Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.975
Filtrar
Más filtros

Colección SES
Publication year range
1.
Biochem Biophys Res Commun ; 690: 149285, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37995454

RESUMEN

Multidrug-resistant Pseudomonas aeruginosa is a common pathogen that causes topical infections following burn injuries. Antimicrobial photodynamic therapy (aPDT) has emerged as a promising approach for treating antibiotic-resistant bacterial infections. The objective of this study was to evaluate the aPDT efficacy of aloe-emodin (AE), which is a photosensitizer extracted from traditional Chinese herbs, on antibiotic-sensitive and antibiotic-resistant P. aeruginosa in vitro. In this study, we confirmed the effectiveness of AE-mediated aPDT against both standard and MDR P. aeruginosa, explored the effects of irradiation time and AE concentration on bacterial survival in AE-mediated aPDT, and observed the structural damage of P. aeruginosa by using transmission electron microscope. Our results showed that neither AE nor light irradiation alone caused cytotoxic effects on P. aeruginosa. However, AE-mediated aPDT effectively inactivated both antibiotic-sensitive and antibiotic-resistant P. aeruginosa. The transmission electron microscope investigation showed that aPDT mediated by AE primarily caused damage to the cytoplasm and cell membrane. Our findings suggest that AE is a photosensitizer in the aPDT of MDR P. aeruginosa-caused topical infections following burn injuries. Future investigations will concentrate on the safety and efficacy of AE-mediated aPDT in animal models and clinical trials.


Asunto(s)
Aloe , Antiinfecciosos , Quemaduras , Emodina , Fotoquimioterapia , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pseudomonas aeruginosa , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Emodina/farmacología , Fotoquimioterapia/métodos , Antiinfecciosos/farmacología , Quemaduras/tratamiento farmacológico
2.
Microb Pathog ; 193: 106729, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851363

RESUMEN

Nickel ferrite nanoparticles (NiFe2O4 NPs) were synthesized using the medicinally important plant Aloe vera leaf extract, and their structural, morphological, and magnetic properties were characterized by x-ray diffraction (XRD), fourier transform infrared (FTIR), scanning electron microscopy (SEM), energy dispersive x-ray (EDX), and vibrating sample magnetometer (VSM). The synthesized NPs were soft ferromagnetic and spinel in nature, with an average particle size of 22.2 nm. To the best of our understanding, this is the first comprehensive investigation into the antibacterial, anticandidal, antibiofilm, and antihyphal properties of NiFe2O4 NPs against C. albicans as well as drug-resistant gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and gram-negative multidrug resistant Pseudomonas aeruginosa (MDR-P. aeruginosa) bacteria. NiFe2O4 NPs showed potent antimicrobial activity (MIC 1.6-2 mg/mL) against the test pathogens. NiFe2O4 NPs at 0.5 mg/mL suppressed biofilm formation by 49.5-53.1 % in test pathogens. The study found that the NPs not only prevent the formation of biofilm, but also eliminate existing mature biofilms by 50.5-75.79 % at 0.5 mg/mL, which was further validated by SEM. SEM examination revealed a reduction in the number of cells that form biofilms and adhere to the surface. Additionally, it considerably impeded the colonization and aggregation of the biofilm strains on the glass surface. Light microscopic examination demonstrated that NPs effectively prevent the expansion of hyphae, filaments, and yeast-to-hyphae transformation in C. albicans, resulting in a substantial decrease in their ability to cause infection. Moreover, SEM images of the treated cells exhibited the presence of wrinkles, deformities, and impaired cell walls, which suggests an alteration and instability of the membrane. This study demonstrated the efficacy of the greenly manufactured NPs in suppressing the proliferation of candida, drug-resistant bacteria, and their preexisting biofilms, as well as yeast-to-hyphae transformation. Therefore, these NPs with broad spectrum applications could be utilized in health settings to mitigate biofilm-related health conditions caused by pathogenic microbial strains.


Asunto(s)
Antibacterianos , Biopelículas , Candida albicans , Compuestos Férricos , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Níquel , Pseudomonas aeruginosa , Biopelículas/efectos de los fármacos , Níquel/química , Níquel/farmacología , Compuestos Férricos/farmacología , Compuestos Férricos/química , Candida albicans/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Hojas de la Planta/microbiología , Aloe/química , Difracción de Rayos X , Tamaño de la Partícula , Microscopía Electrónica de Rastreo , Antifúngicos/farmacología , Antifúngicos/química , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas/química
3.
Bioorg Chem ; 150: 107513, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38905888

RESUMEN

The interaction of green zinc oxide nanoparticles (ZnO NPs) with bacterial strains are still scarcely reported. This work was conducted to study the green-one-pot-synthesized ZnO NPs from the Aloe Vulgarize (AV) leaf peel extract assisted with different sonication techniques followed by the physicochemical, biological activities and molecular docking studies. The NPs structure was analyzed using FTIR, UV-vis and EDX. The morphology, particle size and crystallinity of ZnO NPs were identified using FESEM and XRD. It was found that the formed flower-like structure with sharp edge and fine size of particulates in ZnO NPs/AV could enhance the bacterial inhibition. The minimum inhibitory concentration (MIC) for all the tested bacterial strains is at 3.125 µg/ml and the bacterial growth curve are dependent on the ZnO NPs dosage. The results of disc diffusion revealed that the ZnO NPs/AV possess better antibacterial effect with bigger ZOI due to the presence of AV active ingredient. The molecular docking between active ingredients of AV in the NPs with the protein of IFCM and 1MWU revealed that low binding energy (Ebind = -6.56 kcal/mol and -8.99 kcal/mol, respectively) attributes to the excessive hydrogen bond from AV that highly influenced their interaction with the amino acid of the selected proteins. Finally, the cytotoxicity test on the biosynthesized ZnO NPs with concentration below 20 µg/ml are found nontoxic on the HDF cell. Overall, ZnO NPs/20 % AV (probe sonication) is considered as the best synthesis option due to its efficient one-pot method, short sonication time but own the best antibacterial effect.


Asunto(s)
Aloe , Antibacterianos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Óxido de Zinc , Aloe/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Óxido de Zinc/química , Óxido de Zinc/farmacología , Óxido de Zinc/síntesis química , Relación Dosis-Respuesta a Droga , Nanopartículas del Metal/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Sonicación , Tamaño de la Partícula , Relación Estructura-Actividad , Estructura Molecular
4.
Chem Biodivers ; 21(5): e202400245, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38436134

RESUMEN

Despite Aloe's traditional use, Aloe juvenna Brandham & S.Carter is poorly characterized. Other Aloes are known for their antidiabetic activity. This study describes the antidiabetic potentials and phytoconstituents of the A. juvenna leaves methanolic extract (AJME). Twenty-six phytoconstituents of AJME were described using HPLC/MS-MS. Lupeol and vitexin were isolated using column chromatography. The antidiabetic activity of AJME was investigated using an in vivo high-fat diet/streptozotocin-induced diabetic rat model and in vitro α-glucosidase and α-amylase inhibitory activity assays. AJME demonstrated its α-amylase inhibitory activity (IC50=313±39.9 ppm) with no effect on α-glucosidase. In vivo, AJME dose-dependently improved hyperglycaemia in a high-fat diet/streptozotocin-induced diabetic rat model. Notably, the higher dose (1600 mg/kg) of AJME significantly downregulated serum interleukin-6, tumor necrosis factor-α, and matrix metalloproteinase-1 genes, suggesting its anti-inflammatory effect. These findings indicate AJME's potential as a significant antidiabetic agent through its α-amylase inhibition, hypoglycaemic, and anti-inflammatory properties.


Asunto(s)
Aloe , Antiinflamatorios , Diabetes Mellitus Experimental , Hipoglucemiantes , Extractos Vegetales , Hojas de la Planta , Estreptozocina , alfa-Amilasas , Animales , Aloe/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/inducido químicamente , Ratas , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/química , Masculino , Dieta Alta en Grasa , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Ratas Sprague-Dawley
5.
Int J Phytoremediation ; 26(9): 1474-1485, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38488053

RESUMEN

Chromium (Cr) contamination of soil has substantially deteriorated soil health and has interfered with sustainable agricultural production worldwide and therefore, its remediation is inevitable. Inoculation of plant growth promoting rhizobacteria (PGPR) in association with nanotechnology has exerted broad based impacts in agriculture, and there is an urgent need to exploit their synergism in contaminated soils. Here, we investigated the effect of co-application of Cr-tolerant "Pseudomonas aeruginosa CKQ9" strain and nano zerovalent iron (nZVI) in improving the phytoremediation potential of aloe vera (Aloe barbadensis L.) under Cr contamination. Soil was contaminated by using potassium dichromate (K2Cr2O7) salt and 15 mg kg-1 contamination level in soil was maintained via spiking and exposure to Cr lasted throughout the duration of the experiment (120 days). We observed that the co-application alleviated the adverse impacts of Cr on aloe vera, and improved various plant attributes such as plant height, root area, number of leaves and gel contents by 51, 137, 67 and 49% respectively as compared to control treatment under Cr contamination. Similarly, significant boost in the activities of various antioxidants including catalase (124%), superoxide dismutase (87%), ascorbate peroxidase (36%), peroxidase (89%) and proline (34%) was pragmatic under contaminated soil conditions. In terms of soil Cr concentration and its plant uptake, co-application of P. aeruginosa and nZVI also reduced available Cr concentration in soil (50%), roots (77%) and leaves (84%), while simultaneously increasing the relative production index by 225% than un-inoculated control. Hence, integrating PGPR with nZVI can be an effective strategy for enhancing the phytoremediation potential of aloe vera.


Combined effect of PGPR and nanotechnology in the bioremediation of toxic contaminants is well reported in literature. Most of these reports comprise the use of hyperaccumulator plants for phytoextraction of heavy metals. However, phytostabilization potential of hyperaccumulators is still un-explored. Current study investigated the role of PGPR and Fe-NPs in suppressing the uptake of Cr in aloe vera, a hyperaccumulator plant.


Asunto(s)
Aloe , Biodegradación Ambiental , Cromo , Hierro , Pseudomonas aeruginosa , Contaminantes del Suelo , Cromo/metabolismo , Hierro/metabolismo , Contaminantes del Suelo/metabolismo , Pseudomonas aeruginosa/fisiología
6.
J Microencapsul ; 41(6): 403-418, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39007845

RESUMEN

OBJECTIVE: The main purpose of the present study was to evaluate the therapeutic efficacy of Aloe vera-coated curcumin encapsulated nanoparticles in mitigating Alzheimer's disease progression in mice, by examining behavioural changes, biochemical markers, and histopathological alterations, thus elucidating its potential as a treatment strategy. METHODS: The green synthesis method was used to synthesise this nanoformulation, which was then characterised using a variety of techniques, including percentage encapsulation efficacy, UV-visible spectroscopy, DLS, FT-IR, FESEM, and EDX. Several in-vivo assessments, including behavioural evaluations, dose optimisation studies, oxidative stress marker estimation, and histological studies, were conducted to determine the potential therapeutic impact of nanoformulation on the Alzheimer-induced mice model. RESULTS: The synthesised nanoparticles show a mean diameter of 76.12 nm ±1.23, a PDI of 0.313 ± 0.02, a zeta potential of 6.27 ± 0.65 mV, and the percentage encapsulation efficiency between 90% and 95% indicating good stability of synthesised nanoformulation. With the help of Morris water maze, Y-maze, and novel object recognition assay, the learning capacity and memory were assessed, and the results show that the synthesised nanoformulation significantly decreased the transfer latency to reach baited arm or to the hidden platform within 7 days. CONCLUSION: The formulation demonstrated significant biochemical benefits and remarkable cognitive advantages, establishing it as a prospective therapeutic intervention option that is both safe and effective.


Asunto(s)
Aloe , Enfermedad de Alzheimer , Curcumina , Modelos Animales de Enfermedad , Nanopartículas , Animales , Curcumina/farmacología , Curcumina/administración & dosificación , Curcumina/química , Aloe/química , Enfermedad de Alzheimer/tratamiento farmacológico , Ratones , Nanopartículas/química , Masculino , Conducta Animal/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos
7.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891787

RESUMEN

Antimicrobial resistance is a menace to public health on a global scale. In this regard, nanomaterials exhibiting antimicrobial properties represent a promising solution. Both metal and metal oxide nanomaterials are suitable candidates, even though their mechanisms of action vary. Multiple antimicrobial mechanisms can occur simultaneously or independently; this includes either direct contact with the pathogens, nanomaterial uptake, oxidative stress, ion release, or any of their combinations. However, due to their specific properties and more particularly fast settling, existing methods to study the antimicrobial properties of nanoparticles have not been specifically adapted in some cases. The development of methodologies that can assess the antimicrobial properties of metallic nanomaterials accurately is necessary. A cost-effective methodology with a straightforward set-up that enables the easy and quick assessment of the antimicrobial properties of metal nanoparticles with high accuracy has been developed. The methodology is also capable of confirming whether the killing mechanism involves ionic diffusion. Finally, Aloe Vera gel showed good properties for use as a medium for the development of antimicrobial ointment.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Nanocompuestos , Nanocompuestos/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana/métodos , Preparaciones de Plantas/farmacología , Preparaciones de Plantas/química , Aloe/química
8.
Int J Mol Sci ; 25(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38732168

RESUMEN

Antimicrobial resistance (AMR) poses an emanating threat to humanity's future. The effectiveness of commonly used antibiotics against microbial infections is declining at an alarming rate. As a result, morbidity and mortality rates are soaring, particularly among immunocompromised populations. Exploring alternative solutions, such as medicinal plants and iodine, shows promise in combating resistant pathogens. Such antimicrobials could effectively inhibit microbial proliferation through synergistic combinations. In our study, we prepared a formulation consisting of Aloe barbadensis Miller (AV), Thymol, iodine (I2), and polyvinylpyrrolidone (PVP). Various analytical methods including SEM/EDS, UV-vis, Raman, FTIR, and XRD were carried out to verify the purity, composition, and morphology of AV-PVP-Thymol-I2. We evaluated the inhibitory effects of this formulation against 10 selected reference strains using impregnated sterile discs, surgical sutures, gauze bandages, surgical face masks, and KN95 masks. The antimicrobial properties of AV-PVP-Thymol-I2 were assessed through disc diffusion methods against 10 reference strains in comparison with two common antibiotics. The 25-month-old formulation exhibited slightly lower inhibitory zones, indicating changes in the sustained-iodine-release reservoir. Our findings confirm AV-PVP-Thymol-I2 as a potent antifungal and antibacterial agent against the reference strains, demonstrating particularly strong inhibitory action on surgical sutures, cotton bandages, and face masks. These results enable the potential use of the formulation AV-PVP-Thymol-I2 as a promising antimicrobial agent against wound infections and as a spray-on contact-killing agent.


Asunto(s)
Pruebas de Sensibilidad Microbiana , Timol , Timol/farmacología , Timol/química , Yodo/química , Yodo/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/química , Aloe/química , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Composición de Medicamentos/métodos
9.
Molecules ; 29(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38611819

RESUMEN

Aquaporin 3 (AQP3) channels are tetrameric membrane-bound channels that facilitate the transport of water and other small solutes across cell membranes in the skin. Decreased AQP3 expression is associated with skin dryness, skin aging, psoriasis, and delayed wound healing. Thus, our study focused on a novel combination based on Aloe barbadensis leaf extract and trimethylglycine for targeted AQP3 regulation in skin keratinocytes and deep skin moisturization. Firstly, a dose-finding cytotoxicity assay of the selected substances was performed with a 2,5-diphenyl-2H-tetrazolium bromide (MTT) indicator on HaCaT cells. The substances' ability to increase the amount of AQP3 in keratinocytes was evaluated in a keratinocyte cell culture by means of ELISA. Additionally, the deep skin hydration effect was confirmed in clinical research with healthy volunteers. According to the results, the maximum tolerated doses providing viability at 70% (MTDs) values for Aloe barbadensis leaf extract and trimethylglycine were 24.50% and 39.00%, respectively. Following the research and development, a complex based on Aloe barbadensis leaf extract and trimethylglycine in a 1:1 mass ratio exhibited a good cytotoxicity profile, with an MTDs value of 37.90%. Furthermore, it was shown that the combination had a clear synergetic effect and significantly increased AQP3 by up to 380% compared to the negative control and glyceryl glucoside (p < 0.001). It was clinically confirmed that the developed shower gel containing Aloe barbadensis leaf extract and trimethylglycine safely improved skin hydration after one use and over 28 days. Thus, this novel plant-based combination has promising potential for AQP3 regulation in the skin epidermis and a role in the development of dermatological drugs for the treatment of skin xerosis and atopic-related conditions.


Asunto(s)
Aloe , Humanos , Acuaporina 3 , Piel , Queratinocitos , Betaína , Extractos Vegetales/farmacología
10.
Molecules ; 29(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542933

RESUMEN

The efficacy of 23 bacterial isolates obtained from surface-sterilized stems and leaves of three medicinal plants (Aloe barbadensis Miller, Artemisia afra, and Moringa oleifera) was investigated in an endeavour to prevent the growth of Mycobacterium bovis using the cross-streak method. Endophytes were isolated by incubating sterile plant materials on nutrient agar at 30 °C for 5 days. Two isolates showing activity were subsequently utilized to produce the extracts. Whole-genome sequencing (WGC) was used to identify the isolates. Secondary metabolites produced after 7 days of growth in nutrient broth were harvested through extraction with ethyl acetate. The extracts were chemically profiled using gas chromatography-high resolution time-of-flight mass spectrometry (GC-HRTOF-MS). NCBI BLAST search results revealed that the isolated endophytes belonged to the Pseudomonas and Enterobacter genera, based on WGC. Two endophytes, Aloe I4 and Aloe I3-I5 from Aloe barbadensis, exhibited potency based on the cross-streak method. The metabolite profiling of the selected endophytes identified 34 metabolites from Aloe I4, including ergotamine, octadecane, L-proline and 143 other metabolites including quinoline and valeramide, which inhibit microbial quorum sensing. These findings suggest that bacterial endophytes from medicinal plants, particularly Aloe barbadensis, hold promise as sources of antimycobacterial agents for human health applications.


Asunto(s)
Aloe , Plantas Medicinales , Humanos , Aloe/química , Endófitos , Sudáfrica , Antibacterianos/farmacología , Antibacterianos/metabolismo , Extractos Vegetales/farmacología
11.
Int J Environ Health Res ; 34(4): 2031-2051, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37158808

RESUMEN

Reactive-oxygen-species are produced more often in the body when bisphenol A (BPA), an endocrine-disrupting-substance, is present. In this investigation, bio-sorbents from an aqueous solution adapted from Aloe-vera were used to survey BPA removal. Aloe-vera leaf wastes were used to create activated carbon, which was then analyzed using Fourier transform infrared (FTIR), Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Zeta potential, and Brunauer-Emmett-Teller (BET) techniques. It was revealed that the adsorption process adheres to the Freundlich isotherm model with R2>0.96 and the pseudo-second-order kinetic model with R2>0.99 under ideal conditions (pH = 3, contact time = 45 min, concentration of BPA = 20 mg.L-1, and concentration of the adsorbent = 2 g.L-1). After five-cycle, the efficacy of removal was greater than 70%. The removal of phenolic-chemicals from industrial-effluent can be accomplished with the assistance of this adsorbent in a cost-effective and effective-approach.


Asunto(s)
Aloe , Compuestos de Bencidrilo , Fenoles , Contaminantes Químicos del Agua , Adsorción , Termodinámica , Hojas de la Planta/química , Contaminantes Químicos del Agua/análisis
12.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1641-1660, 2024 Mar.
Artículo en Zh | MEDLINE | ID: mdl-38621949

RESUMEN

This study explored the existence forms(original constituents and metabolites) of Tiantian Capsules, Aloe, and Tiantian Capsules without Aloe in rats for the first time, aiming to clarify the contribution of Aloe to the existence form of Tiantian Capsules. Rats were administrated with corresponding drugs by gavage once a day for seven consecutive days. All urine and feces samples were collected during the seven days of administration, and blood samples were collected 0.5, 1, and 1.5 h after the last administration. UHPLC-Q-TOF-MS was employed to detect and identify the original constituents and metabolites in the samples. A total of 34, 28, and 2 original constituents and 64, 94, and 0 metabolites were identified in the samples of rats administrated with Aloe, Tiantian Capsules, and Tiantian Capsules without Aloe, respectively. The main metabolic reactions were methylation, hydrogenation, hydroxylation, dehydroxylation, glucuronidation, and sulfation. This study clarified for the first time the existence forms and partial metabolic pathways of Aloe, Tiantian Capsules, and Tiantian Capsules without Aloe in rats, laying a foundation for revealing their effective forms. The findings are of great significance to the research on the functioning mechanism and quality control of Aloe and Tiantian Capsules.


Asunto(s)
Aloe , Medicamentos Herbarios Chinos , Ratas , Animales , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/metabolismo , Administración Oral , Heces , Cápsulas
13.
J Mol Recognit ; 36(2): e3002, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36495231

RESUMEN

Obesity is taking over many parts of the world and has been identified as the second leading cause of preventable death, with a dramatic increase in prevalence over the last two decades. Pancreatic lipase is a lipid-digesting enzyme that plays an important role in fat metabolism. Inhibiting pancreatic lipase is an attractive target for obesity treatment. Phytochemicals or bioactive compounds/extracts isolated from medicinal plants offer a promising platform for the development of pancreatic lipase inhibitors. This study aims to characterize and investigate the effect of aloenin A, glycoside found in Aloe vera, as a possible inhibitor of pancreatic lipase in vitro and in silico. A. vera extract had an IC50 value of 0.5472 µg/ml, whereas aloenin A had an IC50 value of 14.95 µg/mL and was found to inhibit in a competitive manner. These findings were supported by molecular docking studies, which revealed that aloenin A binds to the substrate binding site with a binding energy of - 7.16 kcal/mol, and this binding site is stabilized by three hydrogen bonds contributed by Phe77 and Asp79 . Our findings suggest that the anti-hyperlipidemic effects of A. vera on pancreatic lipase can be attributed in part to the presence of aloenin A.


Asunto(s)
Aloe , Glicósidos , Aloe/química , Simulación del Acoplamiento Molecular , Lipasa , Extractos Vegetales/farmacología , Extractos Vegetales/química
14.
Planta ; 258(6): 107, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37897513

RESUMEN

MAIN CONCLUSION: The present investigation profoundly asserted the catalytic potential of plant-based aldo-ketoreductase, postulating its role in polyketide biosynthesis and providing new insights for tailored biosynthesis of vital plant polyketides for therapeutics. Plants hold great potential as a future source of innovative biocatalysts, expanding the possibilities within chemical reactions and generating a variety of benefits. The aldo-keto reductase (AKR) superfamily includes a huge collection of NAD(P)H-dependent oxidoreductases that carry out a variety of redox reactions essential for biosynthesis, detoxification, and intermediary metabolism. The present study involved the isolation, cloning, and purification of a novel aldo-ketoreductase (AvAKR) from the leaves of Aloe vera (Aloe barbadensis Miller) by heterologous gene expression in Escherichia coli based on the unigene sequences of putative ketoreductase and cDNA library screening by oligonucleotide hybridization. The in-silico structural analysis, phylogenetic relationship, and molecular modeling were outranged to approach the novelty of the sequence. Additionally, agroinfiltration of the candidate gene tagged with a green fluorescent protein (GFP) was employed for transient expression in the Nicotiana benthamiana to evaluate the sub-cellular localization of the candidate gene. The AvAKR preferred cytoplasmic localization and shared similarities with the known plant AKRs, keeping the majority of the conserved active-site residues in the AKR superfamily enzymes. The enzyme facilitated the NADPH-dependent reduction of various carbonyl substrates, including benzaldehyde and sugars, proclaiming a broad spectrum range. Our study successfully isolated and characterized a novel aldo-ketoreductase (AvAKR) from Aloe vera, highlighting its versatile NADPH-dependent carbonyl reduction proficiency therewith showcasing its potential as a versatile biocatalyst in diverse redox reactions.


Asunto(s)
Aldehído Reductasa , Aloe , Aldo-Ceto Reductasas/genética , Aldehído Reductasa/genética , Aldehído Reductasa/química , Aldehído Reductasa/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Aloe/genética , Aloe/metabolismo , Filogenia , NADP/genética , Plantas/metabolismo
15.
BMC Microbiol ; 23(1): 240, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644400

RESUMEN

BACKGROUND: Fermented Aloe leaf juice is a commonly used food supplement in Japan. In a previous study, fermentation of A. arborescence juice was performed and the presence of short-chain fatty acids (SCFAs) was confirmed and quantified. Samples were collected before and after the fermentation process to be subjected, in the present study, to DNA extraction, 16S rRNA gene (V3-V4 regions) amplification, and sequencing by the next-generation Illumina MiSeq sequencer. Our work aims to analyze the sequences to assess the bacterial diversity in the juice before and after fermentation, identify the beneficial microbes responsible for the production of SCFAs, and evaluate some of the biological activities of the fermented juice. RESULTS: Data revealed the richness and diversity of the bacterial community in the fermented juice compared to the unfermented control. Relative abundance of bacterial phyla showed that the majority of the microbial community in the test samples corresponded to Pseudomonadota (unfermented; 10.4%, fermented; 76.36%), followed by Bacillota (unfermented; 4.71%, fermented; 17.13%) and then Bacteroidota (unfermented; 0.57%, fermented; 1.64%). For the fermented sample, 84% of Bacillota were lactobacilli. A hierarchically clustered heatmap revealed that Lactobacillus was the most abundant genus in both samples suggesting its involvement in the production of SCFAs. To assess potential health benefits, the anticancer efficacy of the fermented product of A. arborescens was investigated against colorectal cancer (IC50 = 3.5 µg/ml) and liver cancer (IC50 = 6.367 µg/ml) compared to the normal peripheral blood mononuclear cells (PBMCs). Flow cytometric analysis of the cell cycle pattern revealed remarkable population arrest in G0 and G1, however, the highest percentages were mainly in the G1 phase for Hep-G2 (40.1%) and HCT-116 (53.2%) cell lines. This effect was accompanied by early apoptotic profiles of HCT-116 (36.9%) and late apoptosis for Hep-G2 (17.3%). Furthermore, immunomodulatory properties demonstrated a significantly (p < 0.001) reduced percentage of induced TNF-α while enhancing IFN-γ dramatically. For antimicrobial activities, marked broad-spectrum activities were recorded against some bacterial and fungal pathogens (17-37 mm inhibition zone diameter range). CONCLUSION: Therefore, this study affords the basis of bacterial community composition in fermented A. arborescens juice as well as its potential biological benefits.


Asunto(s)
Aloe , Antiinfecciosos , Leucocitos Mononucleares , ARN Ribosómico 16S/genética , Antiinfecciosos/farmacología , Firmicutes , Ácidos Grasos Volátiles , Lactobacillus
16.
Virol J ; 20(1): 158, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468960

RESUMEN

African swine fever (ASF) is an acute infectious haemorrhagic fever of pigs caused by African swine fever virus (ASFV). Aloe-emodin (Ae) is an active ingredient of Chinese herbs with antiviral, anticancer, and anti-inflammatory effects. We investigated the antiviral activity and mechanism of action of Ae against ASFV using Real-time quantitative PCR (qPCR), western blotting, and indirect immunofluorescence assays. Ae significantly inhibited ASFV replication. Furthermore, transcriptomic analysis revealed that ASFV infection activated the NF-κB signaling pathway in the early stage and the apoptosis pathway in the late stage. Ae significantly downregulated the expression levels of MyD88, phosphor-NF-κB p65, and pIκB proteins as well as the mRNA levels of IL-1ß and IL-8 in porcine alveolar macrophages (PAMs) infected with ASFV, thereby inhibiting the activation of the NF-κB signaling pathway induced by ASFV. Flow cytometry and western blot analysis revealed that Ae significantly increased the percentage of ASFV-induced apoptotic cells. Additionally, Ae promoted apoptosis by upregulating the expression levels of cleaved-caspase3 and Bax proteins and downregulating the expression levels of Bcl-2 proteins. This suggests that Ae promotes apoptosis by inhibiting the NF-κB pathway, resulting in inhibition of ASFV replication. These findings have further improved therapeutic reserves for the prevention and treatment of ASF.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Aloe , Emodina , Animales , Virus de la Fiebre Porcina Africana/genética , Aloe/metabolismo , Antivirales/farmacología , Apoptosis , Emodina/farmacología , FN-kappa B/metabolismo , Transducción de Señal , Porcinos , Replicación Viral
17.
Cell Mol Biol (Noisy-le-grand) ; 69(2): 126-132, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-37224035

RESUMEN

There is great plant diversity in Saudi Arabia. The Asphodelaceae family is within this great diversity, especially the rare species such as the plant, Aloe saudiarabica. Such plants must be preserved in their natural ranges, hence, the need to document them. Genetic markers have become the approved and widely used method for documenting rare plants. The current study deals with the use of three genetic markers to document A. saudiarabica for the first time. The used genetic markers were Maturase-K (matK), Ribulose-bisphosphate-carboxylase (rbcL), and Internal-transcribed-spacer (ITS). The study found that the primers used for the rbcL gene were not effective in achieving identification. Sequencing of the matK and ITS were achieved successfully. The sequences were determined for both markers using two pairs of primers and deposited in the NCBI databases (GenBank). These markers were effective in identifying A. saudiarabica and determining its evolutionary relationship with other Aloe species in various databases. The study showed that A. vera is high similar (>99%) to the other species. In conclusion, the study showed the likelihood of the different genetic markers to document A. saudiarabica, especially the currently investigated matK and ITS.


Asunto(s)
Aloe , Asphodelaceae , Marcadores Genéticos , Aloe/genética , Plastidios/genética , Cartilla de ADN
18.
Anim Biotechnol ; 34(7): 3027-3038, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36200859

RESUMEN

Twenty-four cross-breed (Alpine × Beetal) lactating goats (average body weight: 37.5 ± 2.7 kg and milk yield: 1.78 ± 0.31 kg/day) were chosen for the ninety days duration of the experiment and divided into three groups following a completely randomized design. Group I acted as control (T0) and received only a basal diet as per requirement, whereas group II (T1) and group III (T2) received basal diet added with Aloe vera extract at 2% and 4% of dry matter intake (DMI), respectively. Total phenolic compounds (TPC) and milk antioxidant status were higher (p < 0.05) in T1 and T2 than T0. Relative abundance of methanogen, protozoa, Butyrivibrio proteoclasticus, and Ruminococcus flavefaciens in the rumen were lower, while Butyrivibrio fibrisolvens population was higher (p < 0.05) in T2 and T1 compared to T0. Saturated fatty acids levels in milk were lower, whereas different polyunsaturated fatty acids levels were higher (p < 0.05) in T1 and T2 than T0. Nutritional indices of milk increased in both supplemented groups. Overall, it may be concluded that dietary supplementation of Aloe vera extract at 2% and 4% of DMI may enhance the functional characteristics of milk by boosting TPC and antioxidant status, as well as the FA profile and nutritional quality indices of milk fat.


Asunto(s)
Aloe , Leche , Femenino , Animales , Ácidos Grasos , Antioxidantes/farmacología , Lactancia , Rumen , Alimentos Funcionales , Fitomejoramiento , Suplementos Dietéticos , Dieta/veterinaria , Cabras , Extractos Vegetales/farmacología , Alimentación Animal/análisis
19.
Phytother Res ; 37(7): 2800-2810, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36808781

RESUMEN

This trial was designed to evaluate the effect of a standardized capsule of Aloe vera gel (AVG) on the quality of life (QOL) in patients with systolic heart failure (HF). Forty-two patients were randomly divided into two groups to receive either AVG 150 mg or harmonized placebo capsules twice a day for 8 weeks. The patients were evaluated before and after the intervention using the Minnesota Living with Heart Failure Questionnaire (MLHFQ), New York Heart Association (NYHA) functional class, six-minute walk test (6MWT), Insomnia Severity Index (ISI), Pittsburgh Sleep Quality Index (PSQI) and STOP-BANG questionnaires. Post-intervention, AVG group indicated a significant reduction in the total score of MLHFQ (p < 0.001). The changes in MLHFQ and NYHA class were statistically significant after taking medication (p < 0.001 and p = 0.004, respectively). The change of 6MWT in the AVG group was more advanced; however, it was not statistically significant (p = 0.353). Moreover, in the AVG group, the severity of insomnia and obstructive sleep apnea decreased (p < 0.001, p = 0.01 respectively) and the sleep quality improved as well (p < 0.001). There were significantly fewer adverse events reported in the AVG group (p = 0.047). Therefore, AVG combined with standard medical therapy could provide more clinical benefits for patients with systolic HF.


Asunto(s)
Aloe , Insuficiencia Cardíaca Sistólica , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Calidad de Vida , Insuficiencia Cardíaca Sistólica/tratamiento farmacológico , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Preparaciones de Plantas , Método Doble Ciego , Resultado del Tratamiento
20.
Phytother Res ; 37(7): 2979-2994, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36866539

RESUMEN

Aloe-emodin (AE) has been shown to inhibit the proliferation of several cancer cell lines, including human nasopharyngeal carcinoma (NPC) cell lines. In this study, we confirmed that AE inhibited malignant biological behaviors, including cell viability, abnormal proliferation, apoptosis, and migration of NPC cells. Western blotting analysis revealed that AE upregulated the expression of DUSP1, an endogenous inhibitor of multiple cancer-associated signaling pathways, resulting in blockage of the extracellular signal-regulated kinase (ERK)-1/2, protein kinase B (AKT), and p38-mitogen activated protein kinase(p38-MAPK) signaling pathways in NPC cell lines. Moreover, the selective inhibitor of DUSP1, BCI-hydrochloride, partially reversed the AE-induced cytotoxicity and blocked the aforementioned signaling pathways in NPC cells. In addition, the binding between AE and DUSP1 was predicted via molecular docking analysis using AutoDock-Vina software and further verified via a microscale thermophoresis assay. The binding amino acid residues were adjacent to the predicted ubiquitination site (Lys192) of DUSP1. Immunoprecipitation with the ubiquitin antibody, ubiquitinated DUSP1 was shown to be upregulated by AE. Our findings revealed that AE can stabilize DUSP1 by blocking its ubiquitin-proteasome-mediated degradation and proposed an underlying mechanism by which AE-upregulated DUSP1 may potentially target multiple pathways in NPC cells.


Asunto(s)
Aloe , Emodina , Neoplasias Nasofaríngeas , Humanos , Emodina/farmacología , Carcinoma Nasofaríngeo , Ubiquitina , Simulación del Acoplamiento Molecular , Transducción de Señal , Apoptosis , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Neoplasias Nasofaríngeas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Fosfatasa 1 de Especificidad Dual/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda