Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 326
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768240

RESUMEN

Induced pluripotent stem cells (iPSCs) can differentiate into all types of cells and can be used in livestock for research on biological development, genetic breeding, and in vitro genetic resource conservation. The Bactrian camel is a large domestic animal that inhabits extreme environments and holds value in the treatment of various diseases and the development of the local economy. Therefore, we transferred four mouse genes (Oct4, Sox2, Klf4, and c-Myc) into Bactrian camel fetal fibroblasts (BCFFs) using retroviruses with a large host range to obtain Bactrian camel induced pluripotent stem cells (bciPSCs). They were comprehensively identified based on cell morphology, pluripotency gene and marker expression, chromosome number, transcriptome sequencing, and differentiation potential. The results showed the pluripotency of bciPSCs. However, unlike stem cells of other species, late formation of stem cell clones was observed; moreover, the immunofluorescence of SSEA1, SSEA3, and SSEA4 were positive, and teratoma formation took four months. These findings may be related to the extremely long gestation period and species specificity of Bactrian camels. By mining RNA sequence data, 85 potential unique pluripotent genes of Bactrian camels were predicted, which could be used as candidate genes for the production of bciPSC in the future. Among them, ASF1B, DTL, CDCA5, PROM1, CYTL1, NUP210, Epha3, and SYT13 are more attractive. In conclusion, we generated bciPSCs for the first time and obtained their transcriptome information, expanding the iPSC genetic information database and exploring the applicability of iPSCs in livestock. Our results can provide an experimental basis for Bactrian camel ESC establishment, developmental research, and genetic resource conservation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Ratones , Camelus/genética , Diferenciación Celular/genética , Animales Domésticos/metabolismo , Antígeno Lewis X/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Citocinas/metabolismo
2.
Glycobiology ; 32(9): 791-802, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35648131

RESUMEN

Sialic acids are used as a receptor by several viruses and variations in the linkage type or C-5 modifications affect the binding properties. A species barrier for multiple viruses is present due to α2,3- or α2,6-linked sialic acids. The C-5 position of the sialic acid can be modified to form N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid (Neu5Gc), which acts as a determinant for host susceptibility for pathogens such as influenza A virus, rotavirus, and transmissible gastroenteritis coronavirus. Neu5Gc is present in most mammals such as pigs and horses but is absent in humans, ferrets, and dogs. However, little is known about C-5 content in wildlife species or how many C-5 modified sialic acids are present on N-linked glycans or glycolipids. Using our previously developed tissue microarray system, we investigated how 2 different lectins specific for Neu5Gc can result in varying detection levels of Neu5Gc glycans. We used these lectins to map Neu5Gc content in wild Suidae, Cervidae, tigers, and European hedgehogs. We show that Neu5Gc content is highly variable among different species. Furthermore, the removal of N-linked glycans reduces the binding of both Neu5Gc lectins while retention of glycolipids by omitting methanol treatment of tissues increases lectin binding. These findings highlight the importance of using multiple Neu5Gc lectins as the rich variety in which Neu5Gc is displayed can hardly be detected by a single lectin.


Asunto(s)
Ácidos Siálicos , Virus , Animales , Animales Domésticos/metabolismo , Perros , Hurones/metabolismo , Glucolípidos , Caballos , Humanos , Lectinas , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos , Polisacáridos , Ácidos Siálicos/metabolismo , Porcinos
3.
Amino Acids ; 54(2): 157-168, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35106634

RESUMEN

For terrestrial farm animals, intact protein sources like soybean meal have been the main ingredients providing the required amino acids (AA) to sustain life. However, in recent years, the availability of hydrolysed protein sources and free AA has led to the use of other forms of AA to feed farm animals. The advent of using these new forms is especially important to reduce the negative environmental impacts of animal production because these new forms allow reducing the dietary crude protein content and provide more digestible materials. However, the form in which dietary AA are provided can have an effect on the dynamics of nutrient availability for protein deposition and tissue growth including the efficiency of nutrient utilization. In this literature review, the use of different forms of AA in animal diets is explored, and their differences in digestion and absorption rates are focused on. These differences affect the postprandial plasma appearance of AA, which can have metabolic consequences, like greater insulin response when free AA or hydrolysates instead of intact proteins are fed, which can have a profound effect on metabolism and growth performance. Nevertheless, the use and application of the different AA forms in animal diets are important to achieve a more sustainable and efficient animal production system in the future, as they allow for a more precise diet formulation and reduced negative environmental impact. It is, therefore, important to differentiate the physiological and metabolic effects of different forms of AA to maximize their nutritional value in animal diets.


Asunto(s)
Aminoácidos , Alimentación Animal , Aminoácidos/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Animales Domésticos/metabolismo , Dieta/veterinaria , Proteínas en la Dieta/metabolismo , Digestión/fisiología , Péptidos/metabolismo , Glycine max
4.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36430615

RESUMEN

Recent studies have clearly shown that vitamin D3 is a crucial regulator of the female reproductive process in humans and animals. Knowledge of the expression of vitamin D3 receptors and related molecules in the female reproductive organs such as ovaries, uterus, oviduct, or placenta under physiological and pathological conditions highlights its contribution to the proper function of the reproductive system in females. Furthermore, vitamin D3 deficiency leads to serious reproductive disturbances and pathologies including ovarian cysts. Although the influence of vitamin D3 on the reproductive processes of humans and rodents has been extensively described, the association between vitamin D3 and female reproductive function in farm animals, birds, and fish has rarely been summarized. In this review, we provide an overview of the role of vitamin D3 in the reproductive system of those animals, with special attention paid to the expression of vitamin D3 receptors and its metabolic molecules. This updated information could be essential for better understanding animal physiology and overcoming the incidence of infertility, which is crucial for optimizing reproductive outcomes in female livestock.


Asunto(s)
Colecalciferol , Genitales Femeninos , Animales , Femenino , Embarazo , Animales Domésticos/crecimiento & desarrollo , Animales Domésticos/metabolismo , Aves/crecimiento & desarrollo , Aves/metabolismo , Colecalciferol/metabolismo , Colecalciferol/farmacología , Genitales Femeninos/efectos de los fármacos , Genitales Femeninos/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D/metabolismo , Vitamina D/farmacología , Deficiencia de Vitamina D/metabolismo , Peces/crecimiento & desarrollo , Peces/metabolismo , Reproducción
5.
Heredity (Edinb) ; 122(2): 195-204, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29789643

RESUMEN

Domesticated animals share a unique set of morphological and behavioral traits, jointly referred to as the domesticated phenotype. Striking similarities amongst a range of unrelated domesticated species suggest that similar regulatory mechanisms may underlie the domesticated phenotype. These include color pattern, growth, reproduction, development and stress response. Although previous studies have focused on the brain to find mechanisms underlying domestication, the potential role of the pituitary gland as a target of domestication is highly overlooked. Here, we study gene expression in the pituitary gland of the domesticated White Leghorn chicken and its wild ancestor, the Red Junglefowl. By overlapping differentially expressed genes with a previously published list of functionally important genes in the pituitary gland, we narrowed down to 34 genes. Amongst them, expression levels of genes with inhibitory function on pigmentation (ASIP), main stimulators of metabolism and sexual maturity (TSHB and DIO2), and a potential inhibitor of broodiness (PRLR), were higher in the domesticated breed. Additionally, expression of 2 key inhibitors of the stress response (NR3C1, CRHR2) was higher in the domesticated breed. We suggest that changes in the transcription of important modulatory genes in the pituitary gland can account not only for domestication of the stress response in domestic chickens, but also for changes in pigmentation, development, and reproduction. Given the pivotal role of the pituitary gland in the regulation of multiple shared domesticated traits, we suggest that similar changes in pituitary transcriptome may contribute to the domesticated phenotype in other species as well.


Asunto(s)
Proteínas Aviares/genética , Pollos/genética , Hipófisis/metabolismo , Animales , Animales Domésticos/clasificación , Animales Domésticos/genética , Animales Domésticos/crecimiento & desarrollo , Animales Domésticos/metabolismo , Proteínas Aviares/metabolismo , Pollos/clasificación , Pollos/crecimiento & desarrollo , Pollos/metabolismo , Domesticación , Femenino , Genotipo , Masculino , Fenotipo , Filogenia , Reproducción
6.
Gen Comp Endocrinol ; 270: 10-17, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30287191

RESUMEN

The hair cortisol concentration (HCC) is assumed to be a retrospective marker of integrated cortisol secretion and stress over longer periods of time. Its quantification is increasingly used in psychoneuroendocrinological studies in humans, but also in animal stress and welfare research. The measurement of HCCs for the assessment of stress offers many considerable benefits for use in domesticated and wild animals, especially due to the easy and minimally invasive sampling procedure and the representation of longer time periods in one sample. This review aims to outline the different fields of application and to assess the applicability and validity of HCC as an indicator for chronic stress or long-term activity of the hypothalamic-pituitary-adrenal axis in wild and domesticated animals. Specific hair characteristics are presented and the advantages and limitations of using HCC are discussed. An overview of findings on the impact of stress- and health-related factors on HCCs and of diverse influencing factors causing variation in hair cortisol levels in different species is given. Recommendations for the use of hair cortisol analysis are proposed and potential fields of future research are pointed out. The studies indicate an effect of age and pregnancy on HCCs, and cortisol incorporation into hair was also found to depend on hair colour, body region, sex and season of year, but these results are less consistent. Furthermore, the results in animals show that a wide array of stressors and pathological conditions alters the cortisol concentrations in hair and that HCC thereby provides a reliable and valid reflection of long-term cortisol secretion in many species. However, more research is necessary to investigate the underlying mechanisms of cortisol incorporation into the hair and to explore the hair growth characteristics in the species of interest. To overcome confounding influences, the use of standardized sampling protocols is strongly advised.


Asunto(s)
Cabello/química , Hidrocortisona/metabolismo , Animales , Animales Domésticos/metabolismo , Estrés Psicológico/metabolismo
7.
Arch Toxicol ; 93(7): 1865-1880, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31025081

RESUMEN

Violative chemical residues in animal-derived food products affect food safety globally and have impact on the trade of international agricultural products. The Food Animal Residue Avoidance Databank program has been developing scientific tools to provide appropriate withdrawal interval (WDI) estimations after extralabel drug use in food animals for the past three decades. One of the tools is physiologically based pharmacokinetic (PBPK) modeling, which is a mechanistic-based approach that can be used to predict tissue residues and WDIs. However, PBPK models are complicated and difficult to use by non-modelers. Therefore, a user-friendly PBPK modeling framework is needed to move this field forward. Flunixin was one of the top five violative drug residues identified in the United States from 2010 to 2016. The objective of this study was to establish a web-based user-friendly framework for the development of new PBPK models for drugs administered to food animals. Specifically, a new PBPK model for both cattle and swine after administration of flunixin meglumine was developed. Population analysis using Monte Carlo simulations was incorporated into the model to predict WDIs following extralabel administration of flunixin meglumine. The population PBPK model was converted to a web-based interactive PBPK (iPBPK) framework to facilitate its application. This iPBPK framework serves as a proof-of-concept for further improvements in the future and it can be applied to develop new models for other drugs in other food animal species, thereby facilitating the application of PBPK modeling in WDI estimation and food safety assessment.


Asunto(s)
Clonixina/análogos & derivados , Bases de Datos Factuales , Residuos de Medicamentos/farmacocinética , Inocuidad de los Alimentos/métodos , Modelos Biológicos , Drogas Veterinarias/farmacocinética , Animales , Animales Domésticos/metabolismo , Clonixina/administración & dosificación , Clonixina/farmacocinética , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Drogas Veterinarias/administración & dosificación
8.
Environ Monit Assess ; 191(3): 132, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30726514

RESUMEN

The paper presents the macroelement (Al, Ca, Cu, Fe, K, Mg, Mn, Na, P, and Zn) and microelement (As, Cd, Co, Cr, Hg, Mo, Ni, Pb, and Sn) contents found in the liver of wild animals (boar and deer) and farm animals (rabbit, chicken, duck, cow, goat, and turkey). Statistically, the differences in element contents between the two groups were not significant (at p = 0.05), with the exception of Fe, K, Mg, Cd, Hg, Mo, and Pb. The liver of farm animals contained more Al, Cu, K, Mg, Na, Cr, and Sn, while the content of the remaining elements was higher in wild animals. An analysis of correlations between element content and age in wild animals (boar) showed that Pb and Al content increases with age, while Na and Cr contents decrease significantly. Comparisons between the test results and the maximum limits allowed by law showed that, in the case of wild animals, the regulatory limits were exceeded in 18% (for Cd and Cu) and 9% (for Hg) of the liver samples analyzed. In the case of farm animals, the limits for micro- and macroelement contents were not exceeded. The hazard index (HI) values for farm animals were lower than for wild animals, with regard to consumption by both children and adults. Based on the HI values calculated, it seems recommendable that consumption of the liver (preferably from farm animals) by children be limited to once weekly. For adults, the liver can be a valuable source of elements such as Zn, Fe, and Cr, which may be an indication for more frequent consumption.


Asunto(s)
Animales Domésticos/metabolismo , Animales Salvajes/metabolismo , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Hígado/química , Oligoelementos/análisis , Adulto , Animales , Niño , Humanos , Polonia , Medición de Riesgo , Estaciones del Año
9.
Yi Chuan ; 40(4): 292-304, 2018 Apr 20.
Artículo en Zh | MEDLINE | ID: mdl-29704375

RESUMEN

Skeletal muscle is an essential tissue to maintain the normal functions of an organism. It is also closely associated with important economic performance, such as carcass weight, of domestic animals. In recent years, studies using high-throughput sequencing techniques have identified numerous long non-coding RNAs (lncRNAs) with myogenic functions involved in regulation of gene expression at multiple levels, including epigenetic, transcriptional and post-transcriptional regulation. These lncRNAs target myogenic factors, which participate in all processes of skeletal muscle development, including proliferation, migration and differentiation of skeletal muscle stem cells, proliferation, differentiation and fusion of myocytes, muscle hypertrophy and conversion of muscle fiber types. In this review, we summarize the functional roles of lncRNAs in regulation of myogenesis in humans and mice, describe the methods for the analysis of lncRNA function, discuss the progress of lncRNA research in domestic animals, and highlight the current problems and challenges in lncRNA research on livestock production. We hope to provide a useful reference for research on lncRNA in domestic animals, thereby further identifying the molecular regulatory mechanisms in skeletal muscle growth and development.


Asunto(s)
Animales Domésticos/genética , Músculo Esquelético/crecimiento & desarrollo , ARN Largo no Codificante/genética , Animales , Animales Domésticos/crecimiento & desarrollo , Animales Domésticos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Músculo Esquelético/metabolismo , ARN Largo no Codificante/metabolismo
10.
J Insect Sci ; 17(5)2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29117380

RESUMEN

The silk of silkworm consists of fibroin fiber coated by sericins. In addition, some nonprotein components were also identified in the sericin fraction. The presence of nonprotein components in the silk has not been well explained. In the present study, methods based on gas chromatography-mass spectrometry were used to identify the metabolites in the cocoon silk from a wild silkworm and two domestic silkworm strains. In total, 45 metabolites were in the cocoon silk, including organic acids, fatty acids, carbohydrates, amino acids, and hydrocarbons. Comparative analyses revealed that 17 metabolites were significant more in the wild silkworm cocoon than in the domestic silkworm cocoon, including three organic acids, three fatty acids, three aldoses, four sugar alcohols, three hydrocarbons, and pyridine. Of them, citric acid in the wild silkworm cocoon is more than 40 times that in the domestic silkworm cocoon, which may have protective value against microbes. The carbohydrate, lipid, and the long-chain hydrocarbons may act as water repellent to make the pupa survive longer in the dry environment. Many metabolites in the cocoon silk may play roles to improve the silk resistance. Lots of nonprotein components were identified in the silk for the first time, providing useful data for understanding the biological function of the cocoon silk.


Asunto(s)
Animales Domésticos/metabolismo , Bombyx/metabolismo , Seda/metabolismo , Animales
11.
Nature ; 464(7290): 881-4, 2010 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-20376147

RESUMEN

Atmospheric concentrations of the greenhouse gas nitrous oxide (N(2)O) have increased significantly since pre-industrial times owing to anthropogenic perturbation of the global nitrogen cycle, with animal production being one of the main contributors. Grasslands cover about 20 per cent of the temperate land surface of the Earth and are widely used as pasture. It has been suggested that high animal stocking rates and the resulting elevated nitrogen input increase N(2)O emissions. Internationally agreed methods to upscale the effect of increased livestock numbers on N(2)O emissions are based directly on per capita nitrogen inputs. However, measurements of grassland N(2)O fluxes are often performed over short time periods, with low time resolution and mostly during the growing season. In consequence, our understanding of the daily and seasonal dynamics of grassland N(2)O fluxes remains limited. Here we report year-round N(2)O flux measurements with high and low temporal resolution at ten steppe grassland sites in Inner Mongolia, China. We show that short-lived pulses of N(2)O emission during spring thaw dominate the annual N(2)O budget at our study sites. The N(2)O emission pulses are highest in ungrazed steppe and decrease with increasing stocking rate, suggesting that grazing decreases rather than increases N(2)O emissions. Our results show that the stimulatory effect of higher stocking rates on nitrogen cycling and, hence, on N(2)O emission is more than offset by the effects of a parallel reduction in microbial biomass, inorganic nitrogen production and wintertime water retention. By neglecting these freeze-thaw interactions, existing approaches may have systematically overestimated N(2)O emissions over the last century for semi-arid, cool temperate grasslands by up to 72 per cent.


Asunto(s)
Crianza de Animales Domésticos , Animales Domésticos/metabolismo , Ecosistema , Óxido Nitroso/análisis , Óxido Nitroso/metabolismo , Microbiología del Suelo , Crianza de Animales Domésticos/métodos , Crianza de Animales Domésticos/estadística & datos numéricos , Animales , Atmósfera/química , Biomasa , China , Clima Desértico , Congelación , Efecto Invernadero , Nitrógeno/metabolismo , Plantas/metabolismo , Poaceae/metabolismo , Estaciones del Año , Nieve , Suelo/análisis , Agua/análisis , Agua/metabolismo
12.
BMC Vet Res ; 12(1): 185, 2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27596044

RESUMEN

BACKGROUND: To optimize antimicrobial dosing in different animal species, pharmacokinetic information is necessary. Due to the plethora of cephalosporin antimicrobials and animal species in which they are used, assessment of pharmacokinetics in all species is unfeasible. In this study we aimed to describe pharmacokinetic data of cephalosporins by reviewing the available literature for food producing and companion animal species. We assessed the accuracy of interspecies extrapolation using allometric scaling techniques to determine pharmacokinetic characteristics of cephalosporins in animal species for which literature data is unavailable. We assessed the accuracy of allometric scaling by comparing the predicted and the published pharmacokinetic value in an animal species/humans not included in the allometric modelling. RESULTS: In general, excretion of cephalosporins takes place mainly through renal mechanisms in the unchanged form and volume of distribution is limited in all animal species. Differences in plasma protein binding capacity and elimination half-life are observed but available information was limited. Using allometric scaling, correlations between body weight (BW) and volume of distribution (Vd) and clearance (Cl) were R (2) > 0.97 and R (2) > 0.95 respectively for ceftazidime, ceftiofur, cefquinome and cefepime but not ceftriaxone. The allometric exponent ranged from 0.80 to 1.31 for Vd and 0.83 to 1.24 for Cl. Correlations on half-life ranged from R(2) 0.07-0.655 (literature) and R(2) 0.102-0.876 (calculated). CONCLUSIONS: Allometric scaling can be applied for interspecies extrapolation of cephalosporin pharmacokinetic parameters Vd and Cl, but not elimination half-life. We hypothesize that the accuracy could be improved by using more refined scaling techniques.


Asunto(s)
Animales Domésticos/sangre , Antibacterianos/farmacocinética , Cefalosporinas/farmacocinética , Modelos Biológicos , Animales , Animales Domésticos/metabolismo , Antibacterianos/sangre , Antibacterianos/metabolismo , Peso Corporal/fisiología , Cefalosporinas/sangre , Cefalosporinas/metabolismo , Humanos , Drogas Veterinarias/sangre , Drogas Veterinarias/metabolismo , Drogas Veterinarias/farmacocinética
13.
Gen Comp Endocrinol ; 238: 78-87, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27401262

RESUMEN

Eicosanoids are signaling lipids known to regulate several physiological processes in the mammalian placenta, including the initiation of parturition. Though all amniotes construct similar extraembryonic membranes during development, the composition and function of eicosanoids in extraembryonic membranes of oviparous reptiles is largely unknown. The majority of effort placed in eicosanoid investigations is typically targeted toward defining the role of specific compounds in disease etiology; however, comprehensive characterization of several pathways in eicosanoid synthesis during development is also needed to better understand the complex role of these lipids in comparative species. To this end, we have examined the chorioallantoic membrane (CAM) of the American alligator (Alligator mississippiensis) and domestic chicken (Gallus gallus) during development. Previously, our lab has demonstrated that the CAM of several oviparous species shared conserved steroidogenic activity, a feature originally attributed to mammalian amniotes. To further explore this, we have developed a liquid chromatography/tandem mass spectrometry method that is used here to quantify multiple eicosanoids in the CAM of two oviparous species at different stages of development. We identified 18 eicosanoids in the alligator CAM; the cyclooxygenase (COX) pathway showed the largest increase from early development to later development in the alligator CAM. Similarly, the chicken CAM had an increase in COX products and COX activity, which supports the LC-MS/MS analyses. Jointly, our findings indicate that the CAM tissue of an oviparous species is capable of eicosanoid synthesis, which expands our knowledge of placental evolution and introduces the possibility of future comparative models of placental function.


Asunto(s)
Caimanes y Cocodrilos/embriología , Caimanes y Cocodrilos/metabolismo , Animales Domésticos/metabolismo , Pollos/metabolismo , Membrana Corioalantoides/metabolismo , Eicosanoides/metabolismo , Desarrollo Embrionario , Animales , Femenino , Embarazo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem , Estados Unidos
14.
Yi Chuan ; 38(12): 1069-1080, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-28034839

RESUMEN

Domesticated animals play an important role in the life of humanity. All these domesticated animals undergo same process, first domesticated from wild animals, then after long time natural and artificial selection, formed various breeds that adapted to the local environment and human needs. In this process, domestication, natural and artificial selection will leave the selection signal in the genome. The research on these selection signals can find functional genes directly, is one of the most important strategies in screening functional genes. The current studies of selection signal have been performed in pigs, chickens, cattle, sheep, goats, dogs and other domestic animals, and found a great deal of functional genes. This paper provided an overview of the types and the detected methods of selection signal, and outlined researches of selection signal in domestic animals, and discussed the key issues in selection signal analysis and its prospects.


Asunto(s)
Animales Domésticos/metabolismo , Selección Genética/genética , Animales , Bovinos , Perros , Ovinos , Porcinos
15.
PLoS Genet ; 8(9): e1002962, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23028369

RESUMEN

Domestication has led to similar changes in morphology and behavior in several animal species, raising the question whether similarities between different domestication events also exist at the molecular level. We used mRNA sequencing to analyze genome-wide gene expression patterns in brain frontal cortex in three pairs of domesticated and wild species (dogs and wolves, pigs and wild boars, and domesticated and wild rabbits). We compared the expression differences with those between domesticated guinea pigs and a distant wild relative (Cavia aperea) as well as between two lines of rats selected for tameness or aggression towards humans. There were few gene expression differences between domesticated and wild dogs, pigs, and rabbits (30-75 genes (less than 1%) of expressed genes were differentially expressed), while guinea pigs and C. aperea differed more strongly. Almost no overlap was found between the genes with differential expression in the different domestication events. In addition, joint analyses of all domesticated and wild samples provided only suggestive evidence for the existence of a small group of genes that changed their expression in a similar fashion in different domesticated species. The most extreme of these shared expression changes include up-regulation in domesticates of SOX6 and PROM1, two modulators of brain development. There was almost no overlap between gene expression in domesticated animals and the tame and aggressive rats. However, two of the genes with the strongest expression differences between the rats (DLL3 and DHDH) were located in a genomic region associated with tameness and aggression, suggesting a role in influencing tameness. In summary, the majority of brain gene expression changes in domesticated animals are specific to the given domestication event, suggesting that the causative variants of behavioral domestication traits may likewise be different.


Asunto(s)
Animales Domésticos , Animales Salvajes , Encéfalo/metabolismo , Expresión Génica , Antígeno AC133 , Animales , Animales Domésticos/genética , Animales Domésticos/metabolismo , Animales Salvajes/genética , Animales Salvajes/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Conducta Animal , Perros , Glicoproteínas/genética , Glicoproteínas/metabolismo , Cobayas , Péptidos/genética , Péptidos/metabolismo , Conejos , Ratas , Factores de Transcripción SOXD/genética , Factores de Transcripción SOXD/metabolismo , Sus scrofa , Lobos
16.
Vopr Pitan ; 83(6): 81-5, 2014.
Artículo en Ruso | MEDLINE | ID: mdl-25929026

RESUMEN

The comparative study of the chemical composition and biological values of beef produced by hybrids of Angus cattle with wild yaks (hybrid beef) and pure-bred Angus cattle (traditional beef) has been carried out. Longissimus muscle samples were used for analysis. It was observed, that the hybrid beef samples had the practically equal protein content comparing to traditional beef (21.1 vs. 21.6 per cent) but were characterized by the lower fat content (1.2 vs. 2.5 per cent). The higher biological value of hybrid beef comparing to traditional beef has been shown. The value of protein-quality index, calculated as the ratio of tryptophan amino acid to oxyprolin and characterizing the ratio of high biological value proteins to low biological value proteins was 8.1 vs. 5.7. The values of amino acid indexes [ratio of essential amino acids (EAA) to non-essential amino acids (NAA) and ratio of EAA to the total amount of amino acids (TAA)] were EAA/NAA = 0.77 vs. 0.65 and EAA/TAA = 0.43 vs. 0.39. The protein of hybrid beef was characterized by the higher content of a number of the essential amino acids: by a factor of 1, 77 for threonin, 1.23--for valin, 1.09--for lysin, 1.17--for leucine and 1.19--for tryptophan. The amount of the essential amino acids in 1 gram of protein of the hybrid beef was 434.7 mg against 393.1 mg for traditional beef It has been shown, that the protein of the hybrid beef comparing to traditional beef is characterized by the higher values of the amino acid scores calculated for EAA.


Asunto(s)
Aminoácidos/análisis , Grasas de la Dieta/análisis , Proteínas en la Dieta/análisis , Carne/análisis , Valor Nutritivo , Animales , Animales Domésticos/metabolismo , Animales Salvajes/metabolismo , Bovinos , Quimera
17.
Theriogenology ; 216: 103-110, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38169182

RESUMEN

The first luteal response to pregnancy in farm animals at 12-18 days after ovulation involves maintenance of the corpus luteum (CL) if pregnancy has occurred. In most common farm species, regression of the CL results from production of a luteolysin (PGF2α) by the nongravid uterus, and maintenance of the CL involves the production of an antiluteolysin (PGE2) by the gravid uterus and conceptus. The proximal component of a unilateral pathway from a uterine horn to the adjacent CL for transport of PGF2α and PGE2 is the uterine venous and lymphatic vessels and the distal component is the ovarian artery. The mechanisms for venolymphatic arterial transport of PGF2α and PGE2 from a uterine horn to the adjacent CL ovary and transfer of each prostaglandin through the walls of the uteroovarian vein and ovarian artery occur by similar mechanisms probably as a consequence of similarities in molecular structure between the two prostaglandins. Reported conclusions or interpretations during the first luteal response to pregnancy in sows and ewes are that PGE2 increases in concentration in the uteroovarian vein and ovarian artery and counteracts the negative effect of PGF2α on the CL. In cows, treatment with PGE2 increases circulating progesterone concentrations and prevents spontaneous luteolysis and luteolysis induced by estradiol, an intrauterine device, or PGF2α. The prevailing acceptance that interferon tau is the primary factor for maintaining the CL during early pregnancy in ruminants will likely become tempered by the increasing reports on PGE2.


Asunto(s)
Animales Domésticos , Dinoprost , Embarazo , Animales , Femenino , Ovinos , Porcinos , Bovinos , Animales Domésticos/metabolismo , Dinoprost/farmacología , Dinoprostona/metabolismo , Cuerpo Lúteo/fisiología , Luteólisis/fisiología , Progesterona/farmacología , Prostaglandinas/metabolismo , Rumiantes , Luteína/metabolismo , Luteína/farmacología
18.
Biomolecules ; 13(2)2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36830683

RESUMEN

Circular RNAs (circRNAs) are a highly conserved and specifically expressed novel class of covalently closed non-coding RNAs. CircRNAs can function as miRNA sponges, protein scaffolds, and regulatory factors, and play various roles in development and other biological processes in mammals. With the rapid development of high-throughput sequencing technology, thousands of circRNAs have been discovered in farm animals; some reportedly play vital roles in skeletal muscle and adipose development. These are critical factors affecting meat yield and quality. In this review, we have highlighted the recent advances in circRNA-related studies of skeletal muscle and adipose in farm animals. We have also described the biogenesis, properties, and biological functions of circRNAs. Furthermore, we have comprehensively summarized the functions and regulatory mechanisms of circRNAs in skeletal muscle and adipose development in farm animals and their effects on economic traits such as meat yield and quality. Finally, we propose that circRNAs are putative novel targets to improve meat yield and quality traits during animal breeding.


Asunto(s)
MicroARNs , ARN Circular , Animales , ARN Circular/genética , Animales Domésticos/genética , Animales Domésticos/metabolismo , MicroARNs/genética , Músculo Esquelético/metabolismo , Fenotipo , Mamíferos/metabolismo
19.
Food Res Int ; 168: 112706, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37120189

RESUMEN

Investigations into ACE inhibitory properties of probiotic fermented bovine, camel, goat, and sheep milk were performed and studied for two weeks of refrigerated storage. Results from the degree of proteolysis suggested higher susceptibility of goat milk proteins, followed by sheep and camel milk proteins, to the probiotic-mediated proteolysis. ACE-inhibitory properties displayed continuous decline in ACE-IC50 values for two weeks of refrigerated storage. Overall, goat milk fermented with Pediococcus pentosaceus caused maximum ACE inhibition (IC50: 262.7 µg/mL protein equivalent), followed by camel milk (IC50: 290.9 µg/mL protein equivalent). Studies related to peptide identification and in silico analysis using HPEPDOCK score revealed presence of 11, 13, 9 and 9 peptides in fermented bovine, goat, sheep, and camel milk, respectively, with potent antihypertensive potential. The results obtained suggest that the goat and camel milk proteins demonstrated higher potential for generating antihypertensive peptides via fermentation when compared to bovine and sheep milk.


Asunto(s)
Animales Domésticos , Probióticos , Animales , Bovinos , Ovinos , Animales Domésticos/metabolismo , Antihipertensivos/farmacología , Camelus/metabolismo , Péptidos/química , Proteínas de la Leche , Cabras/metabolismo
20.
Peptides ; 162: 170958, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36682622

RESUMEN

Inflammatory diseases attenuate reproductive functions in humans and domestic animals. Lipopolysaccharide (LPS), an endotoxin released by bacteria, is known to disrupt female reproductive functions in various inflammatory diseases. LPS administration has been used to elucidate the impact of pathophysiological activation of the immune system on reproduction. Hypothalamic kisspeptin neurons are the master regulators of mammalian reproduction, mediating direct stimulation of hypothalamic gonadotropin-releasing hormone (GnRH) release and consequent release of gonadotropins, such as luteinizing hormone (LH) and follicle-stimulating hormone from the pituitary. The discovery of kisspeptin neurons in the mammalian hypothalamus has drastically advanced our understanding of how inflammatory stress causes reproductive dysfunction in both humans and domestic animals. Inflammation-induced ovarian dysfunction could be caused, at least partly, by aberrant GnRH and LH secretion, which is regulated by kisspeptin signaling. In this review, we focus on the effects of LPS on hypothalamic kisspeptin neurons to outline the impact of inflammatory stress on neuroendocrine regulation of mammalian reproductive systems. First, we summarize the attenuation of female reproduction by LPS during inflammation and the effects of LPS on ovarian and pituitary function. Second, we outline the inhibitory effects of LPS on pulsatile- and surge-mode GnRH/LH release. Third, we discuss the LPS-responsive hypothalamic-pituitary-adrenal axis and hypothalamic neural systems in terms of the cytokine-mediated pathway and the possible direct action of LPS via its hypothalamic receptors. This article describes the impact of LPS on hypothalamic kisspeptin neurons and the possible mechanisms underlying LPS-mediated disruption of LH pulses/surge via kisspeptin neurons.


Asunto(s)
Animales Domésticos , Infertilidad , Humanos , Animales , Femenino , Animales Domésticos/metabolismo , Kisspeptinas/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Lipopolisacáridos , Sistema Hipófiso-Suprarrenal/metabolismo , Hipotálamo/metabolismo , Hormona Liberadora de Gonadotropina , Hormona Luteinizante/metabolismo , Neuronas/metabolismo , Infertilidad/metabolismo , Mamíferos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda