Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 635
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(41): e2410995121, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39361653

RESUMEN

Approximately two-thirds of the estimated one-billion metric tons of methane produced annually by methanogens is derived from the cleavage of acetate. Acetate is broken down by a Ni-Fe-S-containing A-cluster within the enzyme acetyl-CoA synthase (ACS) to carbon monoxide (CO) and a methyl group (CH3+). The methyl group ultimately forms the greenhouse gas methane, whereas CO is converted to the greenhouse gas carbon dioxide (CO2) by a Ni-Fe-S-containing C-cluster within the enzyme carbon monoxide dehydrogenase (CODH). Although structures have been solved of CODH/ACS from acetogens, which use these enzymes to make acetate from CO2, no structure of a CODH/ACS from a methanogen has been reported. In this work, we use cryo-electron microscopy to reveal the structure of a methanogenic CODH and CODH/ACS from Methanosarcina thermophila (MetCODH/ACS). We find that the N-terminal domain of acetogenic ACS, which is missing in all methanogens, is replaced by a domain of CODH. This CODH domain provides a channel for CO to travel between the two catalytic Ni-Fe-S clusters. It generates the binding surface for ACS and creates a remarkably similar CO alcove above the A-cluster using residues from CODH rather than ACS. Comparison of our MetCODH/ACS structure with our MetCODH structure reveals a molecular mechanism to restrict gas flow from the CO channel when ACS departs, preventing CO escape into the cell. Overall, these long-awaited structures of a methanogenic CODH/ACS reveal striking functional similarities to their acetogenic counterparts despite a substantial difference in domain organization.


Asunto(s)
Acetato CoA Ligasa , Aldehído Oxidorreductasas , Microscopía por Crioelectrón , Metano , Methanosarcina , Complejos Multienzimáticos , Aldehído Oxidorreductasas/metabolismo , Aldehído Oxidorreductasas/química , Microscopía por Crioelectrón/métodos , Methanosarcina/enzimología , Methanosarcina/metabolismo , Metano/metabolismo , Complejos Multienzimáticos/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/ultraestructura , Acetato CoA Ligasa/metabolismo , Acetato CoA Ligasa/química , Acetato CoA Ligasa/genética , Monóxido de Carbono/metabolismo , Modelos Moleculares
2.
Proc Natl Acad Sci U S A ; 119(30): e2123022119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858422

RESUMEN

The formation of carbon-carbon bonds from prebiotic precursors such as carbon dioxide represents the foundation of all primordial life processes. In extant organisms, this reaction is carried out by the carbon monoxide dehydrogenase (CODH)/acetyl coenzyme A synthase (ACS) enzyme, which performs the cornerstone reaction in the ancient Wood-Ljungdahl metabolic pathway to synthesize the key biological metabolite, acetyl-CoA. Despite its significance, a fundamental understanding of this transformation is lacking, hampering efforts to harness analogous chemistry. To address these knowledge gaps, we have designed an artificial metalloenzyme within the azurin protein scaffold as a structural, functional, and mechanistic model of ACS. We demonstrate the intermediacy of the NiI species and requirement for ordered substrate binding in the bioorganometallic carbon-carbon bond-forming reaction from the one-carbon ACS substrates. The electronic and geometric structures of the nickel-acetyl intermediate have been characterized using time-resolved optical, electron paramagnetic resonance, and X-ray absorption spectroscopy in conjunction with quantum chemical calculations. Moreover, we demonstrate that the nickel-acetyl species is chemically competent for selective acyl transfer upon thiol addition to biosynthesize an activated thioester. Drawing an analogy to the native enzyme, a mechanism for thioester generation by this ACS model has been proposed. The fundamental insight into the enzymatic process provided by this rudimentary ACS model has implications for the evolution of primitive ACS-like proteins. Ultimately, these findings offer strategies for development of highly active catalysts for sustainable generation of liquid fuels from one-carbon substrates, with potential for broad applications across diverse fields ranging from energy storage to environmental remediation.


Asunto(s)
Aldehído Oxidorreductasas , Azurina , Ésteres , Complejos Multienzimáticos , Níquel , Origen de la Vida , Compuestos de Azufre , Aldehído Oxidorreductasas/química , Azurina/química , Catálisis , Ésteres/síntesis química , Modelos Químicos , Complejos Multienzimáticos/química , Níquel/química , Compuestos de Azufre/síntesis química
3.
Biochem Biophys Res Commun ; 726: 150306, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-38917634

RESUMEN

The folate metabolism enzyme ALDH1L1 catalyzed 10-formyltetrahydrofolate to tetrahydrofolate and CO2. Non-small cell lung cancer cells (NSCLC) strongly express ALDH1L1. Gossypol binds to an allosteric site and disrupts the folate metabolism by preventing NADP+ binding. The Cryo-EM structures of tetrameric C-terminal aldehyde dehydrogenase human ALDH1L1 complex with gossypol were examined. Gossypol-bound ALDH1L1 interfered with NADP+ by shifting the allosteric site of the structural conformation, producing a closed-form NADP+ binding site. In addition, the inhibition activity of ALDH1L1 was targeted with gossypol in NSCLC. The gossypol treatment had anti-cancer effects on NSCLC by blocking NADPH and ATP production. These findings emphasize the structure characterizing ALDH1L1 with gossypol.


Asunto(s)
Gosipol , Humanos , Gosipol/química , Gosipol/farmacología , Gosipol/metabolismo , NADP/metabolismo , NADP/química , Modelos Moleculares , Microscopía por Crioelectrón , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Aldehído Oxidorreductasas/metabolismo , Aldehído Oxidorreductasas/química , Unión Proteica , Sitios de Unión , Sitio Alostérico , Conformación Proteica , Línea Celular Tumoral , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH
4.
Chemphyschem ; 25(13): e202400293, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38631392

RESUMEN

The aerobic oxidation of carbon monoxide to carbon dioxide is catalysed by the Mo/Cu-containing CO-dehydrogenase enzyme in the soil bacterium Oligotropha carboxidovorans, enabling the organism to grow on the small gas molecule as carbon and energy source. It was shown experimentally that silver can be substituted for copper in the active site of Mo/Cu CODH to yield a functional enzyme. In this study, we employed QM/MM calculations to investigate whether the reaction mechanism of the silver-substituted enzyme is similar to that of the native enzyme. Our results suggest that the Ag-substituted enzyme can oxidize CO and release CO2 following the same reaction steps as the native enzyme, with a computed rate-limiting step of 10.4 kcal/mol, consistent with experimental findings. Surprisingly, lower activation energies for C-O bond formation have been found in the presence of silver. Furthermore, comparison of rate constants for reduction of copper- and silver-containing enzymes suggests a discrepancy in the transition state stabilization upon silver substitution. We also evaluated the effects that differences in the water-active site interaction may exert on the overall energy profile of catalysis. Finally, the formation of a thiocarbonate intermediate along the catalytic pathway was found to be energetically unfavorable for the Ag-substituted enzyme. This finding aligns with the hypothesis proposed for the wild-type form, suggesting that the creation of such species may not be necessary for the enzymatic catalysis of CO oxidation.


Asunto(s)
Aldehído Oxidorreductasas , Monóxido de Carbono , Cobre , Molibdeno , Complejos Multienzimáticos , Oxidación-Reducción , Plata , Cobre/química , Cobre/metabolismo , Plata/química , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Molibdeno/química , Molibdeno/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/metabolismo , Teoría Cuántica
5.
Angew Chem Int Ed Engl ; 63(31): e202405120, 2024 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-38743001

RESUMEN

The bifunctional CO-dehydrogenase/acetyl-CoA synthase (CODH/ACS) complex couples the reduction of CO2 to the condensation of CO with a methyl moiety and CoA to acetyl-CoA. Catalysis occurs at two sites connected by a tunnel transporting the CO. In this study, we investigated how the bifunctional complex and its tunnel support catalysis using the CODH/ACS from Carboxydothermus hydrogenoformans as a model. Although CODH/ACS adapted to form a stable bifunctional complex with a secluded substrate tunnel, catalysis and CO transport is even more efficient when two monofunctional enzymes are coupled. Efficient CO channeling appears to be ensured by hydrophobic binding sites for CO, which act in a bucket-brigade fashion rather than as a simple tube. Tunnel remodeling showed that opening the tunnel increased activity but impaired directed transport of CO. Constricting the tunnel impaired activity and CO transport, suggesting that the tunnel evolved to sequester CO rather than to maximize turnover.


Asunto(s)
Acetilcoenzima A , Dióxido de Carbono , Oxidación-Reducción , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Acetilcoenzima A/metabolismo , Acetilcoenzima A/química , Monóxido de Carbono/metabolismo , Monóxido de Carbono/química , Aldehído Oxidorreductasas/metabolismo , Aldehído Oxidorreductasas/química , Acetato CoA Ligasa/metabolismo , Acetato CoA Ligasa/química , Biocatálisis , Complejos Multienzimáticos/metabolismo , Complejos Multienzimáticos/química , Modelos Moleculares
6.
J Biol Chem ; 298(6): 102006, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35504354

RESUMEN

The discovery of reduced flavin mononucleotide and fatty aldehydes as essential factors of light emission facilitated study of bacterial luminescence. Although the molecular mechanisms underlying bacterial luminescence have been studied for more than 60 years, the structure of the bacterial fatty acid reductase complex remains unclear. Here, we report the cryo-EM structure of the Photobacterium phosphoreum fatty acid reductase complex LuxC-LuxE to a resolution of 2.79 Å. We show that the active site Lys238/Arg355 pair of LuxE is >30 Å from the active site Cys296 of LuxC, implying that catalysis relies on a large conformational change. Furthermore, mutagenesis and biochemical experiments support that the L-shaped cleft inside LuxC plays an important role in substrate binding and reaction. We obtained a series of mutants with significantly improved activity as measured by in vitro bioluminescence assays and demonstrated that the double mutant W111A/F483K displayed the highest activity (370% of the WT). Our results indicated that the activity of LuxC significantly affects the bacterial bioluminescence reaction. Finally, we expressed this mutated lux operon in Escherichia coli but observed that the in vivo concentrations of ATP and NADPH limited the enzyme activity; thus, we conclude that the luminous intensity mainly depends on the level of metabolic energy.


Asunto(s)
Aldehído Oxidorreductasas , Proteínas Bacterianas , Oxidorreductasas , Photobacterium , Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Escherichia coli/genética , Luminiscencia , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Operón , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Photobacterium/genética
7.
Chemistry ; 29(20): e202203072, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36648073

RESUMEN

In contrast to their molybdenum dependent relatives, tungsten enzymes operate at significantly lower redox potentials, and in some cases they can carry out reversible redox transformations of their substrates and products. Still, the electrochemical properties of W enzymes have received much less attention than their Mo relatives. Herein we analyse the tungsten enzyme aldehyde oxidoreductase (AOR) from the mesophilic bacterium Aromatoleum aromaticum which has been immobilised on a glassy carbon working electrode. This generates a functional system that electrochemically oxidises a wide variety of aromatic and aliphatic aldehydes in the presence of the electron transfer mediators benzyl viologen, methylene blue or dichlorophenol indophenol. Simulation of the cyclic voltammetry has enabled a thorough kinetic analysis of the system, which reveals that methylene blue acts as a two-electron acceptor. In contrast, the other two mediators act as single electron oxidants. The different electrochemical driving forces imparted by these mediators also lead to significantly different outer sphere electron transfer rates with AOR. This work shows that electrocatalytic aldehyde oxidation can be achieved at a low applied electrochemical potential leading to an extremely energy efficient catalytic process.


Asunto(s)
Aldehído Oxidorreductasas , Aldehídos , Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/metabolismo , Tungsteno , Azul de Metileno , Cinética , Oxidación-Reducción , Aldehído Deshidrogenasa
8.
Angew Chem Int Ed Engl ; 62(32): e202305341, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37279092

RESUMEN

Ni,Fe-containing carbon monoxide dehydrogenases (CODHs) catalyze the reversible reduction of carbon dioxide to carbon monoxide. CODHs are found in anaerobic microorganisms and can rapidly lose their activity when exposed to air. What causes the loss of activity is unclear. In this study, we analyzed the time-dependent structural changes induced by the presence of air on the metal centers of CODH-II. We show that inactivation is a multistep process. In a reversible step, the open coordination site on the Ni ion is blocked by a Ni,Fe-bridging µ-sulfido or chlorido ligand. Blocking this open coordination site with a cyanide ligand stabilizes the cluster against O2 -induced decomposition, indicating that O2 attacks at the Ni ion. In the subsequent irreversible phase, nickel is lost, the Fe ions rearrange and the sulfido ligands disappear. Our data are consistent with a reversible reductive reactivation mechanism to protect CODHs from transient over-oxidation.


Asunto(s)
Aldehído Oxidorreductasas , Monóxido de Carbono , Dominio Catalítico , Monóxido de Carbono/química , Ligandos , Aldehído Oxidorreductasas/química
9.
Biochemistry ; 61(24): 2797-2805, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36137563

RESUMEN

Ni-Fe-S-dependent carbon monoxide dehydrogenases (CODHs) are enzymes that interconvert CO and CO2 by using their catalytic Ni-Fe-S C-cluster and their Fe-S B- and D-clusters for electron transfer. CODHs are important in the microbiota of animals such as humans, ruminants, and termites because they can facilitate the use of CO and CO2 as carbon sources and serve to maintain redox homeostasis. The bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS) is responsible for acetate production via the Wood-Ljungdahl pathway, where acetyl-CoA is assembled from two CO2-derived one-carbon units. A Ni-Fe-S A-cluster is key to this chemistry. Whereas acetogens use the A- and C-clusters of CODH/ACS to produce acetate from CO2, methanogens use A- and C-clusters of an acetyl-CoA decarbonylase/synthase complex (ACDS) to break down acetate en route to CO2 and methane production. Here we review some of the recent advances in understanding the structure and mechanism of CODHs, CODH/ACSs, and ACDSs, their unusual metallocofactors, and their unique metabolic roles in the human gut and elsewhere.


Asunto(s)
Aldehído Oxidorreductasas , Dióxido de Carbono , Monóxido de Carbono , Coenzima A Ligasas , Acetatos , Acetilcoenzima A , Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/metabolismo , Dióxido de Carbono/metabolismo , Monóxido de Carbono/metabolismo , Coenzima A Ligasas/química , Coenzima A Ligasas/metabolismo , Níquel , Hierro , Azufre , Metaloproteínas
10.
Biochem Biophys Res Commun ; 594: 8-14, 2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-35066379

RESUMEN

Lignin is a highly complex phenolic polymer which is essential for plants, but also makes it difficult for industrial processing. Engineering lignin by introducing relatively labile linkages into the lignin backbone can render it more amenable to chemical depolymerization. It has been reported that introducing a feruloyl-coenzyme A monolignol transferase from Angelica sinensis (AsFMT) into poplar could incorporate monolignol ferulate conjugates (ML-FAs) into lignin polymers, suggesting a promising way to manipulate plants for readily deconstructing. FMT catalyzes a reaction between monolignols and feruloyl-CoA to produce ML-FAs and free CoA-SH. However, the mechanisms of substrate specificity and catalytic process of FMT remains poorly understood. Here we report the structure of AsFMT, which adopts a typical fold of BAHD acyltransferase family. Structural comparisons with other BAHD homologs reveal several unique structural features of AsFMT, different from those of the BAHD homologs. Further molecular docking studies showed that T375 in AsFMT may function as an oxyanion hole to stabilize the reaction intermediate and also proposed a role of H278 in the binding of the nucleophilic hydroxyl group of monolignols. Together, this study provides important structural insights into the reactions catalyzed by AsFMT and will shed light on its future application in lignin engineering.


Asunto(s)
Acilcoenzima A/química , Aldehído Oxidorreductasas/química , Angelica/enzimología , Oxidorreductasas/química , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Lignina/química , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Dominios Proteicos , Especificidad por Sustrato , Transferasas/metabolismo , Ultracentrifugación
11.
Chemphyschem ; 23(8): e202200053, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35170169

RESUMEN

The aerobic CO dehydrogenase from Oligotropha carboxidovorans is an environmentally crucial bacterial enzyme for maintenance of subtoxic concentration of CO in the lower atmosphere, as it allows for the oxidation of CO to CO2 which takes place at its Mo-Cu heterobimetallic active site. Despite extensive experimental and theoretical efforts, significant uncertainties still concern the reaction mechanism for the CO oxidation. In this work, we used the hybrid quantum mechanical/molecular mechanical approach to evaluate whether a water molecule present in the active site might act as a nucleophile upon formation of the new C-O bond, a hypothesis recently suggested in the literature. Our study shows that activation of H2 O can be favoured by the presence of the Mo=Oeq group. However, overall our results suggest that mechanisms other than the nucleophilic attack by Mo=Oeq to the activated carbon of the CO substrate are not likely to constitute reactive channels for the oxidation of CO by the enzyme.


Asunto(s)
Molibdeno , Agua , Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/metabolismo , Cobre/química , Molibdeno/química , Complejos Multienzimáticos , Oxidación-Reducción , Teoría Cuántica
12.
Angew Chem Int Ed Engl ; 61(18): e202117000, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35133707

RESUMEN

Ni,Fe-containing carbon monoxide dehydrogenases (CODHs) catalyze the reversible reduction of CO2 to CO. Several anaerobic microorganisms encode multiple CODHs in their genome, of which some, despite being annotated as CODHs, lack a cysteine of the canonical binding motif for the active site Ni,Fe-cluster. Here, we report on the structure and reactivity of such a deviant enzyme, termed CooS-VCh . Its structure reveals the typical CODH scaffold, but contains an iron-sulfur-oxo hybrid-cluster. Although closely related to true CODHs, CooS-VCh catalyzes neither CO oxidation, nor CO2 reduction. The active site of CooS-VCh undergoes a redox-dependent restructuring between a reduced [4Fe-3S]-cluster and an oxidized [4Fe-2S-S*-2O-2(H2 O)]-cluster. Hydroxylamine, a slow-turnover substrate of CooS-VCh , oxidizes the hybrid-cluster in two structurally distinct steps. Overall, minor changes in CODHs are sufficient to accommodate a Fe/S/O-cluster in place of the Ni,Fe-heterocubane-cluster of CODHs.


Asunto(s)
Dióxido de Carbono , Proteínas Hierro-Azufre , Aldehído Oxidorreductasas/química , Dióxido de Carbono/metabolismo , Monóxido de Carbono/química , Proteínas Hierro-Azufre/metabolismo , Complejos Multienzimáticos , Níquel/química , Oxidación-Reducción
13.
Biochem Biophys Res Commun ; 536: 38-44, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33360541

RESUMEN

Aldehyde-alcohol dehydrogenase (AdhE) is a metabolic enzyme and virulence factor in bacteria. E. coli AdhE (eAdhE) multimerizes into spirosomes that are essential for enzymatic activity. However, it is unknown whether AdhE structure is conserved in divergent bacteria. Here, we present the cryo-EM structure of AdhE (vAdhE) from Vibrio cholerae to 4.31 Å resolution. Overall, vAdhE spirosomes are similar to eAdhE with conserved subunit arrangement. However, divergences in key oligomerization residues cause vAdhE to form labile spirosomes with lower enzymatic activity. Mutating the vAdhE oligomerization interface to mimic eAdhE increases spirosome stability and enzymatic activity to levels comparable to eAdhE. These results support the generality of AdhE spirosome structures, and provide a structural basis to target vAdhE to attenuate bacterial virulence.


Asunto(s)
Alcohol Deshidrogenasa/ultraestructura , Microscopía por Crioelectrón , Vibrio cholerae/enzimología , Acetilcoenzima A/metabolismo , Alcohol Deshidrogenasa/química , Aldehído Oxidorreductasas/química , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Modelos Moleculares , Proteínas Mutantes/química
14.
J Biol Inorg Chem ; 26(5): 617-624, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34255144

RESUMEN

The enzyme carbon monoxide dehydrogenase is capable of efficiently converting [Formula: see text] to CO and, therefore, can enable an affordable [Formula: see text] recycling strategy. The reduction of [Formula: see text] occurs at a peculiar nickel-iron-sulfur cluster, following a mechanism that remains little understood. In this study, we have used ab initio molecular dynamics simulations to explore the free energy landscape of the reaction. We predict the existence of a COOH ligand that strongly interacts with the surrounding protein residues and favours a mechanism where a [Formula: see text] molecule is eliminated before CO. We have taken advantages of the insights offered by our simulations to revisit the catalytic mechanism and the role of the residues surrounding the active centre in particular, thus assisting in the design of inorganic catalysts that mimic the enzyme.


Asunto(s)
Aldehído Oxidorreductasas/química , Monóxido de Carbono/química , Complejos Multienzimáticos/química , Aldehído Oxidorreductasas/metabolismo , Monóxido de Carbono/metabolismo , Teoría Funcional de la Densidad , Firmicutes/enzimología , Complejos Multienzimáticos/metabolismo , Agua/química
15.
Inorg Chem ; 60(18): 13869-13875, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34488341

RESUMEN

The nickel-iron carbon monoxide dehydrogenase (CODH) enzyme catalyzes the reversible and selective interconversion of carbon dioxide (CO2) to carbon monoxide (CO) with high rates and negligible overpotential. Despite decades of research, many questions remain about this complex metalloenzyme system. A simplified model enzyme could provide substantial insight into biological carbon cycling. Here, we demonstrate reversible electron transfer and binding of both CO and cyanide, a substrate and an inhibitor of CODH, respectively, in a Pyrococcus furiosus (Pf) ferredoxin (Fd) protein that has been reconstituted with a nickel-iron sulfide cluster ([NiFe3S4] Fd). The [NiFe3S4] cluster mimics the core of the native CODH active site and thus serves as a protein-based structural model of the CODH subsite. Notably, despite binding cyanide, no CO binding is observed for the physiological [Fe4S4] clusters in Pf Fd, providing chemical rationale underlying the evolution of a site-differentiated cluster for substrate conversion in native CODH. The demonstration of a substrate-binding metalloprotein model of CODH sets the stage for high-resolution spectroscopic and mechanistic studies correlating the subsite structure and function, ultimately guiding the design of anthropogenic catalysts that harness the advantages of CODH for effective CO2 reduction.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Ferredoxinas/metabolismo , Complejos Multienzimáticos/metabolismo , Pyrococcus furiosus/química , Aldehído Oxidorreductasas/química , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Transporte de Electrón , Ferredoxinas/química , Modelos Moleculares , Complejos Multienzimáticos/química
16.
Inorg Chem ; 60(1): 387-402, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33321036

RESUMEN

In view of the depletion of fossil fuel reserves and climatic effects of greenhouse gas emissions, Ni,Fe-containing carbon monoxide dehydrogenase (Ni-CODH) enzymes have attracted increasing interest in recent years for their capability to selectively catalyze the reversible reduction of CO2 to CO (CO2 + 2H+ + 2e- ⇌ CO + H2O). The possibility of converting the greenhouse gas CO2 into useful materials that can be used as synthetic building blocks or, remarkably, as carbon fuels makes Ni-CODH a very promising target for reverse-engineering studies. In this context, in order to provide insights into the chemical principles underlying the biological catalysis of CO2 activation and reduction, quantum mechanics calculations have been carried out in the framework of density functional theory (DFT) on different-sized models of the Ni-CODH active site. With the aim of uncovering which stereoelectronic properties of the active site (known as the C-cluster) are crucial for the efficient binding and release of CO2, different coordination modes of CO2 to different forms and redox states of the C-cluster have been investigated. The results obtained from this study highlight the key role of the protein environment in tuning the reactivity and the geometry of the C-cluster. In particular, the protonation state of His93 is found to be crucial for promoting the binding or the dissociation of CO2. The oxidation state of the C-cluster is also shown to be critical. CO2 binds to Cred2 according to a dissociative mechanism (i.e., CO2 binds to the C-cluster after the release of possible ligands from Feu) when His93 is doubly protonated. CO2 can also bind noncatalytically to Cred1 according to an associative mechanism (i.e., CO2 binding is preceded by the binding of H2O to Feu). Conversely, CO2 dissociates when His93 is singly protonated and the C-cluster is oxidized at least to the Cint redox state.


Asunto(s)
Aldehído Oxidorreductasas/química , Dióxido de Carbono/química , Teoría Funcional de la Densidad , Hierro/química , Complejos Multienzimáticos/química , Níquel/química , Aldehído Oxidorreductasas/metabolismo , Sitios de Unión , Dióxido de Carbono/metabolismo , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Cristalografía por Rayos X , Hierro/metabolismo , Modelos Moleculares , Estructura Molecular , Complejos Multienzimáticos/metabolismo , Níquel/metabolismo
17.
J Biol Chem ; 294(35): 13017-13026, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31296570

RESUMEN

The nickel-dependent carbon monoxide dehydrogenase (CODH) employs a unique heterometallic nickel-iron-sulfur cluster, termed the C-cluster, to catalyze the interconversion of CO and CO2 Like other complex metalloenzymes, CODH requires dedicated assembly machinery to form the fully intact and functional C-cluster. In particular, nickel incorporation into the C-cluster depends on the maturation factor CooC; however, the mechanism of nickel insertion remains poorly understood. Here, we compare X-ray structures (1.50-2.48 Å resolution) of CODH from Desulfovibrio vulgaris (DvCODH) heterologously expressed in either the absence (DvCODH-CooC) or presence (DvCODH+CooC) of co-expressed CooC. We find that the C-cluster of DvCODH-CooC is fully loaded with iron but does not contain any nickel. Interestingly, the so-called unique iron ion (Feu) occupies both its canonical site (80% occupancy) and the nickel site (20% occupancy), with addition of reductant causing further mismetallation of the nickel site (60% iron occupancy). We also demonstrate that a DvCODH variant that lacks a surface-accessible iron-sulfur cluster (the D-cluster) has a C-cluster that is also replete in iron but lacks nickel, despite co-expression with CooC. In this variant, all Feu is in its canonical location, and the nickel site is empty. This D-cluster-deficient CODH is inactive despite attempts to reconstitute it with nickel. Taken together, these results suggest that an empty nickel site is not sufficient for nickel incorporation. Based on our findings, we propose a model for C-cluster assembly that requires both CooC and a functioning D-cluster, involves precise redox-state control, and includes a two-step nickel-binding process.


Asunto(s)
Aldehído Oxidorreductasas/química , Desulfovibrio vulgaris/enzimología , Metaloproteínas/química , Complejos Multienzimáticos/química , Aldehído Oxidorreductasas/metabolismo , Cristalografía por Rayos X , Metaloproteínas/metabolismo , Modelos Moleculares , Complejos Multienzimáticos/metabolismo , Conformación Proteica
18.
J Am Chem Soc ; 142(29): 12635-12642, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32598845

RESUMEN

Constructing synthetic models of the Mo/Cu active site of aerobic carbon monoxide dehydrogenase (CODH) has been a long-standing synthetic challenge thought to be crucial for understanding how atmospheric concentrations of CO and CO2 are regulated in the global carbon cycle by chemolithoautotrophic bacteria and archaea. Here we report a W/Cu complex that is among the closest synthetic mimics constructed to date, enabled by a silyl protection/deprotection strategy that provided access to a kinetically stabilized complex with mixed O2-/S2- ligation between (bdt)(O)WVI and CuI(NHC) (bdt = benzene dithiolate, NHC = N-heterocyclic carbene) sites. Differences between the inorganic core's structural and electronic features outside the protein environment relative to the native CODH cofactor point to a biochemical CO oxidation mechanism that requires a strained active site geometry, with Lewis acid/base frustration enforced by the protein secondary structure. This new mechanistic insight has the potential to inform synthetic design strategies for multimetallic energy storage catalysts.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Monóxido de Carbono/metabolismo , Cobre/metabolismo , Ácidos de Lewis/metabolismo , Molibdeno/metabolismo , Complejos Multienzimáticos/metabolismo , Tungsteno/metabolismo , Aldehído Oxidorreductasas/química , Emparejamiento Base , Monóxido de Carbono/química , Cobre/química , Teoría Funcional de la Densidad , Ácidos de Lewis/química , Modelos Moleculares , Estructura Molecular , Molibdeno/química , Complejos Multienzimáticos/química , Oxidación-Reducción , Tungsteno/química
19.
PLoS Pathog ; 14(1): e1006811, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29293681

RESUMEN

The bacterial pathogen Pseudomonas syringae modulates plant hormone signaling to promote infection and disease development. P. syringae uses several strategies to manipulate auxin physiology in Arabidopsis thaliana to promote pathogenesis, including its synthesis of indole-3-acetic acid (IAA), the predominant form of auxin in plants, and production of virulence factors that alter auxin responses in the host; however, the role of pathogen-derived auxin in P. syringae pathogenesis is not well understood. Here we demonstrate that P. syringae strain DC3000 produces IAA via a previously uncharacterized pathway and identify a novel indole-3-acetaldehyde dehydrogenase, AldA, that functions in IAA biosynthesis by catalyzing the NAD-dependent formation of IAA from indole-3-acetaldehyde (IAAld). Biochemical analysis and solving of the 1.9 Å resolution x-ray crystal structure reveal key features of AldA for IAA synthesis, including the molecular basis of substrate specificity. Disruption of aldA and a close homolog, aldB, lead to reduced IAA production in culture and reduced virulence on A. thaliana. We use these mutants to explore the mechanism by which pathogen-derived auxin contributes to virulence and show that IAA produced by DC3000 suppresses salicylic acid-mediated defenses in A. thaliana. Thus, auxin is a DC3000 virulence factor that promotes pathogenicity by suppressing host defenses.


Asunto(s)
Aldehído Oxidorreductasas/fisiología , Arabidopsis/microbiología , Ácidos Indolacéticos/metabolismo , Indoles/metabolismo , Pseudomonas syringae/patogenicidad , Virulencia , Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Sitios de Unión , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Organismos Modificados Genéticamente , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/microbiología , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Virulencia/genética
20.
PLoS Pathog ; 14(2): e1006850, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29425238

RESUMEN

Recent development of benzoxaborole-based chemistry gave rise to a collection of compounds with great potential in targeting diverse infectious diseases, including human African Trypanosomiasis (HAT), a devastating neglected tropical disease. However, further medicinal development is largely restricted by a lack of insight into mechanism of action (MoA) in pathogenic kinetoplastids. We adopted a multidisciplinary approach, combining a high-throughput forward genetic screen with functional group focused chemical biological, structural biology and biochemical analyses, to tackle the complex MoAs of benzoxaboroles in Trypanosoma brucei. We describe an oxidative enzymatic pathway composed of host semicarbazide-sensitive amine oxidase and a trypanosomal aldehyde dehydrogenase TbALDH3. Two sequential reactions through this pathway serve as the key underlying mechanism for activating a series of 4-aminomethylphenoxy-benzoxaboroles as potent trypanocides; the methylamine parental compounds as pro-drugs are transformed first into intermediate aldehyde metabolites, and further into the carboxylate metabolites as effective forms. Moreover, comparative biochemical and crystallographic analyses elucidated the catalytic specificity of TbALDH3 towards the benzaldehyde benzoxaborole metabolites as xenogeneic substrates. Overall, this work proposes a novel drug activation mechanism dependent on both host and parasite metabolism of primary amine containing molecules, which contributes a new perspective to our understanding of the benzoxaborole MoA, and could be further exploited to improve the therapeutic index of antimicrobial compounds.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Amina Oxidasa (conteniendo Cobre)/metabolismo , Compuestos de Boro/metabolismo , Modelos Biológicos , Profármacos/metabolismo , Tripanocidas/metabolismo , Trypanosoma brucei brucei/enzimología , Activación Metabólica , Aldehído Deshidrogenasa/antagonistas & inhibidores , Aldehído Deshidrogenasa/química , Aldehído Deshidrogenasa/genética , Aldehído Oxidorreductasas/antagonistas & inhibidores , Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Amina Oxidasa (conteniendo Cobre)/antagonistas & inhibidores , Amina Oxidasa (conteniendo Cobre)/química , Amina Oxidasa (conteniendo Cobre)/genética , Sustitución de Aminoácidos , Animales , Compuestos de Boro/química , Compuestos de Boro/farmacología , Resistencia a Medicamentos , Ensayos Analíticos de Alto Rendimiento , Humanos , Estructura Molecular , Mutación , Filogenia , Profármacos/química , Profármacos/farmacología , Dominios y Motivos de Interacción de Proteínas , Interferencia de ARN , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda