RESUMEN
The brain, as one of the most lipid-rich organs, heavily relies on lipid transport and distribution to maintain homeostasis and neuronal function. Lipid transport mediated by lipoprotein particles, which are complex structures composed of apolipoproteins and lipids, has been thoroughly characterized in the periphery. Although lipoproteins in the central nervous system (CNS) were reported over half a century ago, the identification of APOE4 as the strongest genetic risk factor for Alzheimer's disease has accelerated investigation of the biology and pathobiology of lipoproteins in the CNS. This review provides an overview of the different components of lipoprotein particles, in particular apolipoproteins, and their involvements in both physiological functions and pathological mechanisms in the CNS.
Asunto(s)
Enfermedad de Alzheimer , Apolipoproteínas E , Enfermedad de Alzheimer/genética , Apolipoproteínas , Apolipoproteínas E/genética , Biología , Sistema Nervioso Central , HumanosRESUMEN
The ε4 variant in the APOE gene is the strongest genetic risk factor for Alzheimer's disease. How does this gene impact different cell types in the brain to increase disease risk? In this issue of Cell, TCW and colleagues report APOE-driven cell-type-specific changes that may contribute to Alzheimer's disease risk.
Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Apolipoproteínas E/metabolismo , Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Encéfalo , Humanos , Factores de RiesgoRESUMEN
The impact of apolipoprotein E ε4 (APOE4), the strongest genetic risk factor for Alzheimer's disease (AD), on human brain cellular function remains unclear. Here, we investigated the effects of APOE4 on brain cell types derived from population and isogenic human induced pluripotent stem cells, post-mortem brain, and APOE targeted replacement mice. Population and isogenic models demonstrate that APOE4 local haplotype, rather than a single risk allele, contributes to risk. Global transcriptomic analyses reveal human-specific, APOE4-driven lipid metabolic dysregulation in astrocytes and microglia. APOE4 enhances de novo cholesterol synthesis despite elevated intracellular cholesterol due to lysosomal cholesterol sequestration in astrocytes. Further, matrisome dysregulation is associated with upregulated chemotaxis, glial activation, and lipid biosynthesis in astrocytes co-cultured with neurons, which recapitulates altered astrocyte matrisome signaling in human brain. Thus, APOE4 initiates glia-specific cell and non-cell autonomous dysregulation that may contribute to increased AD risk.
Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Astrocitos/metabolismo , Colesterol/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Microglía/metabolismoRESUMEN
The lung is constantly exposed to the outside world and optimal adaptation of immune responses is crucial for efficient pathogen clearance. However, mechanisms that lead to lung-associated macrophages' functional and developmental adaptation remain elusive. To reveal such mechanisms, we developed a reductionist model of environmental intranasal ß-glucan exposure, allowing for the detailed interrogation of molecular mechanisms of pulmonary macrophage adaptation. Employing single-cell transcriptomics, high-dimensional imaging and flow cytometric characterization paired with in vivo and ex vivo challenge models, we reveal that pulmonary low-grade inflammation results in the development of apolipoprotein E (ApoE)-dependent monocyte-derived alveolar macrophages (ApoE+CD11b+ AMs). ApoE+CD11b+ AMs expressed high levels of CD11b, ApoE, Gpnmb and Ccl6, were glycolytic, highly phagocytic and produced large amounts of interleukin-6 upon restimulation. Functional differences were cell intrinsic, and myeloid cell-specific ApoE ablation inhibited Ly6c+ monocyte to ApoE+CD11b+ AM differentiation dependent on macrophage colony-stimulating factor secretion, promoting ApoE+CD11b+ AM cell death and thus impeding ApoE+CD11b+ AM maintenance. In vivo, ß-glucan-elicited ApoE+CD11b+ AMs limited the bacterial burden of Legionella pneumophilia after infection and improved the disease outcome in vivo and ex vivo in a murine lung fibrosis model. Collectively these data identify ApoE+CD11b+ AMs generated upon environmental cues, under the control of ApoE signaling, as an essential determinant for lung adaptation enhancing tissue resilience.
Asunto(s)
Apolipoproteínas E , Lectinas Tipo C , Macrófagos Alveolares , Ratones Endogámicos C57BL , beta-Glucanos , Animales , Ratones , Adaptación Fisiológica/inmunología , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Antígeno CD11b/metabolismo , Diferenciación Celular , Lectinas Tipo C/metabolismo , Pulmón/inmunología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Ratones Noqueados , Monocitos/inmunología , Monocitos/metabolismoRESUMEN
Clonal hematopoiesis, a condition in which individual hematopoietic stem cell clones generate a disproportionate fraction of blood leukocytes, correlates with higher risk for cardiovascular disease. The mechanisms behind this association are incompletely understood. Here, we show that hematopoietic stem cell division rates are increased in mice and humans with atherosclerosis. Mathematical analysis demonstrates that increased stem cell proliferation expedites somatic evolution and expansion of clones with driver mutations. The experimentally determined division rate elevation in atherosclerosis patients is sufficient to produce a 3.5-fold increased risk of clonal hematopoiesis by age 70. We confirm the accuracy of our theoretical framework in mouse models of atherosclerosis and sleep fragmentation by showing that expansion of competitively transplanted Tet2-/- cells is accelerated under conditions of chronically elevated hematopoietic activity. Hence, increased hematopoietic stem cell proliferation is an important factor contributing to the association between cardiovascular disease and clonal hematopoiesis.
Asunto(s)
Aterosclerosis/patología , Hematopoyesis Clonal , Células Madre Hematopoyéticas/patología , Envejecimiento/patología , Animales , Apolipoproteínas E/genética , Aterosclerosis/genética , Médula Ósea/metabolismo , Proliferación Celular , Evolución Clonal , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Privación de Sueño/patologíaRESUMEN
Clear cell renal carcinoma (ccRCC) is a heterogeneous disease with a variable post-surgical course. To assemble a comprehensive ccRCC tumor microenvironment (TME) atlas, we performed single-cell RNA sequencing (scRNA-seq) of hematopoietic and non-hematopoietic subpopulations from tumor and tumor-adjacent tissue of treatment-naive ccRCC resections. We leveraged the VIPER algorithm to quantitate single-cell protein activity and validated this approach by comparison to flow cytometry. The analysis identified key TME subpopulations, as well as their master regulators and candidate cell-cell interactions, revealing clinically relevant populations, undetectable by gene-expression analysis. Specifically, we uncovered a tumor-specific macrophage subpopulation characterized by upregulation of TREM2/APOE/C1Q, validated by spatially resolved, quantitative multispectral immunofluorescence. In a large clinical validation cohort, these markers were significantly enriched in tumors from patients who recurred following surgery. The study thus identifies TREM2/APOE/C1Q-positive macrophage infiltration as a potential prognostic biomarker for ccRCC recurrence, as well as a candidate therapeutic target.
Asunto(s)
Carcinoma de Células Renales/metabolismo , Recurrencia Local de Neoplasia/genética , Macrófagos Asociados a Tumores/metabolismo , Adulto , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Estudios de Cohortes , Femenino , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Riñón/metabolismo , Neoplasias Renales/patología , Linfocitos Infiltrantes de Tumor/patología , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Persona de Mediana Edad , Recurrencia Local de Neoplasia/metabolismo , Pronóstico , Receptores de Complemento/genética , Receptores de Complemento/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Microambiente Tumoral , Macrófagos Asociados a Tumores/fisiologíaRESUMEN
Microglial involvement in Alzheimer's disease (AD) pathology has emerged as a risk-determining pathogenic event. While apolipoprotein E (APOE) is known to modify AD risk, it remains unclear how microglial apoE impacts brain cognition and AD pathology. Here, using conditional mouse models expressing apoE isoforms in microglia and central nervous system-associated macrophages (CAMs), we demonstrate a cell-autonomous effect of apoE3-mediated microglial activation and function, which are negated by apoE4. Expression of apoE3 in microglia/CAMs improves cognitive function, increases microglia surrounding amyloid plaque and reduces amyloid pathology and associated toxicity, whereas apoE4 expression either compromises or has no effects on these outcomes by impairing lipid metabolism. Single-cell transcriptomic profiling reveals increased antigen presentation and interferon pathways upon apoE3 expression. In contrast, apoE4 expression downregulates complement and lysosomal pathways, and promotes stress-related responses. Moreover, in the presence of mouse endogenous apoE, microglial apoE4 exacerbates amyloid pathology. Finally, we observed a reduction in Lgals3-positive responsive microglia surrounding amyloid plaque and an increased accumulation of lipid droplets in APOE4 human brains and induced pluripotent stem cell-derived microglia. Our findings establish critical isoform-dependent effects of microglia/CAM-expressed apoE in brain function and the development of amyloid pathology, providing new insight into how apoE4 vastly increases AD risk.
Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Microglía/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patología , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Encéfalo , Homeostasis , Ratones TransgénicosRESUMEN
Metabolic coordination between neurons and astrocytes is critical for the health of the brain. However, neuron-astrocyte coupling of lipid metabolism, particularly in response to neural activity, remains largely uncharacterized. Here, we demonstrate that toxic fatty acids (FAs) produced in hyperactive neurons are transferred to astrocytic lipid droplets by ApoE-positive lipid particles. Astrocytes consume the FAs stored in lipid droplets via mitochondrial ß-oxidation in response to neuronal activity and turn on a detoxification gene expression program. Our findings reveal that FA metabolism is coupled in neurons and astrocytes to protect neurons from FA toxicity during periods of enhanced activity. This coordinated mechanism for metabolizing FAs could underlie both homeostasis and a variety of disease states of the brain.
Asunto(s)
Astrocitos/metabolismo , Ácidos Grasos/metabolismo , Neuronas/metabolismo , Animales , Apolipoproteínas E/metabolismo , Apolipoproteínas E/fisiología , Astrocitos/fisiología , Encéfalo/metabolismo , Ácidos Grasos/toxicidad , Homeostasis , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Oxidación-Reducción , Ratas , Ratas Sprague-DawleyRESUMEN
Alzheimer disease (AD) is a heterogeneous disease with a complex pathobiology. The presence of extracellular ß-amyloid deposition as neuritic plaques and intracellular accumulation of hyperphosphorylated tau as neurofibrillary tangles remains the primary neuropathologic criteria for AD diagnosis. However, a number of recent fundamental discoveries highlight important pathological roles for other critical cellular and molecular processes. Despite this, no disease-modifying treatment currently exists, and numerous phase 3 clinical trials have failed to demonstrate benefits. Here, we review recent advances in our understanding of AD pathobiology and discuss current treatment strategies, highlighting recent clinical trials and opportunities for developing future disease-modifying therapies.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Placa Amiloide/metabolismo , Proteínas tau , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/terapia , Vacunas contra el Alzheimer/farmacología , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Animales , Apolipoproteínas E/antagonistas & inhibidores , Apolipoproteínas E/metabolismo , Ensayos Clínicos como Asunto , Humanos , Ratones , Proteínas tau/antagonistas & inhibidores , Proteínas tau/metabolismoRESUMEN
The dominant risk factors for late-onset Alzheimer's disease (AD) are advanced age and the APOE4 genetic variant. To examine how these factors alter neuroimmune function, we generated an integrative, longitudinal single-cell atlas of brain immune cells in AD model mice bearing the three common human APOE alleles. Transcriptomic and chromatin accessibility analyses identified a reactive microglial population defined by the concomitant expression of inflammatory signals and cell-intrinsic stress markers whose frequency increased with age and APOE4 burden. An analogous population was detectable in the brains of human AD patients, including in the cortical tissue, using multiplexed spatial transcriptomics. This population, which we designate as terminally inflammatory microglia (TIM), exhibited defects in amyloid-ß clearance and altered cell-cell communication during aducanumab treatment. TIM may represent an exhausted-like state for inflammatory microglia in the AD milieu that contributes to AD risk and pathology in APOE4 carriers and the elderly, thus presenting a potential therapeutic target for AD.
Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Anciano , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Encéfalo/metabolismo , Genotipo , MicroglíaRESUMEN
Therapeutic harnessing of adaptive immunity via checkpoint inhibition has transformed the treatment of many cancers. Despite unprecedented long-term responses, most patients do not respond to these therapies. Immunotherapy non-responders often harbor high levels of circulating myeloid-derived suppressor cells (MDSCs)-an immunosuppressive innate cell population. Through genetic and pharmacological approaches, we uncovered a pathway governing MDSC abundance in multiple cancer types. Therapeutic liver-X nuclear receptor (LXR) agonism reduced MDSC abundance in murine models and in patients treated in a first-in-human dose escalation phase 1 trial. MDSC depletion was associated with activation of cytotoxic T lymphocyte (CTL) responses in mice and patients. The LXR transcriptional target ApoE mediated these effects in mice, where LXR/ApoE activation therapy elicited robust anti-tumor responses and also enhanced T cell activation during various immune-based therapies. We implicate the LXR/ApoE axis in the regulation of innate immune suppression and as a target for enhancing the efficacy of cancer immunotherapy in patients.
Asunto(s)
Apolipoproteínas E/inmunología , Inmunidad Innata , Receptores X del Hígado/inmunología , Células Supresoras de Origen Mieloide/inmunología , Neoplasias Experimentales/inmunología , Animales , Apolipoproteínas E/genética , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Línea Celular Tumoral , Femenino , Receptores X del Hígado/genética , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Células Supresoras de Origen Mieloide/patología , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Human apolipoprotein E (ApoE) apolipoprotein is primarily expressed in three isoforms (ApoE2, ApoE3, and ApoE4) that differ only by two residues. ApoE4 constitutes the most important genetic risk factor for Alzheimer's disease (AD), ApoE3 is neutral, and ApoE2 is protective. How ApoE isoforms influence AD pathogenesis, however, remains unclear. Using ES-cell-derived human neurons, we show that ApoE secreted by glia stimulates neuronal Aß production with an ApoE4 > ApoE3 > ApoE2 potency rank order. We demonstrate that ApoE binding to ApoE receptors activates dual leucine-zipper kinase (DLK), a MAP-kinase kinase kinase that then activates MKK7 and ERK1/2 MAP kinases. Activated ERK1/2 induces cFos phosphorylation, stimulating the transcription factor AP-1, which in turn enhances transcription of amyloid-ß precursor protein (APP) and thereby increases amyloid-ß levels. This molecular mechanism also regulates APP transcription in mice in vivo. Our data describe a novel signal transduction pathway in neurons whereby ApoE activates a non-canonical MAP kinase cascade that enhances APP transcription and amyloid-ß synthesis.
Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Apolipoproteínas E/metabolismo , Sistema de Señalización de MAP Quinasas , Enfermedad de Alzheimer/metabolismo , Animales , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Fibroblastos/metabolismo , Humanos , Ratones , Neuronas/metabolismo , Isoformas de Proteínas/metabolismoRESUMEN
The apolipoprotein E4 (APOE4) allele is associated with an increased risk of Alzheimer disease and a decreased risk of glaucoma, but the underlying mechanisms remain poorly understood. Here, we found that in two mouse glaucoma models, microglia transitioned to a neurodegenerative phenotype characterized by upregulation of Apoe and Lgals3 (Galectin-3), which were also upregulated in human glaucomatous retinas. Mice with targeted deletion of Apoe in microglia or carrying the human APOE4 allele were protected from retinal ganglion cell (RGC) loss, despite elevated intraocular pressure (IOP). Similarly to Apoe-/- retinal microglia, APOE4-expressing microglia did not upregulate neurodegeneration-associated genes, including Lgals3, following IOP elevation. Genetic and pharmacologic targeting of Galectin-3 ameliorated RGC degeneration, and Galectin-3 expression was attenuated in human APOE4 glaucoma samples. These results demonstrate that impaired activation of APOE4 microglia is protective in glaucoma and that the APOE-Galectin-3 signaling can be targeted to treat this blinding disease.
Asunto(s)
Apolipoproteína E4 , Glaucoma , Animales , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E4/uso terapéutico , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Modelos Animales de Enfermedad , Galectina 3/genética , Galectina 3/metabolismo , Galectina 3/uso terapéutico , Glaucoma/tratamiento farmacológico , Glaucoma/genética , Glaucoma/metabolismo , Humanos , Ratones , Microglía/metabolismoRESUMEN
Trimethylamine (TMA) N-oxide (TMAO), a gut-microbiota-dependent metabolite, both enhances atherosclerosis in animal models and is associated with cardiovascular risks in clinical studies. Here, we investigate the impact of targeted inhibition of the first step in TMAO generation, commensal microbial TMA production, on diet-induced atherosclerosis. A structural analog of choline, 3,3-dimethyl-1-butanol (DMB), is shown to non-lethally inhibit TMA formation from cultured microbes, to inhibit distinct microbial TMA lyases, and to both inhibit TMA production from physiologic polymicrobial cultures (e.g., intestinal contents, human feces) and reduce TMAO levels in mice fed a high-choline or L-carnitine diet. DMB inhibited choline diet-enhanced endogenous macrophage foam cell formation and atherosclerotic lesion development in apolipoprotein e(-/-) mice without alterations in circulating cholesterol levels. The present studies suggest that targeting gut microbial production of TMA specifically and non-lethal microbial inhibitors in general may serve as a potential therapeutic approach for the treatment of cardiometabolic diseases.
Asunto(s)
Aterosclerosis/tratamiento farmacológico , Colina/análogos & derivados , Tracto Gastrointestinal/microbiología , Hexanoles/administración & dosificación , Liasas/antagonistas & inhibidores , Metilaminas/metabolismo , Animales , Apolipoproteínas E/genética , Aterosclerosis/metabolismo , Colesterol/metabolismo , Colina/metabolismo , Dieta , Heces/química , Células Espumosas/metabolismo , Humanos , Liasas/metabolismo , Ratones , Ratones Endogámicos C57BL , MicrobiotaRESUMEN
Systemic immune responses caused by chronic hypercholesterolaemia contribute to atherosclerosis initiation, progression and complications1. However, individuals often change their dietary habits over time2, and the effects of an alternating high-fat diet (HFD) on atherosclerosis remain unclear. Here, to address this relevant issue, we developed a protocol using atherosclerosis-prone mice to compare an alternating versus continuous HFD while maintaining similar overall exposure periods. We found that an alternating HFD accelerated atherosclerosis in Ldlr-/- and Apoe-/- mice compared with a continuous HFD. This pro-atherogenic effect of the alternating HFD was also observed in Apoe-/-Rag2-/- mice lacking T, B and natural killer T cells, ruling out the role of the adaptive immune system in the observed phenotype. Discontinuing the HFD in the alternating HFD group downregulated RUNX13, promoting inflammatory signalling in bone marrow myeloid progenitors. After re-exposure to an HFD, these cells produced IL-1ß, leading to emergency myelopoiesis and increased neutrophil levels in blood. Neutrophils infiltrated plaques and released neutrophil extracellular traps, exacerbating atherosclerosis. Specific depletion of neutrophils or inhibition of IL-1ß pathways abolished emergency myelopoiesis and reversed the pro-atherogenic effects of the alternating HFD. This study highlights the role of IL-1ß-dependent neutrophil progenitor reprogramming in accelerated atherosclerosis induced by alternating HFD.
Asunto(s)
Aterosclerosis , Reprogramación Celular , Dieta Alta en Grasa , Neutrófilos , Animales , Femenino , Masculino , Ratones , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Células de la Médula Ósea/citología , Dieta Alta en Grasa/efectos adversos , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Trampas Extracelulares , Inflamación/patología , Interleucina-1beta/metabolismo , Ratones Endogámicos C57BL , Mielopoyesis , Neutrófilos/metabolismo , Neutrófilos/patología , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Receptores de LDL/deficiencia , Receptores de LDL/genética , Transducción de SeñalRESUMEN
Melanoma metastasis is a devastating outcome lacking an effective preventative therapeutic. We provide pharmacologic, molecular, and genetic evidence establishing the liver-X nuclear hormone receptor (LXR) as a therapeutic target in melanoma. Oral administration of multiple LXR agonists suppressed melanoma invasion, angiogenesis, tumor progression, and metastasis. Molecular and genetic experiments revealed these effects to be mediated by LXRß, which elicits these outcomes through transcriptional induction of tumoral and stromal apolipoprotein-E (ApoE). LXRß agonism robustly suppressed tumor growth and metastasis across a diverse mutational spectrum of melanoma lines. LXRß targeting significantly prolonged animal survival, suppressed the progression of established metastases, and inhibited brain metastatic colonization. Importantly, LXRß activation displayed melanoma-suppressive cooperativity with the frontline regimens dacarbazine, B-Raf inhibition, and the anti-CTLA-4 antibody and robustly inhibited melanomas that had acquired resistance to B-Raf inhibition or dacarbazine. We present a promising therapeutic approach that uniquely acts by transcriptionally activating a metastasis suppressor gene.
Asunto(s)
Melanoma/tratamiento farmacológico , Melanoma/secundario , Metástasis de la Neoplasia/tratamiento farmacológico , Receptores Nucleares Huérfanos/agonistas , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Benzoatos/administración & dosificación , Bencilaminas/administración & dosificación , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Hidrocarburos Fluorados/administración & dosificación , Receptores X del Hígado , Melanoma/patología , Ratones , Metástasis de la Neoplasia/patología , Transducción de Señal , Neoplasias Cutáneas/patología , Sulfonamidas/administración & dosificación , Transcripción GenéticaRESUMEN
Clinical outcomes of severe acute respiratory syndrome 2 (SARS-CoV-2) infection are highly heterogeneous, ranging from asymptomatic infection to lethal coronavirus disease 2019 (COVID-19). The factors underlying this heterogeneity remain insufficiently understood. Genetic association studies have suggested that genetic variants contribute to the heterogeneity of COVID-19 outcomes, but the underlying potential causal mechanisms are insufficiently understood. Here we show that common variants of the apolipoprotein E (APOE) gene, homozygous in approximately 3% of the world's population1 and associated with Alzheimer's disease, atherosclerosis and anti-tumour immunity2-5, affect COVID-19 outcome in a mouse model that recapitulates increased susceptibility conferred by male sex and advanced age. Mice bearing the APOE2 or APOE4 variant exhibited rapid disease progression and poor survival outcomes relative to mice bearing the most prevalent APOE3 allele. APOE2 and APOE4 mice exhibited increased viral loads as well as suppressed adaptive immune responses early after infection. In vitro assays demonstrated increased infection in the presence of APOE2 and APOE4 relative to APOE3, indicating that differential outcomes are mediated by differential effects of APOE variants on both viral infection and antiviral immunity. Consistent with these in vivo findings in mice, our results also show that APOE genotype is associated with survival in patients infected with SARS-CoV-2 in the UK Biobank (candidate variant analysis, P = 2.6 × 10-7). Our findings suggest APOE genotype to partially explain the heterogeneity of COVID-19 outcomes and warrant prospective studies to assess APOE genotyping as a means of identifying patients at high risk for adverse outcomes.
Asunto(s)
Apolipoproteínas E , COVID-19 , Genética Humana , Ratones Transgénicos , SARS-CoV-2 , Animales , Humanos , Masculino , Ratones , Apolipoproteína E2/genética , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , COVID-19/genética , COVID-19/mortalidad , COVID-19/virología , Ratones Transgénicos/genética , Ratones Transgénicos/virología , Estudios Prospectivos , SARS-CoV-2/patogenicidad , Modelos Animales de EnfermedadRESUMEN
Frontotemporal dementia (FTD) is the second most common cause of early-onset dementia after Alzheimer disease (AD). Efforts in the field mainly focus on familial forms of disease (fFTDs), while studies of the genetic etiology of sporadic FTD (sFTD) have been less common. In the current work, we analyzed 4,685 sFTD cases and 15,308 controls looking for common genetic determinants for sFTD. We found a cluster of variants at the MAPT (rs199443; p = 2.5 × 10-12, OR = 1.27) and APOE (rs6857; p = 1.31 × 10-12, OR = 1.27) loci and a candidate locus on chromosome 3 (rs1009966; p = 2.41 × 10-8, OR = 1.16) in the intergenic region between RPSA and MOBP, contributing to increased risk for sFTD through effects on expression and/or splicing in brain cortex of functionally relevant in-cis genes at the MAPT and RPSA-MOBP loci. The association with the MAPT (H1c clade) and RPSA-MOBP loci may suggest common genetic pleiotropy across FTD and progressive supranuclear palsy (PSP) (MAPT and RPSA-MOBP loci) and across FTD, AD, Parkinson disease (PD), and cortico-basal degeneration (CBD) (MAPT locus). Our data also suggest population specificity of the risk signals, with MAPT and APOE loci associations mainly driven by Central/Nordic and Mediterranean Europeans, respectively. This study lays the foundations for future work aimed at further characterizing population-specific features of potential FTD-discriminant APOE haplotype(s) and the functional involvement and contribution of the MAPT H1c haplotype and RPSA-MOBP loci to pathogenesis of sporadic forms of FTD in brain cortex.
Asunto(s)
Apolipoproteínas E , Demencia Frontotemporal , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Proteínas tau , Humanos , Demencia Frontotemporal/genética , Proteínas tau/genética , Apolipoproteínas E/genética , Masculino , Femenino , Anciano , Polimorfismo de Nucleótido Simple , Sitios Genéticos , Persona de Mediana Edad , Estudios de Casos y Controles , Proteínas de la MielinaRESUMEN
Recent discoveries of rare variants of human APOE may shed light on novel therapeutic strategies for Alzheimer's disease (AD). Here, we highlight the newly identified protective variant [APOE3 Christchurch (APOE3ch, R136S)] as an example. We summarize human AD and mouse amyloidosis and tauopathy studies from the past 5 years that have been associated with this R136S variant. We also propose a potential mechanism for how this point mutation might lead to protection against AD pathology, from the molecular level, to cells, to mouse models, and potentially, to humans. Lastly, we extend our discussion of the recent insights gained regarding different APOE variants to putative therapeutic approaches in AD.