Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
BMC Plant Biol ; 24(1): 527, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38858674

RESUMEN

BACKGROUND: Angelica Gigas (Purple parsnip) is an important medicinal plant that is cultivated and utilized in Korea, Japan, and China. It contains bioactive substances especially coumarins with anti-inflammatory, anti-platelet aggregation, anti-cancer, anti-diabetic, antimicrobial, anti-obesity, anti-oxidant, immunomodulatory, and neuroprotective properties. This medicinal crop can be genetically improved, and the metabolites can be obtained by embryonic stem cells. In this context, we established the protoplast-to-plant regeneration methodology in Angelica gigas. RESULTS: In the present investigation, we isolated the protoplast from the embryogenic callus by applying methods that we have developed earlier and established protoplast cultures using Murashige and Skoog (MS) liquid medium and by embedding the protoplast in thin alginate layer (TAL) methods. We supplemented the culture medium with growth regulators namely 2,4-dichlorophenoxyaceticacid (2,4-D, 0, 0.75, 1.5 mg L- 1), kinetin (KN, 0, 0.5, and 1.0 mg L- 1) and phytosulfokine (PSK, 0, 50, 100 nM) to induce protoplast division, microcolony formation, and embryogenic callus regeneration. We applied central composite design (CCD) and response surface methodology (RSM) for the optimization of 2,4-D, KN, and PSK levels during protoplast division, micro-callus formation, and induction of embryogenic callus stages. The results revealed that 0.04 mg L- 1 2,4-D + 0.5 mg L- 1 KN + 2 nM PSK, 0.5 mg L- 1 2,4-D + 0.9 mg L- 1 KN and 90 nM PSK, and 1.5 mg L- 1 2,4-D and 1 mg L- 1 KN were optimum for protoplast division, micro-callus formation and induction embryogenic callus. MS basal semi-solid medium without growth regulators was good for the development of embryos and plant regeneration. CONCLUSIONS: This study demonstrated successful protoplast culture, protoplast division, micro-callus formation, induction embryogenic callus, somatic embryogenesis, and plant regeneration in A. gigas. The methodologies developed here are quite useful for the genetic improvement of this important medicinal plant.


Asunto(s)
Angelica , Reguladores del Crecimiento de las Plantas , Técnicas de Embriogénesis Somática de Plantas , Protoplastos , Angelica/embriología , Reguladores del Crecimiento de las Plantas/farmacología , Técnicas de Embriogénesis Somática de Plantas/métodos , Protoplastos/efectos de los fármacos , División Celular/efectos de los fármacos
2.
Artículo en Inglés | MEDLINE | ID: mdl-38625720

RESUMEN

Phytopathogenic bacteria (MAFF 302110T and MAFF 302107) were isolated from lesions on Japanese angelica trees affected by bacterial soft rot in Yamanashi Prefecture, Japan. The strains were Gram-reaction-negative, facultatively anaerobic, motile with peritrichous flagella, rod-shaped, and non-spore-forming. The genomic DNA G+C content was 51.1 mol % and the predominant cellular fatty acids included summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0, summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 2 (comprising any combination of C12 : 0 aldehyde, an unknown fatty acid with an equivalent chain length of 10.928, C16 : 1 iso I, and C14 : 0 3OH), and C12 : 0. Phylogenetic analyses based on 16S rRNA and gyrB gene sequences, along with phylogenomic analysis utilizing whole-genome sequences, consistently placed these strains within the genus Pectobacterium. However, their phylogenetic positions did not align with any known species within the genus. Comparative studies involving average nucleotide identity and digital DNA-DNA hybridization with the closely related species indicated values below the thresholds employed for the prokaryotic species delineation (95-96 % and 70 %, respectively), with the highest values observed for Pectobacterium polonicum DPMP315T (92.10 and 47.1 %, respectively). Phenotypic characteristics, cellular fatty acid composition, and a repertoire of secretion systems could differentiate the strains from their closest relatives. The phenotypic, chemotaxonomic, and genotypic data obtained in this study show that MAFF 302110T/MAFF 302107 represent a novel species of the genus Pectobacterium, for which we propose the name Pectobacterium araliae sp. nov., designating MAFF 302110T (=ICMP 25161T) as the type strain.


Asunto(s)
Angelica , Pectobacterium , Japón , Filogenia , ARN Ribosómico 16S/genética , Composición de Base , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Bacterias
3.
Chem Pharm Bull (Tokyo) ; 72(5): 498-506, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38735699

RESUMEN

Using (S)-decursinol isolated from root of Angelica gigas Nakai (AGN), we semi-synthesized and evaluated a series of both enantiomerically pure decursin derivatives for their antiproliferative activities against A549 human lung cancer cells. All synthesized compounds showed a broad spectrum of inhibitory activities against the growth of A549 cells. Especially, compound (S)-2d with (E)-(furan-3-yl)acryloyl group showed the most potent activity (IC50: 14.03 µM) against A549 cancer cells as compared with the reference compound, decursin (IC50: 43.55 µM) and its enantiomer, (R)-2d (IC50: 151.59 µM). Western blotting assays indicated that (S)-2d more strongly inhibited Janus kinase 1 (JAK1) and signal transducer and activator of transcription activation 3 (STAT3) phosphorylation than decursin in a dose-dependent manner, while having no effect on CXCR7 overexpression and total STAT3 level. In addition, (S)-2d induced cell cycle arrest at G1 phase and subsequent apoptotic cell death in A549 cancer cells. Our combined analysis of molecular docking studies and biological data suggests that the inhibition of JAK1 with (S)-2d resulted in loss of STAT3 phosphorylation and inhibition of cell growth in A549 cancer cells. These overall results strongly suggest that (S)-2d (MRC-D-004) as a novel JAK1 inhibitor may have therapeutic potential in the treatment of A549 human lung cancers by targeting the JAK1/STAT3 signaling pathway.


Asunto(s)
Apoptosis , Benzopiranos , Butiratos , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Factor de Transcripción STAT3 , Humanos , Proliferación Celular/efectos de los fármacos , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo , Benzopiranos/farmacología , Benzopiranos/química , Benzopiranos/síntesis química , Butiratos/farmacología , Butiratos/química , Butiratos/síntesis química , Apoptosis/efectos de los fármacos , Células A549 , Estereoisomerismo , Relación Dosis-Respuesta a Droga , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Estructura-Actividad , Janus Quinasa 1/antagonistas & inhibidores , Janus Quinasa 1/metabolismo , Estructura Molecular , Angelica/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/síntesis química , Antineoplásicos Fitogénicos/química
4.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39063240

RESUMEN

Angelica dahurica var. formosana (ADF), which belongs to the Umbelliferae family, is one of the original plants of herbal raw material Angelicae Dahuricae Radix. ADF roots represent an enormous biomass resource convertible for disease treatment and bioproducts. But, early bolting of ADF resulted in lignification and a decrease in the coumarin content in the root, and roots lignification restricts its coumarin for commercial utility. Although there have been attempts to regulate the synthesis ratio of lignin and coumarin through biotechnology to increase the coumarin content in ADF and further enhance its commercial value, optimizing the biosynthesis of lignin and coumarin remains challenging. Based on gene expression analysis and phylogenetic tree profiling, AdNAC20 as the target for genetic engineering of lignin and coumarin biosynthesis in ADF was selected in this study. Early-bolting ADF had significantly greater degrees of root lignification and lower coumarin contents than that of the normal plants. In this study, overexpression of AdNAC20 gene plants were created using transgenic technology, while independent homozygous transgenic lines with precise site mutation of AdNAC20 were created using CRISPR/Cas9 technology. The overexpressing transgenic ADF plants showed a 9.28% decrease in total coumarin content and a significant 12.28% increase in lignin content, while knockout mutant plants showed a 16.3% increase in total coumarin content and a 33.48% decrease in lignin content. Furthermore, 29,671 differentially expressed genes (DEGs) were obtained by comparative transcriptomics of OE-NAC20, KO-NAC20, and WT of ADF. A schematic diagram of the gene network interacting with AdNAC20 during the early-bolting process of ADF was constructed by DEG analysis. AdNAC20 was predicted to directly regulate the transcription of several genes with SNBE-like motifs in their promoter, such as MYB46, C3H, and CCoAOMT. In this study, AdNAC20 was shown to play a dual pathway function that positively enhanced lignin formation but negatively controlled coumarin formation. And the heterologous expression of the AdNAC20 gene at Arabidopsis thaliana proved that the AdNAC20 gene also plays an important role in the process of bolting and flowering.


Asunto(s)
Angelica , Cumarinas , Regulación de la Expresión Génica de las Plantas , Lignina , Raíces de Plantas , Lignina/biosíntesis , Cumarinas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Angelica/genética , Angelica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Filogenia
5.
Molecules ; 29(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38998937

RESUMEN

Statins are cholesterol-lowering drugs with a mechanism of inhibiting 3-hydroxy-3-methylglutaryl-CoA reductase, but long-term use can cause side effects. An example of a plant capable of reducing cholesterol levels is Angelica keiskei (ashitaba). Therefore, this study aimed to obtain suitable compounds with inhibitory activity against the HMG-CoA reductase enzyme from ashitaba through in silico tests. The experiment began with screening and pharmacophore modeling, followed by molecular docking on ashitaba's compounds, statins groups, and the native ligand was (3R,5R)-7-[4-(benzyl carbamoyl)-2-(4-fluorophenyl)-5-(1-methylethyl)-1H-imidazole-1-yl]-3,5-dihydroxyheptanoic acid (4HI). Based on the results of the molecular docking simulations, 15 hit compounds had a small binding energy (ΔG). Pitavastatin, as the comparator drug (ΔG = -8.24 kcal/mol; Ki = 2.11 µM), had a lower ΔG and inhibition constant (Ki) than the native ligand 4HI (ΔG = -7.84 kcal/mol; Ki = 7.96µM). From ashitaba's compounds, it was found that 4'-O-geranylnaringenin, luteolin, isobavachalcone, dorsmannin A, and 3'-carboxymethyl-4,2'-dihydroxy-4'-methoxychalcone have low ΔG of below -6 kcal/mol. The lowest ΔG value was found in 3'-carboxymethyl-4,2'-dihydroxy-4'-methoxy chalcone with a ΔG of -6.67 kcal/mol and Ki value of 16.66 µM, which was lower than the ΔG value of the other comparator drugs, atorvastatin (ΔG = -5.49 kcal/mol; Ki = 1148.17 µM) and simvastatin (ΔG = -6.50 kcal/mol; Ki = 22.34 µM). This compound also binds to the important amino acid residues, including ASN755D, ASP690C, GLU559D, LYS735D, LYS691C, and SER684C, through hydrogen bonds. Based on the results, the compound effectively binds to six important amino acids with good binding affinity and only requires a small concentration to reduce half of the enzyme activity.


Asunto(s)
Angelica , Hidroximetilglutaril-CoA Reductasas , Simulación del Acoplamiento Molecular , Angelica/química , Hidroximetilglutaril-CoA Reductasas/metabolismo , Hidroximetilglutaril-CoA Reductasas/química , Inhibidores de Hidroximetilglutaril-CoA Reductasas/química , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Metabolismo Secundario , Unión Proteica , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ligandos , Farmacóforo
6.
Plant Foods Hum Nutr ; 79(2): 468-473, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38668914

RESUMEN

The objective of our study was to analyse the extracts from six medicinal herb roots (marshmallow, dandelion, liquorice, angelica, burdock, and comfrey) in terms of antioxidant capacity (ABTS, DPPH) and inhibition of advanced glycation end product (AGEs) formation. The quantification of phenolic acids and flavonoids was analysed using the UHPLC-DAD-MS method. Fifteen polyphenolic compounds were detected in the studied herbs. The higher number of polyphenols were found in marshmallows (ten polyphenols), while the lowest was in comfrey (five compounds). Liquorice root revealed the highest individual phenolic concentration (382 µg/g dm) with the higher contribution of kaempferol-3-O-rutinoside. Comfrey root extract was characterised by the most abundant TPC (Total Phenolic Content) value (29.79 mg GAE/ g dm). Burdock and comfrey showed the strongest anti-AGE activity studies with the BDA-GLU model. Burdock root was also characterised by the highest anti-AGE activity in the BSA-MGO model. The highest antioxidant capacity was determined by ABTS (72.12 µmol TE/g dw) and DPPH (143.01 µmol TE/g dw) assays for comfrey extract. The p-coumaric acid content was significantly correlated with anti-AGE activity determined by the BSA-MGO model. This research sheds new light on the bioactivity of root herbs, explaining the role of p-coumaric acid in preventing diabetes.


Asunto(s)
Antioxidantes , Flavonoides , Productos Finales de Glicación Avanzada , Extractos Vegetales , Raíces de Plantas , Plantas Medicinales , Polifenoles , Antioxidantes/análisis , Antioxidantes/farmacología , Polifenoles/análisis , Polifenoles/farmacología , Raíces de Plantas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/análisis , Plantas Medicinales/química , Flavonoides/análisis , Flavonoides/farmacología , Angelica/química , Glycyrrhiza/química , Arctium/química , Propionatos , Ácidos Cumáricos/análisis , Ácidos Cumáricos/farmacología , Hidroxibenzoatos/análisis , Cromatografía Líquida de Alta Presión
7.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38139216

RESUMEN

(1) To examine the potential mechanism of the Asarum-Angelica drug pair against periodontitis and provide an experimental basis for the treatment of periodontitis with herbal medicine. (2) The core components and core targets of the Asarum-Angelica drug pair in the treatment of periodontitis were detected according to network pharmacology methods. Finally, the effect of the Asarum-Angelica drug pair on osteogenic differentiation was observed in mouse embryonic osteoblast precursor cells. (3) According to the results of network pharmacology, there are 10 potential active ingredients in the Asarum-Angelica drug pair, and 44 potential targets were obtained by mapping the targets with periodontitis treatment. Ten potential active ingredients, such as kaempferol and ß-sitosterol, may play a role in treating periodontitis. Cell experiments showed that the Asarum-Angelica drug pair can effectively promote the expression of osteoblast markers alkaline phosphatase (ALP), Runt-related Transcription Factor 2 (RUNX2), and BCL2 mRNA and protein in an inflammatory environment (p < 0.05). (4) Network pharmacology effectively analyzed the molecular mechanism of Asarum-Angelica in the treatment of periodontitis, and the Asarum-Angelica drug pair can promote the differentiation of osteoblasts.


Asunto(s)
Angelica , Asarum , Medicamentos Herbarios Chinos , Periodontitis , Animales , Ratones , Farmacología en Red , Osteogénesis , Periodontitis/tratamiento farmacológico , Simulación del Acoplamiento Molecular
8.
Medicina (Kaunas) ; 59(12)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38138169

RESUMEN

Background and Objectives: In spite of the oral environment being healing-prone, its dynamic changes may affect wound healing. The purpose of this study was to assess the oral wound healing effect of Angelica gigas Nakai (AG) prepared by hot-melt extrusion. Materials and Methods: Human gingival fibroblast (HGF) cells were treated with AG or AG via hot-melt extrusion (AGH) for 24 h to determine the optimal concentration. For evaluating the anti-inflammatory effect of AG and AGH, a nitric oxide assay was performed under lipopolysaccharide (LPS) stimulation. The wound-healing effects of AG and AGH were evaluated using cell proliferation/migration assays and wound-healing marker expression through qRT-PCR. Results: Both AG and AGH showed no cytotoxicity on HGH cells. Regarding nitric oxide production, AGH significantly decreased LPS-induced nitric oxide production (p < 0.05). AGH showed a significantly positive result in the cell proliferation/cell migration assay compared with that in AG and the control. Regarding wound healing marker expression, AGH showed significantly greater VEGF and COL1α1 expression levels than those in the others (p < 0.05), whereas α-SMA expression was significantly different among the groups. Conclusions: Within the limits of this study, AGH accelerated oral wound healing in vitro.


Asunto(s)
Angelica , Humanos , Tecnología de Extrusión de Fusión en Caliente , Óxido Nítrico , Lipopolisacáridos/farmacología , Cicatrización de Heridas/fisiología
9.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5172-5180, 2023 Oct.
Artículo en Zh | MEDLINE | ID: mdl-38114107

RESUMEN

Excessive application of chemical fertilizer has caused many problems in Angelica dahurica var. formosana planting, such as yield decline and quality degradation. In order to promote the green cultivation mode of A. dahurica var. formosana and explore rhizosphere fungus resources, the rhizosphere fungi with nitrogen fixation, phosphorus solubilization, potassium solubilization, iron-producing carrier, and IAA-producing properties were isolated and screened in the rhizosphere of A. dahurica var. formosana from the genuine and non-genuine areas, respectively. The strains were identified comprehensively in light of the morphological characteristics and ITS rDNA sequences, and the growth-promoting effect of the screened strains was verified by pot experiment. The results showed that 37 strains of growth-promoting fungi were isolated and screened from the rhizosphere of A. dahurica var. formosana, mostly belonging to Fusarium. The cultured rhizosphere growth-promoting fungi of A. dahurica var. formosana were more abundant and diverse in the genuine producing areas than in the non-genuine producing areas. Among all strains, Aspergillus niger ZJ-17 had the strongest growth promotion potential. Under the condition of no fertilization outdoors, ZJ-17 inoculation significantly promoted the growth, yield, and accumulation of effective components of A. dahurica var. formosana planted in the soil of genuine and non-genuine producing areas, with yield increases of 73.59% and 37.84%, respectively. To a certain extent, it alleviated the restriction without additional fertilization on the growth of A. dahurica var. formosana. Therefore, A. niger ZJ-17 has great application prospects in increasing yield and quality of A. dahurica var. formosana and reducing fertilizer application and can be actually applied in promoting the growth of A. dahurica var. formosana and producing biofertilizer.


Asunto(s)
Angelica , Fertilizantes , Rizosfera , Angelica/química , Hongos/genética , Fósforo
10.
Genes (Basel) ; 15(1)2024 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-38254968

RESUMEN

In traditional Chinese medicine, Angelica dahurica is a valuable herb with numerous therapeutic applications for a range of ailments. There have not yet been any articles on the methodical assessment and choice of the best reference genes for A. dahurica gene expression studies. Real-time quantitative PCR (RT-qPCR) is widely employed as the predominant method for investigating gene expression. In order to ensure the precise determination of target gene expression outcomes in RT-qPCR analysis, it is imperative to employ stable reference genes. In this study, a total of 11 candidate reference genes including SAND family protein (SAND), polypyrimidine tract-binding protein (PTBP), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin (ACT), TIP41-like protein (TIP41), cyclophilin 2 (CYP2), elongation factor 1 α (EF1α), ubiquitin-protein ligase 9 (UBC9), tubulin ß-6 (TUB6), thioredoxin-like protein YLS8 (YLS8), and tubulin-α (TUBA) were selected from the transcriptome of A. dahurica. Subsequently, three statistical algorithms (geNorm, NormFinder, and BestKeeper) were employed to assess the stability of their expression patterns across seven distinct stimulus treatments. The outcomes obtained from these analyses were subsequently amalgamated into a comprehensive ranking using RefFinder. Additionally, one target gene, phenylalanine ammonia-lyase (PAL), was used to confirm the effectiveness of the selected reference genes. According to the findings of this study, the two most stable reference genes for normalizing the expression of genes in A. dahurica are TIP41 and UBC9. Overall, our research has determined the appropriate reference genes for RT-qPCR in A. dahurica and provides a crucial foundation for gene screening and identifying genes associated with the biosynthesis of active ingredients in A. dahurica.


Asunto(s)
Angelica , Angelica/genética , Tubulina (Proteína) , Actinas , Reacción en Cadena en Tiempo Real de la Polimerasa , Estrés Fisiológico
11.
J Agric Food Chem ; 72(13): 6964-6978, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38525888

RESUMEN

Microbiomes are the most important members involved in the regulation of soil nitrogen metabolism. Beneficial interactions between plants and microbiomes contribute to improving the nitrogen utilization efficiency. In this study, we investigated the Apiaceae medicinal plant Angelica dahurica var. formosana. We found that under a low-nitrogen treatment, the abundance of carbon metabolites in the rhizosphere secretions of A. dahurica var. formosana significantly increased, thereby promoting the ratio of C to N in rhizosphere and nonrhizosphere soils, increasing carbon sequestration, and shaping the microbial community composition, thus promoting a higher yield and furanocoumarin synthesis. Confirmation through the construction of a synthetic microbial community and feedback experiments indicated that beneficial plant growth-promoting rhizobacteria play a crucial role in improving nitrogen utilization efficiency and selectively regulating the synthesis of target furanocoumarins under low nitrogen conditions. These findings may contribute additional theoretical evidence for understanding the mechanisms of interaction between medicinal plants and rhizosphere microorganisms.


Asunto(s)
Angelica , Apiaceae , Furocumarinas , Plantas Medicinales , Desarrollo de la Planta , Suelo , Nitrógeno , Raíces de Plantas , Rizosfera , Microbiología del Suelo
12.
J Nat Med ; 78(3): 792-798, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38427209

RESUMEN

Crude drug Angelicae acutilobae radix is one of the most important crude drugs in Japanese traditional medicine and is used mainly for the treatment of gynecological disorders. In the listing in the Japanese Pharmacopoeia XVIII, Angelicae acutilobae radix is defined as the root of Angelica acutiloba (Apiaceae), which has long been produced on an industrial scale in Japan. With the aging of farmers and depopulation of production areas, the domestic supply has recently declined and the majority of the supply is now imported from China. Due to having only slightly different morphological and chemical characteristics for the Apiaceae roots used to produce dried roots for Chinese medicines, the plant species originating the crude drug Apiaceae roots may be incorrectly identified. In particular, Angelicae sinensis radix, which is widely used in China, and Angelicae acutilobae radix are difficult to accurately identify by morphology and chemical profiles. Thus, in order to differentiate among Angelicae acutilobae radix and other radixes originated from Chinese medicinal Apiaceae plants, we established DNA markers. Using DNA sequences for the chloroplast psbA-trnH intergenic spacer and nuclear internal transcribed spacer regions, Angelicae acutilobae radix and other Chinese Apiaceae roots, including Angelicae sinensis radix, can be definitively identified.


Asunto(s)
Angelica sinensis , Angelica , Código de Barras del ADN Taxonómico , Raíces de Plantas , Angelica/genética , Angelica/química , Angelica/clasificación , Angelica sinensis/genética , Raíces de Plantas/genética , Apiaceae/genética , Apiaceae/clasificación , ADN de Plantas/genética , Plantas Medicinales/genética , Plantas Medicinales/clasificación , Medicamentos Herbarios Chinos/química , Filogenia , China
13.
Food Res Int ; 175: 113639, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38129016

RESUMEN

This study explored the suppressive activity of Angelica dahurica (AD), AD polysaccharides, and imperatorin on free and bound heterocyclic amine (HA) formation in roast beef patties and release profiles of bound HAs during in vitro digestion. The suppressive effects and potential mechanisms associated with free radical quenching were explored using UPLC-MS/MS, multivariate statistical analysis, and electron paramagnetic resonance (EPR). AD (0.5%, 1.0%, and 1.5%) and imperatorin (0.005%, 0.010%, and 0.015%) showed a dose-dependent inhibition for both free and bound HAs, with AD polysaccharides showing a slight inhibitory capacity. The maximum inhibition of free and bound HAs was 36.31% (1.5% AD) and 35.68% (0.015% imperatorin). The EPR results demonstrated that alkyl radicals and 1O2 were the pivotal free radicals for HAs. Furthermore, AD and imperatorin dose-dependently decreased the level of these radicals. Intriguingly, after in vitro digestion, only AD polysaccharides significantly inhibited the release of bound HAs, with imperatorin even facilitating the release process. In this study, the capacity of the AD polysaccharide to suppress the release of bound HAs and the ability of AD and imperatorin to inhibit free and bound HAs in beef patties were identified for the first time.


Asunto(s)
Angelica , Animales , Bovinos , Cromatografía Liquida , Aminas , Espectrometría de Masas en Tándem/métodos , Digestión
14.
Redox Rep ; 29(1): 2305036, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38390941

RESUMEN

OBJECTIVE: Angelica keiskei is a medicinal and edible plant that has been reported to possess potent antioxidant properties in several in vitro models, but its effectiveness on naturally aging organisms is still lacking. This study explores the antioxidant and health-promoting effects of Angelica keiskei in naturally aging mice. METHODS: We treated 48-week-old mice with Angelica keiskei water extract (AKWE) 30 days, and measured indicators related to aging and antioxidants. In addition, we conducted network pharmacology analysis, component-target molecular docking, real-time PCR, and MTS assays to investigate relevant factors. RESULTS: The results indicated that administration of AKWE to mice led to decrease blood glucose levels, improve muscle fiber structure, muscle strength, gait stability, and increase levels of glutathione and superoxide dismutase in serum. Additionally, it decreased pigmentation of the heart tissues. Angelica keiskei combats oxidative stress by regulating multiple redox signaling pathways, and its ingredients Coumarin and Flavonoids have the potential to bind to SIRT3 and SIRT5. CONCLUSIONS: Our findings indicated the potential of Angelica keiskei as a safe and effective dietary supplement to combat aging and revealed the broad prospects of medicinal and edible plants for addressing aging and age-related chronic diseases.


Asunto(s)
Angelica , Antioxidantes , Ratones , Animales , Angelica/química , Simulación del Acoplamiento Molecular , Suplementos Dietéticos , Estrés Oxidativo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química
15.
Phytomedicine ; 130: 155760, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38797029

RESUMEN

BACKGROUND: The Xin-yi-san herbal decoction (XYS) is commonly used to treat patients with allergic rhinitis in Taiwan. Theophylline is primarily oxidized with high affinity by human cytochrome P450 (CYP)1A2, and has a narrow therapeutic index. PURPOSE: This study aimed to investigate the inhibition of human CYP1A2-catalyzed theophylline oxidation (THO) by XYS and its adverse effects in patients. METHODS: Human CYPs were studied in recombinant enzyme systems. The influence of concurrent XYS usage in theophylline-treated patients was retrospectively analyzed. RESULTS: Among the major human hepatic and respiratory CYPs, XYS inhibitors preferentially inhibited CYP1A2 activity, which determined the elimination and side effects of theophylline. Among the herbal components of XYS decoction, Angelicae Dahuricae Radix contained potent THO inhibitors. Furanocoumarin imperatorin was abundant in XYS and Angelicae Dahuricae Radix decoctions, and non-competitively inhibited THO activity with Ki values of 77‒84 nM, higher than those (20‒52 nM) of fluvoxamine, which clinically interacted with theophylline. Compared with imperatorin, the intestinal bacterial metabolite xanthotoxol caused weaker THO inhibition. Consistent with the potency of the inhibitory effects, the docking analysis generated Gold fitness values in the order-fluvoxamine > imperatorin > xanthotoxol. During 2017‒2018, 2.6 % of 201,093 theophylline users consumed XYS. After inverse probability weighting, XYS users had a higher occurrence of undesired effects than non-XYS users; in particular, there was an approximately two-fold higher occurrence of headaches (odds ratio (OR), 2.14; 95 % confidence interval (CI), 1.99‒2.30; p < 0.001) and tachycardia (OR, 1.83; 95 % CI, 1.21‒2.77; p < 0.05). The incidence of irregular heartbeats increased (OR, 1.36; 95 % CI, 1.07‒1.72; p < 0.05) only in the theophylline users who took a high cumulative dose (≥ 24 g) of XYS. However, the mortality in theophylline users concurrently taking XYS was lower than that in non-XYS users (OR, 0.24; 95 % CI, 0.14‒0.40; p < 0.001). CONCLUSION: XYS contains human CYP1A2 inhibitors, and undesirable effects were observed in patients receiving both theophylline and XYS. Further human studies are essential to reduce mortality and to adjust the dosage of theophylline in XYS users.


Asunto(s)
Angelica , Inhibidores del Citocromo P-450 CYP1A2 , Citocromo P-450 CYP1A2 , Medicamentos Herbarios Chinos , Furocumarinas , Teofilina , Teofilina/farmacología , Humanos , Medicamentos Herbarios Chinos/farmacología , Citocromo P-450 CYP1A2/metabolismo , Inhibidores del Citocromo P-450 CYP1A2/farmacología , Angelica/química , Furocumarinas/farmacología , Masculino , Interacciones de Hierba-Droga , Estudios Retrospectivos , Femenino , Taiwán , Persona de Mediana Edad , Adulto , Oxidación-Reducción , Rinitis Alérgica/tratamiento farmacológico , Rinitis Alérgica/inducido químicamente
16.
Nutrients ; 16(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125316

RESUMEN

Osteoarthritis (OA), characterized by chronic pain and joint degradation, is a progressive joint disease primarily induced by age-related systemic inflammation. Angelica gigas Nakai (AG), a medicinal plant widely used in East Asia, exhibits promising results for such conditions. This study aimed to evaluate the potential of AG as a drug candidate for modulating the multifaceted pathology of OA based on its anti-inflammatory properties. We evaluated the efficacy of AG in pain relief, functional improvement, and cartilage erosion delay using monosodium iodoacetate-induced OA rats and acetic acid-induced writhing mice, along with its anti-inflammatory effects on multiple targets in the serum and cartilage of in vivo models and lipopolysaccharide-stimulated RAW 264.7 cells. In vivo experiments demonstrated significant analgesic and chondroprotective effects of AG, along with functional recovery, in model animals compared with the active controls. AG dose-dependently modulated inflammatory OA pathology-related targets, including interleukin-1ß, tumor necrosis factor-α, matrix metalloproteinase-13, and cyclooxygenase-2, both in vitro and in vivo. In conclusion, AG could be a potential drug candidate for modulating the multifaceted pathology of OA. Nevertheless, further comprehensive investigations, involving a broader range of compounds, pathologies, and mechanisms, are warranted to validate these findings.


Asunto(s)
Angelica , Antiinflamatorios , Osteoartritis , Extractos Vegetales , Animales , Angelica/química , Antiinflamatorios/farmacología , Ratones , Osteoartritis/tratamiento farmacológico , Masculino , Extractos Vegetales/farmacología , Células RAW 264.7 , Ratas , Analgésicos/farmacología , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Dolor/tratamiento farmacológico , Ciclooxigenasa 2/metabolismo
17.
Int J Biol Macromol ; 263(Pt 2): 130320, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412933

RESUMEN

Angelica gigas (A. gigas) is traditional medicinal herb that mainly exists in Korea and northeastern China. There have been relatively few studies conducted thus far on its polysaccharides and their bioactivities. We purified and described a novel water-soluble polysaccharide derived from A. gigas and investigated its immunoenhancing properties. The basic components of crude and purified polysaccharides (F1 and F2) were total sugar (41.07% - 70.55%), protein (1.12-10.33%), sulfate (2.9-5.5%), and uronic acids (0.5-31.05%) in total content. Our results demonstrated that the crude and fractions' molecular weights (Mw) varied from 42.2 to 285.2 × 103 g/mol. As the most effective polysaccharide, F2 significantly stimulated RAW264.7 cells to release nitric oxide (NO) and express several cytokines. Furthermore, F2 increased the expression of tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-É£), natural killer cytotoxicity receptors (NKp44), and granzyme-B in NK-92 cells and enhanced the cytotoxicity against HCT-116 cells. In our experiments, we found that F2 stimulated RAW264.7 cells and NK-92 cells via MAPK and NF-κB pathways. The monosaccharide and methylation analysis of the high immunostimulant F2 polysaccharide findings revealed that the polysaccharide was primarily composed of 1 â†’ 4, 1 â†’ 6, 1 â†’ 3, 6, 1 â†’ 3 and 1 â†’ 3, 4, 6 galactopyranose residues, 1 â†’ 3 arabinofuranose residues, 1 â†’ 4 glucopyranose residues. These results demonstrated that the F2 polysaccharide of A. gigas which possesses potential immunostimulatory attributes, could be used to create a novel functional food.


Asunto(s)
Angelica , FN-kappa B , Animales , Ratones , Humanos , FN-kappa B/metabolismo , Células HCT116 , Activación de Macrófagos , Células RAW 264.7 , Transducción de Señal , Células Asesinas Naturales/metabolismo , Polisacáridos/química
18.
Int Immunopharmacol ; 133: 112025, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38677093

RESUMEN

Angelica sinensis is a perennial herb widely distributed around the world, and angelica polysaccharide (APS) is a polysaccharide extracted from Angelica sinensis. APS is one of the main active components of Angelica sinensis. A large number of studies have shown that APS has hematopoietic, promoting blood circulation, radiation resistance, lowering blood glucose, enhancing the body immunity and other pharmacological effects in a variety of diseases. However, different extraction methods and extraction sites greatly affect the efficacy of APS. In recent years, with the emerging of new technologies, there are more and more studies on the combined application and structural modification of APS. In order to promote the comprehensive development and in-depth application of APS, this narrative review systematically summarizes the effects of different drying methods and extraction sites on the biological activity of APS, and the application of APS in the treatment of diseases, hoping to provide a scientific basis for the experimental study and clinical application of APS.


Asunto(s)
Angelica sinensis , Polisacáridos , Humanos , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/uso terapéutico , Animales , Angelica sinensis/química , Angelica/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico
19.
J Pharm Pharmacol ; 76(5): 559-566, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38215001

RESUMEN

Imperatorin (IMP) is the main bioactive furanocoumarin of Angelicae dahuricae radix, which is a well-known traditional Chinese medicine. The purpose of this study was to elucidate the role of IMP in promoting absorption and the possible mechanism on the compatible drugs of Angelicae dahuricae radix. The influence of IMP on drugs' intestinal absorption was conducted by the Caco-2 cell model. The mechanism was studied by investigating the transcellular transport mode of IMP and its influence on P-glycoprotein (P-gp)-mediated efflux, protein expression of P-gp and tight junction, and cell membrane potential. The result showed IMP promoted the uptake of osthole, daidzein, ferulic acid, and puerarin and improved the transport of ferulic acid and puerarin in Caco-2 cells. The absorption-promoting mechanism of IMP might involve the reduction of the cell membrane potential, decrease of P-gp-mediated drug efflux and inhibition of the P-gp expression level in the cellular pathway, and the loosening of the tight junction protein by the downregulation of the expression levels of occludin and claudin-1 in the paracellular pathway. This study provides new insights into the understanding of the improved bioavailability of Angelicae dahuricae radix with its compatible drugs.


Asunto(s)
Angelica , Ácidos Cumáricos , Cumarinas , Furocumarinas , Absorción Intestinal , Isoflavonas , Furocumarinas/farmacología , Humanos , Células CACO-2 , Angelica/química , Absorción Intestinal/efectos de los fármacos , Isoflavonas/farmacología , Ácidos Cumáricos/farmacología , Ácidos Cumáricos/farmacocinética , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/farmacocinética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Uniones Estrechas/metabolismo , Uniones Estrechas/efectos de los fármacos , Transporte Biológico , Ocludina/metabolismo , Raíces de Plantas
20.
Colloids Surf B Biointerfaces ; 240: 113993, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38810464

RESUMEN

Development of high-performance joint injection lubricants has become the focus in the field of osteoarthritis treatment. Herein, natural product of angelica essential oil combined with the graphene oxide were prepared to the stable Pickering emulsion as a biological lubricant. The tribological properties of the Pickering emulsion under different friction conditions were studied. The lubricating mechanism was revealed and the biological activities were evaluated. Results showed that the prepared Pickering emulsion displayed superior lubrication property at the Ti6Al4V biological material interface. The maximum friction reduction and anti-wear abilities of the Pickering emulsion were improved by 36% and 50% compared to water, respectively. This was primarily due to the action of the double-layer lubrication films composed of the graphene oxide and angelica essential oil molecules. It was worth noting that the friction reduction effect of the Pickering emulsion at the natural cartilage interface was higher about 19% than that of HA used in clinic for OA commonly. In addition, the Pickering emulsion also displayed antioxidant activity and cell biocompatibility, showing a good clinical application prospect in the future.


Asunto(s)
Angelica , Emulsiones , Lubrificación , Aceites Volátiles , Aceites Volátiles/química , Aceites Volátiles/farmacología , Emulsiones/química , Angelica/química , Productos Biológicos/química , Productos Biológicos/farmacología , Grafito/química , Grafito/farmacología , Lubricantes/química , Lubricantes/farmacología , Humanos , Propiedades de Superficie , Tamaño de la Partícula , Animales , Antioxidantes/química , Antioxidantes/farmacología , Supervivencia Celular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda