbal medicines as described in Chinese pharmacopeia. However, there is no guidance in preparations which contain Senecionis Scandentis Herba. In this study, 14 preparations were analyzed by an UPLC-MS method. Among them, 8 preparations were found to contain adonifoline much higher than the content limits of such countries as Germany, Netherlands and New Zealand. And the highest contents of adonifoline were found in Qianbai Biyan Tablets and Qianbai Biyan Capsules, which are officially recorded in Chinese Pharmacopeia. The contents of adonifoline varied in different batches of the same preparations. The highest content was 156.10 µg·g~(-1) Qianbai Biyan Tablets, whose daily intake of adonifoline was up to 1 030.26 µg according to the recommended dosage of the preparation. Our results showed the potential risk of these preparations, and the content limit of adonifoline shall be inspected Chinese medicine preparations containing Senecionis Scandentis Herba.


Asunto(s)
Medicamentos Herbarios Chinos/análisis , Lactonas/análisis , Alcaloides de Pirrolicidina/análisis , Senecio/química , Cromatografía Liquida , Medicamentos Herbarios Chinos/normas , Medicina Tradicional China , Espectrometría de Masas en Tándem
17.
Anal Bioanal Chem ; 411(27): 7233-7249, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31511948

RESUMEN

Pyrrolizidine alkaloids (PA) and PA-N-oxides (PANO) are a large group of secondary plant metabolites comprising more than 660 compounds. Exhibiting geno- and hepatotoxic properties, they are responsible for multiple cases of food and feed poisoning over the last 100 years. For food and feed safety reasons, relevant PA/PANO should be monitored extensively in the main sources of PA/PANO intake. In this study, a sensitive analytical method was developed for detecting a broad range of 44 commercially available PA/PANO compounds, and in-house validation procedures were performed for several (herbal) teas. Various extraction solvents and procedures, as well as solid phase extraction materials for sample clean-up and analyte concentration, were tested to establish the methods' efficiency and effectiveness. Chromatographic conditions were optimised to obtain the best possible separation of isomers for the 44 PA/PANO analytes. The final method was proven very sensitive and accurate, with detection limits ranging from 0.1 to 7.0 µg/kg and precisions between 0.7 and 16.1%. For 40 of the analytes, the recovery rates ranged from 60.7 to 128.8%. The applicability and trueness of the method were examined by analysing tea samples from a local supermarket and comparing them to a reference material. At least one PA/PANO analyte was detected in 17 of the 18 samples under investigation, and the sum contents of the samples ranged from 0.1 to 47.9 µg/kg. Knowledge of the PA/PANO composition in a sample can be used to indicate the botanical origin of the impurity and, thus, the geographical region of cultivation.


Asunto(s)
Cromatografía Liquida/métodos , Alcaloides de Pirrolicidina/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Té/química , Tés de Hierbas/análisis , Contaminación de Alimentos/análisis , Límite de Detección , Reproducibilidad de los Resultados
18.
J Chem Ecol ; 45(2): 199-203, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30167919

RESUMEN

Several species of the flea beetles genus Longitarsus sequester pyrrolizidine alkaloids (PAs) from their host plants. Previous data demonstrated that PAs may be transferred from root-feeding larvae into the adult beetles. Here we compared the patterns and concentrations found in larvae and pupae of L. anchusae and L. echii with those of the roots of their respective hosts, Symphytum officinale and Echium vulgare (Boraginaceae). PA patterns and concentrations in the roots were complex and variable, whereas those in the larvae and pupae were simpler and more constant. In L. anchusae, intermedine and lycopsamine were the dominant PAs even if they could not be detected in the roots. In L. echii simpler, hydrolized PAs prevailed. Overall, the concentrations of total PAs of larvae and pupae were significantly higher than those of the roots the larvae had been feeding on. Larvae and pupae of both species also had considerably higher PA concentrations than determined previously for field collected beetles. Possibly the rather immobile juvenile stages enjoy a better protection by higher PA concentrations. On the other hand, we could not detect PAs in eggs of either species, indicating that transmission of appreciable amounts of PAs from mother to offspring does not occur.


Asunto(s)
Escarabajos/química , Alcaloides de Pirrolicidina/química , Animales , Boraginaceae/química , Boraginaceae/metabolismo , Escarabajos/crecimiento & desarrollo , Escarabajos/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Larva/química , Larva/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Pupa/química , Pupa/metabolismo , Alcaloides de Pirrolicidina/análisis , Alcaloides de Pirrolicidina/metabolismo
19.
J Sep Sci ; 42(21): 3352-3362, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31453662

RESUMEN

Pyrrolizidine alkaloids are the most widely distributed natural toxins, and pyrrolizidine alkaloid-containing herbal medicines are probably the most common poisonous plants affecting humans. We reported pyrrolizidine alkaloid-molecularly imprinted polymer solid-phase microextraction for the selective adsorption of toxic pyrrolizidine alkaloids from herbal medicine. A sulfonic compound, sodium allylsulfonate, was chosen as the functional monomer to interact with pyrrolizidine alkaloids through strong ionic interaction. To avoid template leakage and for the aim of cost saving, a relatively cheap dummy template was used for the fabrication of molecularly imprinted polymer-solid-phase microextraction fibers. The obtained fibers showed selective adsorption ability for four pyrrolizidine alkaloids, including europine, echimidine, lasiocarpine, and heliotrine. The extraction parameters, such as extraction time, extraction temperature, shaking speed, elution solvent and elution time, were optimized. Then ultra high performance liquid chromatography with mass spectrometry coupled with molecularly imprinted polymer-solid-phase microextraction method was developed for the fast and efficient analysis of four pyrrolizidine alkaloids from the model herbal plant Farfarae Flos. The established method was validated and exhibited satisfactory accuracy and precision. The present method provides an innovative and fast analytical strategy for the determination of trace toxic pyrrolizidine alkaloids in complicated samples.


Asunto(s)
Impresión Molecular , Polímeros/química , Alcaloides de Pirrolicidina/análisis , Microextracción en Fase Sólida , Tussilago/química , Adsorción , Cromatografía Líquida de Alta Presión , Medicina de Hierbas , Estructura Molecular , Tamaño de la Partícula , Polímeros/síntesis química , Propiedades de Superficie , Espectrometría de Masas en Tándem
20.
Molecules ; 24(6)2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893797

RESUMEN

Pyrrolizidine alkaloids (PAs) are natural toxins found in some genera of the family Asteraceae. However, it has not been reported whether PAs are present in the widely used Asteraceae plant Artemisia capillaris Thunb. (A. capillaris). The purpose of this study was to establish a sensitive and rapid UPLC-MS/MS method together with chemometrics analysis for simultaneous determination and risk assessment of PAs in A. capillaris. The developed UPLC-MS/MS method was validated and was confirmed to display desirable high selectivity, precision and accuracy. Risk assessment was conducted according to the European Medicines Agency (EMA) guideline. Chemometrics analysis was performed with hierarchical clustering analysis and principal component analysis to characterize the differences between PAs of A. capillaris. Finally, PAs were found in 29 out of 30 samples and at least two were detected in each sample, besides, more than half of the samples exceeded the EMA baseline. Nevertheless, the chemometrics results suggested that the PAs contents of A. capillaris from different sources varied significantly. The method was successfully applied to the detection and risk evaluation of PAs-containing A. capillaris for the first time. This study should provide a meaningful reference for the rational and safe use of A. capillaris.


Asunto(s)
Artemisia/química , Cromatografía Liquida/métodos , Alcaloides de Pirrolicidina/análisis , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda