Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 414
Filtrar
1.
Nature ; 589(7842): 437-441, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33299176

RESUMEN

The formation of arteries is thought to occur by the induction of a highly conserved arterial genetic programme in a subset of vessels that will later experience an increase in oxygenated blood flow1,2. The initial steps of arterial specification require both the VEGF and Notch signalling pathways3-5. Here, we combine inducible genetic mosaics and transcriptomics to modulate and define the function of these signalling pathways in cell proliferation, arteriovenous differentiation and mobilization. We show that endothelial cells with high levels of VEGF or Notch signalling are intrinsically biased to mobilize and form arteries; however, they are not genetically pre-determined, and can also form veins. Mechanistically, we found that increased levels of VEGF and Notch signalling in pre-arterial capillaries suppresses MYC-dependent metabolic and cell-cycle activities, and promotes the incorporation of endothelial cells into arteries. Mosaic lineage-tracing studies showed that endothelial cells that lack the Notch-RBPJ transcriptional activator complex rarely form arteries; however, these cells regained the ability to form arteries when the function of MYC was suppressed. Thus, the development of arteries does not require the direct induction of a Notch-dependent arterial differentiation programme, but instead depends on the timely suppression of endothelial cell-cycle progression and metabolism, a process that precedes arterial mobilization and complete differentiation.


Asunto(s)
Arterias/citología , Arterias/crecimiento & desarrollo , Proliferación Celular , Células Endoteliales/citología , Endotelio Vascular/citología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Diferenciación Celular/genética , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Masculino , Ratones , Mosaicismo , Mutación , Fenotipo , Proteínas Proto-Oncogénicas c-myc/deficiencia , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores Notch/deficiencia , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal , Factores de Tiempo , Transcripción Genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Venas/citología
2.
Development ; 149(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34931661

RESUMEN

Endothelial cell migration and proliferation are essential for the establishment of a hierarchical organization of blood vessels and optimal distribution of blood. However, how these cellular processes are quantitatively coordinated to drive vascular network morphogenesis remains unknown. Here, using the zebrafish vasculature as a model system, we demonstrate that the balanced distribution of endothelial cells, as well as the resulting regularity of vessel calibre, is a result of cell migration from veins towards arteries and cell proliferation in veins. We identify the Wiskott-Aldrich Syndrome protein (WASp) as an important molecular regulator of this process and show that loss of coordinated migration from veins to arteries upon wasb depletion results in aberrant vessel morphology and the formation of persistent arteriovenous shunts. We demonstrate that WASp achieves its function through the coordination of junctional actin assembly and PECAM1 recruitment and provide evidence that this is conserved in humans. Overall, we demonstrate that functional vascular patterning in the zebrafish trunk is established through differential cell migration regulated by junctional actin, and that interruption of differential migration may represent a pathomechanism in vascular malformations.


Asunto(s)
Vasos Sanguíneos/crecimiento & desarrollo , Morfogénesis/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Proteína del Síndrome de Wiskott-Aldrich/genética , Actinas/genética , Animales , Arterias/crecimiento & desarrollo , Arterias/metabolismo , Movimiento Celular/genética , Proliferación Celular/genética , Células Endoteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Uniones Intercelulares/genética , Venas/crecimiento & desarrollo , Venas/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
3.
Biochem Biophys Res Commun ; 604: 123-129, 2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-35303678

RESUMEN

Many regulators controlling arterial identity are well described; however, transcription factors that promote vein identity and vascular patterning have remained largely unknown. We previously identified the transcription factors Islet2 (Isl2) and Nr2f1b required for specification of the vein and tip cell identity mediated by notch pathway in zebrafish. However, the interaction between Isl2 and Nr2f1b is not known. In this study, we report that Nr2f2 plays minor roles on vein and intersegmental vessels (ISV) growth and dissect the genetic interactions among the three transcription factors Isl2, Nr2f1b, and Nr2f2 using a combinatorial knockdown strategy. The double knockdown of isl2/nr2f1b, isl2/nr2f2, and nr2f1b/nr2f2 showed the enhanced defects in vasculature including less completed ISV, reduced veins, and ISV cells. We further tested the genetic relationship among these three transcription factors. We found isl2 can regulate the expression of nr2f1b and nr2f2, suggesting a model where Isl2 functions upstream of Nr2f1b and Nr2f2. We hypothsized that Isl2 and Nr2f1b can function together through cis-regulatory binding motifs. In-vitro luciferase assay results, we showed that Isl2 and Nr2f1b can cooperatively enhance gene expression. Moreover, co-immunoprecipitation results indicated that Isl2 and Nr2f1b interact physically. Together, we showed that the interaction of the Nr2f1b and Nr2f2 transcription factors in combination with the Islet2 play coordinated roles in the vascular development of zebrafish.


Asunto(s)
Arterias , Proteínas con Homeodominio LIM , Factores de Transcripción , Proteínas de Pez Cebra , Pez Cebra , Animales , Arterias/crecimiento & desarrollo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Venas , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
J Biol Chem ; 295(51): 17632-17645, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33454003

RESUMEN

Thoracic great vessels such as the aorta and subclavian arteries are formed through dynamic remodeling of embryonic pharyngeal arch arteries (PAAs). Previous work has shown that loss of a basic helix-loop-helix transcription factor Hey1 in mice causes abnormal fourth PAA development and lethal great vessel anomalies resembling congenital malformations in humans. However, how Hey1 mediates vascular formation remains unclear. In this study, we revealed that Hey1 in vascular endothelial cells, but not in smooth muscle cells, played essential roles for PAA development and great vessel morphogenesis in mouse embryos. Tek-Cre-mediated Hey1 deletion in endothelial cells affected endothelial tube formation and smooth muscle differentiation in embryonic fourth PAAs and resulted in interruption of the aortic arch and other great vessel malformations. Cell specificity and signal responsiveness of Hey1 expression were controlled through multiple cis-regulatory regions. We found two distal genomic regions that had enhancer activity in endothelial cells and in the pharyngeal epithelium and somites, respectively. The novel endothelial enhancer was conserved across species and was specific to large-caliber arteries. Its transcriptional activity was regulated by Notch signaling in vitro and in vivo, but not by ALK1 signaling and other transcription factors implicated in endothelial cell specificity. The distal endothelial enhancer was not essential for basal Hey1 expression in mouse embryos but may likely serve for Notch-dependent transcriptional control in endothelial cells together with the proximal regulatory region. These findings help in understanding the significance and regulation of endothelial Hey1 as a mediator of multiple signaling pathways in embryonic vascular formation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Endotelio/metabolismo , Receptores Notch/metabolismo , Animales , Arterias/crecimiento & desarrollo , Arterias/metabolismo , Región Branquial/irrigación sanguínea , Región Branquial/crecimiento & desarrollo , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/genética , Diferenciación Celular , Embrión de Mamíferos/metabolismo , Endotelio/citología , Femenino , Humanos , Ratones , Ratones Noqueados , Morfogénesis , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Transducción de Señal , Activación Transcripcional
5.
Circ Res ; 125(11): 1006-1018, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31590613

RESUMEN

RATIONALE: Elastin is an important ECM (extracellular matrix) protein in large and small arteries. Vascular smooth muscle cells (SMCs) produce the layered elastic laminae found in elastic arteries but synthesize little elastin in muscular arteries. However, muscular arteries have a well-defined internal elastic lamina (IEL) that separates endothelial cells (ECs) from SMCs. The extent to which ECs contribute elastin to the IEL is unknown. OBJECTIVE: To use targeted elastin (Eln) deletion in mice to explore the relative contributions of SMCs and ECs to elastic laminae formation in different arteries. METHODS AND RESULTS: We used SMC- and EC-specific Cre recombinase transgenes with a novel floxed Eln allele to focus gene inactivation in mice. Inactivation of Eln in SMCs using Sm22aCre resulted in depletion of elastic laminae in the arterial wall with the exception of the IEL and SMC clusters in the outer media near the adventitia. Inactivation of elastin in ECs using Tie2Cre or Cdh5Cre resulted in normal medial elastin and a typical IEL in elastic arteries. In contrast, the IEL was absent or severely disrupted in muscular arteries. Interruptions in the IEL resulted in neointimal formation in the ascending aorta but not in muscular arteries. CONCLUSIONS: Combined with lineage-specific fate mapping systems, our knockout results document an unexpected heterogeneity in vascular cells that produce the elastic laminae. SMCs and ECs can independently form an IEL in most elastic arteries, whereas ECs are the major source of elastin for the IEL in muscular and resistance arteries. Neointimal formation at IEL disruptions in the ascending aorta confirms that the IEL is a critical physical barrier between SMCs and ECs in the large elastic arteries. Our studies provide new information about how SMCs and ECs contribute elastin to the arterial wall and how local elastic laminae defects may contribute to cardiovascular disease.


Asunto(s)
Tejido Elástico/metabolismo , Elastina/metabolismo , Células Endoteliales/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Arterias/crecimiento & desarrollo , Arterias/metabolismo , Presión Sanguínea , Linaje de la Célula , Proliferación Celular , Tejido Elástico/crecimiento & desarrollo , Tejido Elástico/ultraestructura , Elastina/deficiencia , Elastina/genética , Células Endoteliales/ultraestructura , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/crecimiento & desarrollo , Músculo Liso Vascular/ultraestructura , Miocitos del Músculo Liso/ultraestructura , Neointima , Transducción de Señal
6.
Bioessays ; 41(3): e1800198, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30805984

RESUMEN

A tree-like hierarchical branching structure is present in many biological systems, such as the kidney, lung, mammary gland, and blood vessels. Most of these organs form through branching morphogenesis, where outward growth results in smaller and smaller branches. However, the blood vasculature is unique in that it exists as two trees (arterial and venous) connected at their tips. Obtaining this organization might therefore require unique developmental mechanisms. As reviewed here, recent data indicate that arterial trees often form in reverse order. Accordingly, initial arterial endothelial cell differentiation occurs outside of arterial vessels. These pre-artery cells then build trees by following a migratory path from smaller into larger arteries, a process guided by the forces imparted by blood flow. Thus, in comparison to other branched organs, arteries can obtain their structure through inward growth and coalescence. Here, new information on the underlying mechanisms is discussed, and how defects can lead to pathologies, such as hypoplastic arteries and arteriovenous malformations.


Asunto(s)
Arterias/embriología , Arterias/crecimiento & desarrollo , Neovascularización Fisiológica , Venas/embriología , Venas/crecimiento & desarrollo , Animales , Diferenciación Celular/fisiología , Movimiento Celular , Plasticidad de la Célula , Células Epiteliales/fisiología , Humanos , Ratones , Morfogénesis , Receptores CXCR4/metabolismo , Receptores Notch/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
7.
Int J Mol Sci ; 22(11)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34204888

RESUMEN

Previously, the abundance of p42/44 and p38 MAPK proteins had been shown to be higher in arteries of 1- to 2-week-old compared to 2- to 3-month-old rats. However, the role of MAPKs in vascular tone regulation in early ontogenesis remains largely unexplored. We tested the hypothesis that the contribution of p42/44 and p38 MAPKs to the contraction of peripheral arteries is higher in the early postnatal period compared to adulthood. Saphenous arteries of 1- to 2-week-old and 2- to 3-month-old rats were studied using wire myography and western blotting. The α1-adrenoceptor agonist methoxamine did not increase the phosphorylation level of p38 MAPK in either 1- to 2-week-old or 2- to 3-month-old rats. Accordingly, inhibition of p38 MAPK did not affect arterial contraction to methoxamine in either age group. Methoxamine increased the phosphorylation level of p42/44 MAPKs in arteries of 2- to 3-month-old and of p44 MAPK in 1- to 2-week-old rats. Inhibition of p42/44 MAPKs reduced methoxamine-induced contractions in arteries of 2- to 3-month-old, but not 1- to 2-week-old rats. Thus, despite a high abundance in arterial tissue, p38 and p42/44 MAPKs do not regulate contraction of the saphenous artery in the early postnatal period. However, p42/44 MAPK activity contributes to arterial contractions in adult rats.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Contracción Muscular/genética , Receptores Adrenérgicos alfa 1/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Animales , Arterias/crecimiento & desarrollo , Arterias/metabolismo , Embrión de Mamíferos , Desarrollo Embrionario/genética , Humanos , Metoxamina/farmacología , Contracción Muscular/efectos de los fármacos , Músculo Liso/metabolismo , Fosforilación/efectos de los fármacos , Ratas
8.
Am J Physiol Heart Circ Physiol ; 319(1): H66-H75, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32442033

RESUMEN

Current thinking suggests that wave reflection in arteries limits pulse pressure and hydraulic energy (HE) transmission to the microvasculature and that this protective effect reduces with advancing age. However, according to transmission line theory, pressure transmission (Tp) and reflection (R) coefficients are proportional (Tp = 1 + R), implying that wave reflection would promote rather than limit pressure transmission. We hypothesized that increasing distal pulse pressure (PPd) with age is instead related to increased proximal pulse pressure (PPp) and its forward component and that these are modulated by arterial compliance. A one-dimensional model of a fractal arterial tree containing 21 generations was constructed. Wave speed in each vessel was prescribed to achieve a uniform R at every junction, with changes in R achieved by progressively stiffening proximal or distal vessels. For both stiffening scenarios, decreasing reflection led to a decrease or no change in PPd when forward pressure or compliance were held constant, respectively, suggesting that wave reflection per se does not limit pressure transmission. Proximal pulse pressure, its forward component, and PPd increased with decreasing compliance; furthermore, proximal and distal pulse pressures were approximately proportional. With fixed compliance but decreasing reflection, HE transmission increased, whereas pressure transmission decreased, consistent with transmission line theory. In conclusion, wave reflection does not protect the microvasculature from high PPd; rather, PPp and PPd are modulated by arterial compliance, which reduces with age. Wave reflection has opposing effects on pressure and HE transmission; hence, the relative importance of pressure versus HE in contributing to microvascular damage warrants investigation.NEW & NOTEWORTHY With aging, a reduction in the stiffness gradient between elastic and muscular arteries is thought to reduce wave reflection in conduit arteries, leading to increased pulsatile pressure transmission into the microvasculature. This assumes that wave reflection limits pressure transmission in arteries. However, using a computational model, we showed that wave reflection promotes pulsatile pressure transmission, although it does limit hydraulic energy transmission. Increased microvascular pulse pressure with aging is instead related to decreasing arterial compliance.


Asunto(s)
Envejecimiento/fisiología , Arterias/fisiología , Presión Sanguínea , Microvasos/fisiología , Modelos Cardiovasculares , Animales , Arterias/crecimiento & desarrollo , Humanos , Microvasos/crecimiento & desarrollo , Flujo Pulsátil , Análisis de la Onda del Pulso
9.
Am J Med Genet A ; 182(6): 1454-1459, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32198970

RESUMEN

Congenital heart defects (CHD) are the most common birth defect and are both clinically and genetically heterogeneous. Truncus arteriosus (TA), characterized by a single arterial vessel arising from both ventricles giving rise to the coronary, pulmonary and systemic arteries, is rare and only responsible for 1% of all CHD. Two consanguineous families with TA were previously identified to have homozygous nonsense variants within the gene NKX2-6. NKX2-6 is a known downstream target of TBX1, an important transcriptional regulator implicated in the cardiac phenotype of 22q11.2 microdeletion syndrome. Herein, we report two siblings with TA presumably caused by compound heterozygous NKX2-6 variants without a history of consanguinity. Two in-house cohorts with conotruncal defects (CTD) were sequenced for variants in NKX2-6 and no additional cases of biallelic NKX2-6 variants were identified. The similar phenotype of these cases, and the clustering of variants that likely result in a truncated protein that disrupts the homeobox domain, suggest that biallelic loss of function for NKX2-6 is a rare genetic etiology for TA in particular, and possibly other types of CHD.


Asunto(s)
Cardiopatías Congénitas/genética , Proteínas de Homeodominio/genética , Proteínas de Dominio T Box/genética , Tronco Arterial/fisiopatología , Alelos , Arterias/anomalías , Arterias/crecimiento & desarrollo , Niño , Preescolar , Codón sin Sentido/genética , Anomalías Congénitas/genética , Anomalías Congénitas/fisiopatología , Consanguinidad , Femenino , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/fisiopatología , Humanos , Lactante , Masculino , Linaje , Fenotipo , Dominios Proteicos/genética , Tronco Arterial/metabolismo
10.
Dev Dyn ; 248(9): 771-783, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31175693

RESUMEN

BACKGROUND: Second heart field cells and neural crest cells have been reported to participate in the morphogenesis of the pharyngeal arch arteries (PAAs); however, how the PAAs grow out and are separated from the aortic sac into left and right sections is unknown. RESULTS: An Isl-1 positive pharyngeal mesenchyme protrusion in the aortic sac ventrally extends and fuses with the aortic sac wall to form a midsagittal septum that divides the aortic sac. The aortic sac division separates the left and right PAAs to form independent arteries. The midsagittal septum dividing the aortic sac has a different expression pattern from the aortic-pulmonary (AP) septum in which Isl-1 positive cells are absent. At 11 days post-conception (dpc) in a mouse embryo, the Isl-1 positive mesenchyme protrusion appears as a heart-shaped structure, in which subpopulations with Isl-1+ Tbx3+ and Isl-1+ Nkx2.5+ cells are included. CONCLUSIONS: The aortic sac is a dynamic structure that is continuously divided during the migration from the pharyngeal mesenchyme to the pericardial cavity. The separation of the aortic sac is not complete until the AP septum divides the aortic sac into the ascending aorta and pulmonary trunk. Moreover, the midsagittal septum and the AP septum are distinct structures.


Asunto(s)
Aorta/crecimiento & desarrollo , Región Branquial/irrigación sanguínea , Corazón/embriología , Proteínas con Homeodominio LIM/análisis , Mesodermo/embriología , Factores de Transcripción/análisis , Animales , Aorta/embriología , Arterias/embriología , Arterias/crecimiento & desarrollo , Región Branquial/embriología , Embrión de Mamíferos , Mesodermo/citología , Ratones , Morfogénesis
11.
Am J Physiol Heart Circ Physiol ; 316(1): H80-H88, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30289292

RESUMEN

Homodimer formation is essential for the normal activity of endothelial nitric oxide synthase (eNOS). Structural uncoupling of eNOS, with generation of enzyme monomers, is thought to contribute to endothelial dysfunction in several vascular disorders, including aging. However, low-temperature SDS-PAGE of healthy arteries has revealed considerable variation between studies in the relative expression of eNOS dimers and monomers. While assessing structural uncoupling of eNOS in aging arteries, we identified methodological pitfalls that might contribute to such variation. Therefore, using human cultured aortic endothelial cells and aortas from young and aged Fischer-344 rats, we investigated optimal approaches for analyzing the expression of eNOS monomers and dimers. The results demonstrated that published differences in treatment of cell lysates can significantly impact the relative expression of several eNOS species, including denatured monomers, partially folded monomers, dimers, and higher-order oligomers. In aortas, experiments initially confirmed a large increase in eNOS monomers in aging arteries, consistent with structural uncoupling. However, these monomers were actually endogenous IgG, which, under these conditions, has mobility similar to eNOS monomers. Increased IgG levels in aged aortas likely reflect the aging-induced disruption of endothelial junctions and increased arterial penetration of IgG. After removal of the IgG signal, there were low levels of eNOS monomers in young arteries, which were not significantly different in aged arteries. Therefore, structural uncoupling of eNOS is not a prominent feature in young healthy arteries, and the process is not increased by aging. The study also identifies optimal approaches to analyze eNOS dimers and monomers. NEW & NOTEWORTHY Structural uncoupling of endothelial nitric oxide synthase (eNOS) is considered central to endothelial dysfunction. However, reported levels of eNOS dimers and monomers vary widely, even in healthy arteries. We demonstrate that sample processing can alter relative levels of eNOS species. Moreover, endothelial dysfunction in aging aortas results in IgG accumulation, which, because of similar mobility to eNOS monomers, could be misinterpreted as structural uncoupling. Indeed, enzyme monomerization is not prominent in young or aging arteries.


Asunto(s)
Envejecimiento/metabolismo , Arterias/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Multimerización de Proteína , Animales , Arterias/crecimiento & desarrollo , Artefactos , Células Cultivadas , Endotelio Vascular/crecimiento & desarrollo , Endotelio Vascular/metabolismo , Humanos , Immunoblotting/normas , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Óxido Nítrico Sintasa de Tipo III/química , Óxido Nítrico Sintasa de Tipo III/genética , Pliegue de Proteína , Ratas , Ratas Endogámicas F344
12.
J Transl Med ; 17(1): 261, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31399109

RESUMEN

BACKGROUND: Cell therapy has been proposed for patients with critical limb ischemia (CLI). Autologous bone marrow derived cells (BMCs) have been mostly used, mesenchymal stem cells (MSCs) being an alternative. The aim of this study was to characterize two types of MSCs and evaluate their efficacy. METHODS: MSCs were obtained from CLI-patients BMCs. Stimulated- (S-) MSCs were cultured in endothelial growth medium. Cells were characterized by the expression of cell surface markers, the relative expression of 6 genes, the secretion of 10 cytokines and the ability to form vessel-like structures. The cell proangiogenic properties was analysed in vivo, in a hindlimb ischemia model. Perfusion of lower limbs and functional tests were assessed for 28 days after cell infusion. Muscle histological analysis (neoangiogenesis, arteriogenesis and muscle repair) was performed. RESULTS: S-MSCs can be obtained from CLI-patients BMCs. They do not express endothelial specific markers but can be distinguished from MSCs by their secretome. S-MSCs have the ability to form tube-like structures and, in vivo, to induce blood flow recovery. No amputation was observed in S-MSCs treated mice. Functional tests showed improvement in treated groups with a superiority of MSCs and S-MSCs. In muscles, CD31+ and αSMA+ labelling were the highest in S-MSCs treated mice. S-MSCs induced the highest muscle repair. CONCLUSIONS: S-MSCs exert angiogenic potential probably mediated by a paracrine mechanism. Their administration is associated with flow recovery, limb salvage and muscle repair. The secretome from S-MSCs or secretome-derived products may have a strong potential in vessel regeneration and muscle repair. Trial registration NCT00533104.


Asunto(s)
Medios de Cultivo/farmacología , Células Endoteliales/citología , Extremidades/irrigación sanguínea , Isquemia/terapia , Células Madre Mesenquimatosas/citología , Adulto , Anciano , Animales , Arterias/crecimiento & desarrollo , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Extremidades/patología , Femenino , Miembro Posterior/irrigación sanguínea , Humanos , Isquemia/patología , Masculino , Trasplante de Células Madre Mesenquimatosas , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Músculos/irrigación sanguínea , Músculos/patología , Neovascularización Fisiológica , Organogénesis , Flujo Sanguíneo Regional
13.
Int J Mol Sci ; 20(24)2019 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-31817879

RESUMEN

Arteriogenesis is an intricate process in which increased shear stress in pre-existing arteriolar collaterals induces blood vessel expansion, mediated via endothelial cell activation, leukocyte recruitment and subsequent endothelial and smooth muscle cell proliferation. Extracellular RNA (eRNA), released from stressed cells or damaged tissue under pathological conditions, has recently been discovered to be liberated from endothelial cells in response to increased shear stress and to promote collateral growth. Until now, eRNA has been shown to enhance coagulation and inflammation by inducing cytokine release, leukocyte recruitment, and endothelial permeability, the latter being mediated by vascular endothelial growth factor (VEGF) signaling. In the context of arteriogenesis, however, eRNA has emerged as a transmitter of shear stress into endothelial activation, mediating the sterile inflammatory process essential for collateral remodeling, whereby the stimulatory effects of eRNA on the VEGF signaling axis seem to be pivotal. In addition, eRNA might influence subsequent steps of the arteriogenesis cascade as well. This article provides a comprehensive overview of the beneficial effects of eRNA during arteriogenesis, laying the foundation for further exploration of the connection between the damaging and non-damaging effects of eRNA in the context of cardiovascular occlusive diseases and of sterile inflammation.


Asunto(s)
Arterias/crecimiento & desarrollo , Células Endoteliales/citología , Miocitos del Músculo Liso/citología , Neovascularización Fisiológica , ARN/metabolismo , Animales , Arterias/metabolismo , Células Endoteliales/metabolismo , Humanos , Miocitos del Músculo Liso/metabolismo , ARN/genética , Transducción de Señal
14.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1799-1808, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28732675

RESUMEN

Cells sense and respond to the biophysical properties of their surrounding environment by interacting with the extracellular matrix (ECM). Therefore, the optimization of these cell-matrix interactions is critical in tissue engineering. The vascular system is adapted to specific functions in diverse tissues and organs. Appropriate arterial-venous differentiation is vital for the establishment of functional vasculature in angiogenesis. Here, we have developed a polydimethylsiloxane (PDMS)-based substrate capable of simulating the physiologically relevant stiffness of both venous (7kPa) and arterial (128kPa) tissues. This substrate was utilized to investigate the effects of changes in substrate stiffness on the differentiation of endothelial progenitor cells (EPCs). As EPCs derived from mouse bone marrow were cultured on substrates of increasing stiffness, the mRNA and protein levels of the specific arterial endothelial cell marker ephrinB2 were found to increase, while the expression of the venous marker EphB4 decreased. Further experiments were performed to identify the mechanotransduction pathway involved in this process. The results indicated that substrate stiffness regulates the arterial and venous differentiation of EPCs via the Ras/Mek pathway. This work shows that modification of substrate stiffness may represent a method for regulating arterial-venous differentiation for the fulfilment of diverse functions of the vasculature.


Asunto(s)
Diferenciación Celular/genética , Células Progenitoras Endoteliales/metabolismo , Efrina-B2/genética , Matriz Extracelular/metabolismo , Receptor EphB4/genética , Animales , Arterias/crecimiento & desarrollo , Arterias/metabolismo , Fenómenos Biofísicos/genética , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/metabolismo , Matriz Extracelular/genética , Regulación de la Expresión Génica , Mecanotransducción Celular/genética , Ratones , ARN Mensajero/genética , Especificidad por Sustrato , Ingeniería de Tejidos , Rigidez Vascular/genética , Rigidez Vascular/fisiología , Venas/crecimiento & desarrollo , Venas/metabolismo
15.
J Mol Cell Cardiol ; 121: 277-286, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30053526

RESUMEN

AIMS: Accumulating evidence indicates the presence of vascular stem/progenitor cells that may play a role in endothelial repair and lesion formation in the injured artery, in which c-kit+ stem/progenitor cells have been reported to differentiate into endothelial and smooth muscle cells in vitro and in ischemic tissue. In this study, we investigated whether and how endogenous c-kit+ stem/progenitor cells contribute to vascular injury and neointima formation in vivo. METHODS AND RESULTS: We created Kit-CreERxRosa26-RFP mice and performed genetic lineage tracing analysis of c-kit+ stem/progenitor cells in injury-induced neointima formation in vivo. We provide direct evidence that endogenous c-kit+ stem/progenitor cells minimally differentiate into endothelial or smooth muscle cells facilitating vascular repair, but predominantly generate monocytes/macrophages and granulocytes contributing to vascular immuno-inflammatory response to endothelial injury. Although c-kit+ cells reside in both bone marrow and vessel wall, bone marrow transplantation data indicate that bone marrow-derived c-kit+ cells are the main source for enhancing neointima formation. Furthermore, treatment of ACK2, a c-kit receptor antagonizer, attenuates neointimal hyperplasia after injury at least in part by depleting c-kit+ cells and their generated progeny. CONCLUSIONS: c-kit+ stem/progenitor cells are not a main source for endothelial regeneration and smooth muscle accumulation of the large artery injury, but a plausible interventional approach to reduce vascular immuno-inflammatory response and subsequently to ameliorate vascular lesions.


Asunto(s)
Arterias/crecimiento & desarrollo , Linaje de la Célula/genética , Proteínas Proto-Oncogénicas c-kit/genética , Células Madre/citología , Túnica Íntima/crecimiento & desarrollo , Animales , Arterias/lesiones , Diferenciación Celular/genética , Línea Celular , Movimiento Celular/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Granulocitos/metabolismo , Humanos , Macrófagos/metabolismo , Ratones , Monocitos/metabolismo , Neointima/genética , Neointima/patología , Células Madre/metabolismo , Túnica Íntima/lesiones , Túnica Íntima/patología
16.
Breast Cancer Res ; 20(1): 20, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29566737

RESUMEN

BACKGROUND: Perfusion of breast cancer tissue limits oxygen availability and metabolism but angiogenesis inhibitors have hitherto been unsuccessful for breast cancer therapy. In order to identify abnormalities and possible therapeutic targets in mature cancer arteries, we here characterize the structure and function of cancer feed arteries and corresponding control arteries from female FVB/N mice with ErbB2-induced breast cancer. METHODS: We investigated the contractile function of breast cancer feed arteries and matched control arteries by isometric myography and evaluated membrane potentials and intracellular [Ca2+] using sharp electrodes and fluorescence microscopy, respectively. Arterial wall structure is assessed by transmission light microscopy of arteries mounted in wire myographs and by evaluation of histological sections using the unbiased stereological disector technique. We determined the expression of messenger RNA by reverse transcription and quantitative polymerase chain reaction and studied receptor expression by confocal microscopy of arteries labelled with the BODIPY-tagged α1-adrenoceptor antagonist prazosin. RESULTS: Breast cancer feed arteries are thin-walled and produce lower tension than control arteries of similar diameter in response to norepinephrine, thromboxane-analog U46619, endothelin-1, and depolarization with elevated [K+]. Fewer layers of similarly-sized vascular smooth muscle cells explain the reduced media thickness of breast cancer arteries. Evidenced by lower media stress, norepinephrine-induced and thromboxane-induced tension development of breast cancer arteries is reduced more than is explained by the thinner media. Conversely, media stress during stimulation with endothelin-1 and elevated [K+] is similar between breast cancer and control arteries. Correspondingly, vascular smooth muscle cell depolarizations and intracellular Ca2+ responses are attenuated in breast cancer feed arteries during norepinephrine but not during endothelin-1 stimulation. Protein expression of α1-adrenoceptors and messenger RNA levels for α1A-adrenoceptors are lower in breast cancer arteries than control arteries. Sympathetic vasocontraction elicited by electrical field stimulation is inhibited by α1-adrenoceptor blockade and reduced in breast cancer feed arteries compared to control arteries. CONCLUSION: Thinner media and lower α1-adrenoceptor expression weaken contractions of breast cancer feed arteries in response to sympathetic activity. We propose that abnormalities in breast cancer arteries can be exploited to modify tumor perfusion and thereby either starve cancer cells or facilitate drug and oxygen delivery during chemotherapy or radiotherapy.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias Mamarias Animales/genética , Neovascularización Patológica/genética , Receptores Adrenérgicos alfa 1/genética , Antagonistas de Receptores Adrenérgicos alfa 1/administración & dosificación , Animales , Arterias/crecimiento & desarrollo , Arterias/patología , Arterias/ultraestructura , Neoplasias de la Mama/irrigación sanguínea , Neoplasias de la Mama/patología , Calcio/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Mamarias Animales/irrigación sanguínea , Neoplasias Mamarias Animales/patología , Potenciales de la Membrana/efectos de los fármacos , Ratones , Contracción Muscular/efectos de los fármacos , Miografía , Neovascularización Patológica/patología , Norepinefrina/administración & dosificación , Oxígeno/metabolismo , Prazosina/administración & dosificación , ARN Mensajero/genética , Receptor ErbB-2/genética , Receptores Adrenérgicos alfa 1/administración & dosificación
17.
Am J Physiol Heart Circ Physiol ; 315(3): H602-H609, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29906226

RESUMEN

Current research indicates that vasomotor responses are altered with aging in skeletal muscle resistance arteries. The changes in vasomotor function are characterized by impaired vasodilator and vasoconstrictor responses. The detrimental effects of aging on vasomotor function are attenuated in some vascular beds after a program of endurance exercise training. The signals associated with exercise responsible for inducing improvements in vasomotor function have been proposed to involve short-duration increases in intraluminal shear stress and/or pressure during individual bouts of exercise. Here, we review evidence that increases in shear stress and pressure, within a range believed to present in these arteries during exercise, promote healthy vasomotor function in aged resistance arteries. We conclude that available research is consistent with the interpretation that short-duration mechanical stimulation, through increases in shear stress and pressure, contributes to the beneficial effects of exercise on vasomotor function in aged skeletal muscle resistance arteries.


Asunto(s)
Arterias/fisiología , Ejercicio Físico , Músculo Esquelético/irrigación sanguínea , Sistema Vasomotor/fisiología , Animales , Arterias/crecimiento & desarrollo , Humanos , Mecanotransducción Celular , Músculo Esquelético/crecimiento & desarrollo , Estrés Mecánico , Sistema Vasomotor/crecimiento & desarrollo
18.
Am J Physiol Heart Circ Physiol ; 315(6): H1660-H1669, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30192630

RESUMEN

Little is known about vascular mitochondrial respiratory function and the impact of age. Therefore, skeletal muscle feed arteries were harvested from young (33 ± 7 yr, n = 10), middle-aged (54 ± 5 yr, n = 10), and old (70 ± 7 yr, n = 10) subjects, and mitochondrial respiration as well as citrate synthase (CS) activity were assessed. Complex I (CI) and complex I + II (CI+II) state 3 respiration were greater in young (CI: 10.4 ± 0.8 pmol·s-1·mg-1 and CI+II: 12.4 ± 0.8 pmol·s-1·mg-1, P < 0.05) than middle-aged (CI: 7 ± 0.6 pmol·s-1·mg-1 and CI+II: 8.3 ± 0.5 pmol·s-1·mg-1) and old (CI: 7.2 ± 0.4 pmol·s-1·mg-1 and CI+II: 7.6 ± 0.5 pmol·s-1·mg-1) subjects and, as in the case of complex II (CII) state 3 respiration, were inversely correlated with age [ r = -0.56 (CI), r = -0.7 (CI+II), and r = 0.4 (CII), P < 0.05]. In contrast, state 4 respiration and mitochondria-specific superoxide levels were not different across groups. The respiratory control ratio was greater in young (2.2 ± 0.2, P < 0.05) than middle-aged and old (1.4 ± 0.1 and 1.1 ± 0.1, respectively) subjects and inversely correlated with age ( r = -0.71, P < 0.05). As CS activity was inversely correlated with age ( r = -0.54, P < 0.05), when normalized for mitochondrial content, the age-related differences and relationships with state 3 respiration were ablated. In contrast, mitochondrion-specific state 4 respiration was now lower in young (15 ± 1.4 pmol·s-1·mg-1·U CS-1, P < 0.05) than middle-aged and old (23.4 ± 3.6 and 27.9 ± 3.4 pmol·s-1·mg-1·U CS-1, respectively) subjects and correlated with age ( r = 0.46, P < 0.05). Similarly, superoxide/CS levels were lower in young (0.07 ± 0.01) than old (0.19 ± 0.41) subjects and correlated with age ( r = 0.44, P < 0.05). Therefore, with aging, vascular mitochondrial respiratory function declines, predominantly as a consequence of falling mitochondrial content. However, per mitochondrion, aging likely results in greater mitochondrion-derived oxidative stress, which may contribute to age-related vascular dysfunction. NEW & NOTEWORTHY This study determined, for the first time, that vascular mitochondrial oxidative respiratory capacity, oxidative coupling efficiency, and mitochondrial content fell progressively with advancing age. In terms of single mitochondrion-specific respiration, the age-related differences were completely ablated and the likelihood of free radical production increased progressively with advancing age. This study reveals that vascular mitochondrial respiratory capacity declines with advancing age, as a consequence of falling mitochondrial content, as does oxidative coupling efficiency.


Asunto(s)
Envejecimiento/metabolismo , Arterias/metabolismo , Mitocondrias/metabolismo , Adulto , Anciano , Arterias/crecimiento & desarrollo , Respiración de la Célula , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estrés Oxidativo
19.
Blood ; 128(19): 2359-2366, 2016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27557946

RESUMEN

The mechanisms that allow cells to bypass anti-vascular endothelial growth factor A (VEGFA) therapy remain poorly understood. Here we use zebrafish to investigate this question and first show that vegfaa mutants display a severe vascular phenotype that can surprisingly be rescued to viability by vegfaa messenger RNA injections at the 1-cell stage. Using vegfaa mutants as an in vivo test tube, we found that zebrafish Vegfbb, Vegfd, and Pgfb can also rescue these animals to viability. Taking advantage of a new vegfr1 tyrosine kinase-deficient mutant, we determined that Pgfb rescues vegfaa mutants via Vegfr1. Altogether, these data reveal potential resistance routes against current anti-VEGFA therapies. In order to circumvent this resistance, we engineered and validated new dominant negative Vegfa molecules that by trapping Vegf family members can block vascular development. Thus, our results show that Vegfbb, Vegfd, and Pgfb can sustain vascular development in the absence of VegfA, and our newly engineered Vegf molecules expand the toolbox for basic research and antiangiogenic therapy.


Asunto(s)
Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Envejecimiento/patología , Animales , Arterias/crecimiento & desarrollo , Arterias/patología , Diferenciación Celular , Genes Dominantes , Ligandos , Mutación/genética , Neovascularización Fisiológica , Ingeniería de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/genética
20.
Circ Res ; 119(5): 607-20, 2016 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-27354211

RESUMEN

RATIONALE: Arterial endothelial cells are morphologically, functionally, and molecularly distinct from those found in veins and lymphatic vessels. How arterial fate is acquired during development and maintained in adult vessels is incompletely understood. OBJECTIVE: We set out to identify factors that promote arterial endothelial cell fate in vivo. METHODS AND RESULTS: We developed a functional assay, allowing us to monitor and manipulate arterial fate in vivo, using arteries isolated from quails that are grafted into the coelom of chick embryos. Endothelial cells migrate out from the grafted artery, and their colonization of host arteries and veins is quantified. Here we show that sympathetic innervation promotes arterial endothelial cell fate in vivo. Removal of sympathetic nerves decreases arterial fate and leads to colonization of veins, whereas exposure to sympathetic nerves or norepinephrine imposes arterial fate. Mechanistically, sympathetic nerves increase endothelial ERK (extracellular signal-regulated kinase) activity via adrenergic α1 and α2 receptors. CONCLUSIONS: These findings show that sympathetic innervation promotes arterial endothelial fate and may lead to novel approaches to improve arterialization in human disease.


Asunto(s)
Fibras Adrenérgicas/enzimología , Arterias/enzimología , Arterias/inervación , Endotelio Vascular/enzimología , Endotelio Vascular/inervación , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Animales , Arterias/crecimiento & desarrollo , Movimiento Celular/fisiología , Embrión de Pollo , Membrana Corioalantoides/enzimología , Membrana Corioalantoides/crecimiento & desarrollo , Membrana Corioalantoides/inervación , Coturnix , Endotelio Vascular/crecimiento & desarrollo , Activación Enzimática/fisiología , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Técnicas de Cultivo de Órganos , Sistema Nervioso Periférico/enzimología , Sistema Nervioso Periférico/crecimiento & desarrollo , Trasplante de Tejidos/métodos , Arterias Umbilicales/enzimología , Arterias Umbilicales/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda