Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Development ; 145(11)2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29752384

RESUMEN

During zebrafish fin regeneration, blastema cells lining the epidermis differentiate into osteoblasts and joint cells to reconstruct the segmented bony rays. We show that osteoblasts and joint cells originate from a common cell lineage, but are committed to different cell fates. Pre-osteoblasts expressing runx2a/b commit to the osteoblast lineage upon expressing sp7, whereas the strong upregulation of hoxa13a correlates with a commitment to a joint cell type. In the distal regenerate, hoxa13a, evx1 and pthlha are sequentially upregulated at regular intervals to define the newly identified presumptive joint cells. Presumptive joint cells mature into joint-forming cells, a distinct cell cluster that maintains the expression of these factors. Analysis of evx1 null mutants reveals that evx1 is acting upstream of pthlha and downstream of or in parallel with hoxa13a Calcineurin activity, potentially through the inhibition of retinoic acid signaling, regulates evx1, pthlha and hoxa13a expression during joint formation. Furthermore, retinoic acid treatment induces osteoblast differentiation in mature joint cells, leading to ectopic bone deposition in joint regions. Overall, our data reveal a novel regulatory pathway essential for joint formation in the regenerating fin.


Asunto(s)
Aletas de Animales/crecimiento & desarrollo , Calcineurina/metabolismo , Articulaciones/crecimiento & desarrollo , Regeneración/fisiología , Tretinoina/farmacología , Pez Cebra/fisiología , Animales , Diferenciación Celular/fisiología , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Osteoblastos/citología , Proteína Relacionada con la Hormona Paratiroidea/biosíntesis , Proteína Relacionada con la Hormona Paratiroidea/genética , Factor de Transcripción Sp7/biosíntesis , Factor de Transcripción Sp7/genética , Factores de Transcripción/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/biosíntesis , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
Genes Dev ; 27(5): 514-24, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23475960

RESUMEN

Joints form within the developing skeleton through the segmentation and cavitation of initially continuous cartilage condensations. However, the molecular pathways controlling joint formation largely remain to be clarified. In particular, while several critical secreted signals have been identified, no transcription factors have yet been described as acting in the early stages of joint formation. Working upstream of the early joint marker Wnt9a, we found that the transcription factor c-Jun plays a pivotal role in specifying joint cell fates. We first identified an enhancer upstream of the Wnt9a gene driving joint-specific expression in transgenic reporter mice. A comprehensive in silico screen suggested c-Jun as a candidate transcription factor activating this Wnt9a enhancer element. c-Jun is specifically expressed in joints during embryonic joint development, and its conditional deletion from early limb bud mesenchyme in mice severely affects both initiation and subsequent differentiation of all limb joints. c-Jun directly regulates Wnt16 as well as Wnt9a during early stages of joint development, causing a decrease of canonical Wnt activity in the joint interzone. Postnatally, c-Jun-deficient mice show a range of joint abnormalities, including cartilaginous continuities between juxtaposed skeletal elements, irregular articular surfaces, and hypoplasia of ligaments.


Asunto(s)
Diferenciación Celular , Articulaciones/embriología , Proteínas Proto-Oncogénicas c-jun/metabolismo , Animales , Embrión de Mamíferos , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Articulaciones/crecimiento & desarrollo , Esbozos de los Miembros/embriología , Esbozos de los Miembros/metabolismo , Ratones , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas c-jun/genética , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
3.
Hum Mol Genet ; 26(7): 1280-1293, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28169396

RESUMEN

Human multiple synostoses syndrome (SYNS) is an autosomal dominant disorder characterized by multiple joint fusions. We previously identified a point mutation (S99N) in FGF9 that causes human SYNS3. However, the physiological function of FGF9 during joint development and comprehensive molecular portraits of SYNS3 remain elusive. Here, we report that mice harboring the S99N mutation in Fgf9 develop the curly tail phenotype and partially or fully fused caudal vertebrae and limb joints, which mimic the major phenotypes of SYNS3 patients. Further study reveals that the S99N mutation in Fgf9 disrupts joint interzone formation by affecting the chondrogenic differentiation of mesenchymal cells at the early stage of joint development. Consistently, the limb bud micromass culture (LBMMC) assay shows that Fgf9 inhibits mesenchymal cell differentiation into chondrocytes by downregulating the expression of Sox6 and Sox9. However, the mutant protein does not exhibit the same inhibitory effect. We also show that Fgf9 is required for normal expression of Gdf5 in the prospective elbow and knee joints through its activation of Gdf5 promoter activity. Signal transduction assays indicate that the S99N mutation diminishes FGF signaling in developmental limb joints. Finally, we demonstrate that the conformational change in FGF9 resulting from the S99N mutation disrupts FGF9/FGFR/heparin interaction, which impedes FGF signaling in developmental joints. Taken together, we conclude that the S99N mutation in Fgf9 causes SYNS3 via the disturbance of joint interzone formation. These results further implicate the crucial role of Fgf9 during embryonic joint development.


Asunto(s)
Huesos del Carpo/anomalías , Diferenciación Celular/genética , Factor 9 de Crecimiento de Fibroblastos/genética , Deformidades Congénitas del Pie/genética , Deformidades Congénitas de la Mano/genética , Estribo/anomalías , Sinostosis/genética , Huesos Tarsianos/anomalías , Animales , Huesos del Carpo/fisiopatología , Condrogénesis/genética , Factor 9 de Crecimiento de Fibroblastos/biosíntesis , Factor 9 de Crecimiento de Fibroblastos/química , Deformidades Congénitas del Pie/fisiopatología , Regulación del Desarrollo de la Expresión Génica , Factor 5 de Diferenciación de Crecimiento/genética , Deformidades Congénitas de la Mano/fisiopatología , Humanos , Articulaciones/crecimiento & desarrollo , Articulaciones/patología , Ratones , Mutación Puntual , Conformación Proteica , Factor de Transcripción SOX9/genética , Factores de Transcripción SOXD/genética , Transducción de Señal , Estribo/fisiopatología , Sinostosis/fisiopatología , Huesos Tarsianos/fisiopatología
4.
PLoS Genet ; 12(11): e1006454, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27902701

RESUMEN

Synovial joints are crucial for support and locomotion in vertebrates, and are the frequent site of serious skeletal defects and degenerative diseases in humans. Growth and differentiation factor 5 (Gdf5) is one of the earliest markers of joint formation, is required for normal joint development in both mice and humans, and has been genetically linked to risk of common osteoarthritis in Eurasian populations. Here, we systematically survey the mouse Gdf5 gene for regulatory elements controlling expression in synovial joints. We identify separate regions of the locus that control expression in axial tissues, in proximal versus distal joints in the limbs, and in remarkably specific sub-sets of composite joints like the elbow. Predicted transcription factor binding sites within Gdf5 regulatory enhancers are required for expression in particular joints. The multiple enhancers that control Gdf5 expression in different joints are distributed over a hundred kilobases of DNA, including regions both upstream and downstream of Gdf5 coding exons. Functional rescue tests in mice confirm that the large flanking regions are required to restore normal joint formation and patterning. Orthologs of these enhancers are located throughout the large genomic region previously associated with common osteoarthritis risk in humans. The large array of modular enhancers for Gdf5 provide a new foundation for studying the spatial specificity of joint patterning in vertebrates, as well as new candidates for regulatory regions that may also influence osteoarthritis risk in human populations.


Asunto(s)
Factor 5 de Diferenciación de Crecimiento/genética , Osteoartritis/genética , Esqueleto/crecimiento & desarrollo , Vertebrados/genética , Animales , Sitios de Unión/genética , Exones/genética , Extremidades/crecimiento & desarrollo , Extremidades/patología , Factor 5 de Diferenciación de Crecimiento/metabolismo , Cabeza/crecimiento & desarrollo , Cabeza/patología , Humanos , Articulaciones/crecimiento & desarrollo , Articulaciones/patología , Rodilla/crecimiento & desarrollo , Rodilla/patología , Ratones , Osteoartritis/patología , Secuencias Reguladoras de Ácidos Nucleicos/genética , Hombro/crecimiento & desarrollo , Hombro/patología , Esqueleto/metabolismo , Esqueleto/patología , Líquido Sinovial/metabolismo , Dedos del Pie/crecimiento & desarrollo , Dedos del Pie/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vertebrados/crecimiento & desarrollo
5.
Semin Cell Dev Biol ; 55: 131-8, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26845195

RESUMEN

In summary, the patterning of the presumptive leg depends on gradients of Dpp and Wg morphogens, which lead to the establishment of the proximo-distal axis marked by the expression of Hth, Dac and Dll in broad domains along the leg. Then, EGFR signaling specifies the tarsal region by regulating the expression of tarsal gap genes in different tarsal segments. This patterning is closely linked to the formation of rings of Notch activation in the distal part of each leg segment. These rings of Notch activation are further regulated by different mechanisms: (1) the maintenance of a sharp border of Dl expression, (2) the inhibition of N activation in cells located proximally to the ligands, thus restricting N activity specifically to the distal part of cells. This localised activation of Notch induces the expression of Dysfusion which controls the expression of both pro-apoptotic genes and RhoGTPase regulators. Finally, apoptotic cells appear within the pro-apoptotic domain, and while dying, generate a transient pulling force. This force constitutes a mechanical signal that propagates to the rest of the tissue and triggers cytoskeleton reorganisation specifically in the presumptive fold, where RhoGTPase regulators are expressed. Altogether, this complex array of patterning and signaling leads to precise cellular mapping of the developing leg to correctly position local cell shape modifications, inducing tissue folding.


Asunto(s)
Extremidades/crecimiento & desarrollo , Articulaciones/crecimiento & desarrollo , Articulaciones/metabolismo , Morfogénesis , Animales , Tipificación del Cuerpo , Citoesqueleto/metabolismo , Modelos Biológicos
6.
J Theor Biol ; 454: 345-356, 2018 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-29653160

RESUMEN

Joints connect the skeletal components and enable movement. The appearance and development of articulations is due to different genetic, biochemical, and mechanical factors. In the embryonic stage, controlled biochemical processes are critical for organized growth. We developed a computational model, which predicts the appearance, location, and development of joints in the embryonic stage. Biochemical events are modeled with reaction diffusion equations with generic molecules representing molecules that 1) determine the site where the articulation will appear, 2) promote proliferation, and matrix synthesis, and 3) define articular cartilage. Our model accounts for cell differentiation from mesenchymal cells to pre-cartilaginous cells, then cartilaginous cells, and lastly articular cartilage. These reaction-diffusion equations were solved using the finite elements method. From a mesenchymal 'bud' of a phalanx, the model predicts growth, joint cleavage, joint morphology, and articular cartilage formation. Our prediction of the gene expression during development agrees with molecular expression profiles of joint development reported in literature. Our computational model suggests that initial rudiment dimensions affect diffusion profiles result in Turing patterns that dictate sites of cleavage thereby determining the number of joints in a rudiment.


Asunto(s)
Desarrollo Óseo/fisiología , Cartílago Articular/embriología , Simulación por Computador , Articulaciones/embriología , Animales , Biomarcadores/metabolismo , Huesos/embriología , Huesos/metabolismo , Cartílago Articular/crecimiento & desarrollo , Cartílago Articular/fisiología , Comunicación Celular/fisiología , Diferenciación Celular , Proliferación Celular , Condrogénesis/fisiología , Biología Computacional , Falanges de los Dedos de la Mano/embriología , Falanges de los Dedos de la Mano/crecimiento & desarrollo , Falanges de los Dedos de la Mano/metabolismo , Factor 5 de Diferenciación de Crecimiento/administración & dosificación , Factor 5 de Diferenciación de Crecimiento/farmacocinética , Humanos , Articulaciones/citología , Articulaciones/crecimiento & desarrollo , Articulaciones/metabolismo , Modelos Teóricos , Morfogénesis/fisiología
7.
Dev Dyn ; 246(4): 262-274, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27859991

RESUMEN

Here we review studies identifying regulatory networks responsible for synovial, cartilaginous, and fibrous joint development. Synovial joints, characterized by the fluid-filled synovial space between the bones, are found in high-mobility regions and are the most common type of joint. Cartilaginous joints such as the intervertebral disc unite adjacent bones through either a hyaline cartilage or a fibrocartilage intermediate. Fibrous joints, which include the cranial sutures, form a direct union between bones through fibrous connective tissue. We describe how the distinct morphologic and histogenic characteristics of these joint classes are established during embryonic development. Collectively, these studies reveal that despite the heterogeneity of joint strength and mobility, joint development throughout the skeleton utilizes common signaling networks via long-range morphogen gradients and direct cell-cell contact. This suggests that different joint types represent specialized variants of homologous developmental modules. Identifying the unifying aspects of the signaling networks between joint classes allows a more complete understanding of the signaling code for joint formation, which is critical to improving strategies for joint regeneration and repair. Developmental Dynamics 246:262-274, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Articulaciones/crecimiento & desarrollo , Transducción de Señal/fisiología , Animales , Cartílago Articular , Redes Reguladoras de Genes , Humanos , Cápsula Articular , Articulaciones/anatomía & histología , Articulaciones/embriología , Morfogénesis , Regeneración
8.
J Cell Mol Med ; 21(11): 3066-3075, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28580627

RESUMEN

An in-depth knowledge of the native meniscus morphology and biomechanics in its different areas is essential to develop an engineered tissue. Meniscus is characterized by a great regional variation in extracellular matrix components and in vascularization. Then, the aim of this work was to characterize the expression of factors involved in angiogenesis in different areas during meniscus maturation in pigs. The menisci were removed from the knee joints of neonatal, young and adult pigs, and they were divided into the inner, intermediate and outer areas. Vascular characterization and meniscal maturation were evaluated by immunohistochemistry and Western blot analysis. In particular, expression of the angiogenic factor Vascular Endothelial Growth Factor (VEGF) and the anti-angiogenic marker Endostatin (ENDO) was analysed, as well as the vascular endothelial cadherin (Ve-CAD). In addition, expression of Collagen II (COLL II) and SOX9 was examined, as markers of the fibro-cartilaginous differentiation. Expression of VEGF and Ve-CAD had a similar pattern in all animals, with a significant increase from the inner to the outer part of the meniscus. Pooling the zones, expression of both proteins was significantly higher in the neonatal meniscus than in young and adult menisci. Conversely, the young meniscus revealed a significantly higher expression of ENDO compared to the neonatal and adult ones. Analysis of tissue maturation markers showed an increase in COLL II and a decrease in SOX9 expression with age. These preliminary data highlight some of the changes that occur in the swine meniscus during growth, in particular the ensemble of regulatory factors involved in angiogenesis.


Asunto(s)
Envejecimiento/metabolismo , Colágeno Tipo II/genética , Meniscos Tibiales/metabolismo , Neovascularización Fisiológica/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factores de Edad , Envejecimiento/genética , Animales , Animales Recién Nacidos , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Condrocitos/citología , Condrocitos/metabolismo , Colágeno Tipo II/metabolismo , Endostatinas/genética , Endostatinas/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Articulaciones/citología , Articulaciones/crecimiento & desarrollo , Articulaciones/metabolismo , Meniscos Tibiales/irrigación sanguínea , Meniscos Tibiales/citología , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Porcinos , Factor A de Crecimiento Endotelial Vascular/metabolismo
9.
J Neurophysiol ; 115(3): 1422-35, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26719084

RESUMEN

Standing balance requires multijoint coordination between the ankles and hips. We investigated how humans adapt their multijoint coordination to adjust to various conditions and whether the adaptation differed between healthy young participants and healthy elderly. Balance was disturbed by push/pull rods, applying two continuous and independent force disturbances at the level of the hip and between the shoulder blades. In addition, external force fields were applied, represented by an external stiffness at the hip, either stabilizing or destabilizing the participants' balance. Multivariate closed-loop system-identification techniques were used to describe the neuromuscular control mechanisms by quantifying the corrective joint torques as a response to body sway, represented by frequency response functions (FRFs). Model fits on the FRFs resulted in an estimation of time delays, intrinsic stiffness, reflexive stiffness, and reflexive damping of both the ankle and hip joint. The elderly generated similar corrective joint torques but had reduced body sway compared with the young participants, corresponding to the increased FRF magnitude with age. When a stabilizing or destabilizing external force field was applied at the hip, both young and elderly participants adapted their multijoint coordination by lowering or respectively increasing their neuromuscular control actions around the ankles, expressed in a change of FRF magnitude. However, the elderly adapted less compared with the young participants. Model fits on the FRFs showed that elderly had higher intrinsic and reflexive stiffness of the ankle, together with higher time delays of the hip. Furthermore, the elderly adapted their reflexive stiffness around the ankle joint less compared with young participants. These results imply that elderly were stiffer and were less able to adapt to external force fields.


Asunto(s)
Adaptación Fisiológica , Envejecimiento/fisiología , Articulaciones/fisiología , Equilibrio Postural , Postura , Adulto , Anciano , Tobillo/crecimiento & desarrollo , Tobillo/fisiología , Fenómenos Biomecánicos , Femenino , Humanos , Articulaciones/crecimiento & desarrollo , Masculino , Modelos Neurológicos , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/fisiología , Reflejo
10.
Regul Toxicol Pharmacol ; 74: 161-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26627140

RESUMEN

Ciprofloxacin, a broad-spectrum antimicrobial agent belonging to the fluoroquinolone family, is prescribed off-label in infants less than one year of age. Ciprofloxacin is included in the European Medicines Agency priority list of off-patent medicinal products requiring evaluation in neonates. This evaluation is undergoing within the TINN (Treat Infections in Neonates) FP7 EU project. As part of the TINN project, the present preclinical study was designed to assess the potential adverse effects of Ciprofloxacin on neurodevelopment, liver and joints in mice. Newborn mice received subcutaneous Ciprofloxacin at 10, 30 and 100 mg/kg/day from 2 to 12 postnatal days. Peak plasma levels of Ciprofloxacin were in the range of levels measured in human neonates. We examined vital functions in vivo, including cardiorespiratory parameters and temperature, psychomotor development, exploratory behavior, arthro-, nephro- and hepato-toxic effects. We found no effect of Ciprofloxacin at 10 and 30 mg/kg/day. In contrast, administration at 100 mg/kg/day delayed weight gain, impaired cardiorespiratory and psychomotor development, caused inflammatory infiltrates in the connective tissues surrounding the knee joint, and moderately increased extramedullary hematopoiesis. The present study pleads for careful watching of cardiorespiratory and motor development in neonates treated with Ciprofloxacin, in addition to the standard surveillance of arthrotoxicity.


Asunto(s)
Antibacterianos/toxicidad , Ciprofloxacina/toxicidad , Animales , Animales Recién Nacidos , Conducta Animal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Conducta Exploratoria/efectos de los fármacos , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Articulaciones/efectos de los fármacos , Articulaciones/crecimiento & desarrollo , Articulaciones/patología , Hígado/efectos de los fármacos , Hígado/crecimiento & desarrollo , Hígado/patología , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Sistema Nervioso/efectos de los fármacos , Sistema Nervioso/crecimiento & desarrollo , Sistema Nervioso/patología , Respiración/efectos de los fármacos , Medición de Riesgo , Especificidad de la Especie , Aumento de Peso/efectos de los fármacos
11.
Am J Phys Anthropol ; 157(1): 42-57, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25546173

RESUMEN

Due to disparity regarding the age at which skeletal maturation of the spheno-occipital synchondrosis occurs in forensic and biological literature, this study provides recalibrated multislice computed tomography (MSCT) age standards for the Australian (Queensland) population, using a Bayesian statistical approach. The sample comprises retrospective cranial/cervical MSCT scans obtained from 448 males and 416 females aged birth to 20 years from the Skeletal Biology and Forensic Anthropology Research Osteological Database. Fusion status of the synchondrosis was scored using a modified six-stage scoring tier on an MSCT platform, with negligible observer error (κ = 0.911 ± 0.04, intraclass correlation coefficient = 0.994). Bayesian transition analysis indicates that females are most likely to transition to complete fusion at 13.1 years and males at 15.6 years. Posterior densities were derived for each morphological stage, with complete fusion of the synchondrosis attained in all Queensland males over 16.3 years of age and females aged 13.8 years and older. The results demonstrate significant sexual dimorphism in synchondrosis fusion and are suggestive of intrapopulation variation between major geographic regions in Australia. This study contributes to the growing repository of contemporary anthropological standards calibrated for the Queensland milieu to improve the efficacy of the coronial process for medicolegal death investigation. As a stand-alone age indicator, the basicranial synchondrosis may be consulted as an exclusion criterion when determining the age of majority that constitutes 17 years in Queensland forensic practice.


Asunto(s)
Artrografía , Articulaciones/crecimiento & desarrollo , Hueso Occipital , Hueso Esfenoides , Adolescente , Adulto , Teorema de Bayes , Niño , Preescolar , Femenino , Antropología Forense , Gráficos de Crecimiento , Humanos , Lactante , Recién Nacido , Masculino , Hueso Occipital/diagnóstico por imagen , Hueso Occipital/crecimiento & desarrollo , Queensland/epidemiología , Valores de Referencia , Hueso Esfenoides/diagnóstico por imagen , Hueso Esfenoides/crecimiento & desarrollo , Tomografía Computarizada por Rayos X , Adulto Joven
12.
Dev Dyn ; 243(7): 864-74, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24668501

RESUMEN

Compared with the joints of the limbs, our understanding of the genes that regulate development and growth in the temporomandibular joint (TMJ) is fairly limited. Because the morphogenesis of the secondary cartilage and other intra-articular structures in the TMJ occurs later and in a different manner than in the limbs, the genetic control of TMJ development might reasonably be assumed to differ from that in the limbs. However, studies of the specific genes regulating TMJ morphogenesis and growth have only begun to appear in the literature within the last decade. This review attempts to survey and interpret the existing knowledge on this topic and to suggest fruitful avenues of investigation for the future. Studies to date using knockout and over-expression of candidate genes suggest that a developmental hierarchy of joint structures exists, with condyle development primary. A hierarchy of gene expression also exists: Runx2 and Sox9 expression is critical for condylar cartilage formation. Several of the other genes discussed in this report may regulate TMJ morphogenesis by affecting Sox9 and Runx2 expression and control the ihh-PTHrP axis by means of these genes.


Asunto(s)
Articulación Temporomandibular/crecimiento & desarrollo , Articulación Temporomandibular/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Articulaciones/crecimiento & desarrollo , Articulaciones/metabolismo , Ratones , Morfogénesis/genética , Morfogénesis/fisiología
13.
BMC Genomics ; 15: 48, 2014 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-24443808

RESUMEN

BACKGROUND: Mechanical stimulation is necessary for regulating correct formation of the skeleton. Here we test the hypothesis that mechanical stimulation of the embryonic skeletal system impacts expression levels of genes implicated in developmentally important signalling pathways in a genome wide approach. We use a mutant mouse model with altered mechanical stimulation due to the absence of limb skeletal muscle (Splotch-delayed) where muscle-less embryos show specific defects in skeletal elements including delayed ossification, changes in the size and shape of cartilage rudiments and joint fusion. We used Microarray and RNA sequencing analysis tools to identify differentially expressed genes between muscle-less and control embryonic (TS23) humerus tissue. RESULTS: We found that 680 independent genes were down-regulated and 452 genes up-regulated in humeri from muscle-less Spd embryos compared to littermate controls (at least 2-fold; corrected p-value ≤0.05). We analysed the resulting differentially expressed gene sets using Gene Ontology annotations to identify significant enrichment of genes associated with particular biological processes, showing that removal of mechanical stimuli from muscle contractions affected genes associated with development and differentiation, cytoskeletal architecture and cell signalling. Among cell signalling pathways, the most strongly disturbed was Wnt signalling, with 34 genes including 19 pathway target genes affected. Spatial gene expression analysis showed that both a Wnt ligand encoding gene (Wnt4) and a pathway antagonist (Sfrp2) are up-regulated specifically in the developing joint line, while the expression of a Wnt target gene, Cd44, is no longer detectable in muscle-less embryos. The identification of 84 genes associated with the cytoskeleton that are down-regulated in the absence of muscle indicates a number of candidate genes that are both mechanoresponsive and potentially involved in mechanotransduction, converting a mechanical stimulus into a transcriptional response. CONCLUSIONS: This work identifies key developmental regulatory genes impacted by altered mechanical stimulation, sheds light on the molecular mechanisms that interpret mechanical stimulation during skeletal development and provides valuable resources for further investigation of the mechanistic basis of mechanoregulation. In particular it highlights the Wnt signalling pathway as a potential point of integration of mechanical and molecular signalling and cytoskeletal components as mediators of the response.


Asunto(s)
Citoesqueleto/genética , Desarrollo Embrionario/genética , Húmero/metabolismo , Mecanotransducción Celular , Transducción de Señal/genética , Animales , Diferenciación Celular , Citoesqueleto/metabolismo , Regulación hacia Abajo , Embrión de Mamíferos/metabolismo , Perfilación de la Expresión Génica , Húmero/crecimiento & desarrollo , Articulaciones/crecimiento & desarrollo , Articulaciones/metabolismo , Mecanotransducción Celular/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Análisis de Secuencia de ARN , Regulación hacia Arriba , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
14.
Hum Mol Genet ; 21(21): 4628-44, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22843502

RESUMEN

Mutations in fibroblast growth factor (FGF) receptors are responsible for a variety of skeletal birth defects, but the underlying mechanisms responsible remain unclear. Using a mouse model of thanatophoric dysplasia type II in which FGFR3(K650E) expression was directed to the appendicular skeleton, we show that the mutant receptor caused a block in chondrocyte differentiation specifically at the prehypertrophic stage. The differentiation block led to a severe reduction in hypertrophic chondrocytes that normally produce vascular endothelial growth factor, which in turn was associated with poor vascularization of primary ossification centers and disrupted endochondral ossification. We show that the differentiation block and defects in joint formation are associated with persistent expression of the chondrogenic factor Sox9 and down-regulation of ß-catenin levels and activity in growth plate chondrocytes. Consistent with these in vivo results, FGFR3(K650E) expression was found to increase Sox9 and decrease ß-catenin levels and transcriptional activity in cultured mesenchymal cells. Coexpression of Fgfr3(K650E) and Sox9 in cells resulted in very high levels of Sox9 and cooperative suppression of ß-catenin-dependent transcription. Fgfr3(K650E) had opposing effects on Sox9 and ß-catenin protein stability with it promoting Sox9 stabilization and ß-catenin degradation. Since both Sox9 overexpression and ß-catenin deletion independently blocks hypertrophic differentiation of chondrocytes and cause chondrodysplasias similar to those caused by mutations in FGFR3, our results suggest that dysregulation of Sox9 and ß-catenin levels and activity in growth plate chondrocytes is an important underlying mechanism in skeletal diseases caused by mutations in FGFR3.


Asunto(s)
Articulaciones , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos , Factor de Transcripción SOX9 , Displasia Tanatofórica , beta Catenina , Animales , Diferenciación Celular , Condrocitos/citología , Condrocitos/metabolismo , Regulación de la Expresión Génica , Placa de Crecimiento/citología , Placa de Crecimiento/metabolismo , Humanos , Articulaciones/crecimiento & desarrollo , Articulaciones/metabolismo , Ratones , Mutación , Osteogénesis/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Transducción de Señal , Cráneo/anomalías , Cráneo/metabolismo , Cráneo/fisiopatología , Displasia Tanatofórica/genética , Displasia Tanatofórica/metabolismo , Displasia Tanatofórica/fisiopatología , beta Catenina/genética , beta Catenina/metabolismo
15.
Development ; 137(12): 2055-63, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20501594

RESUMEN

Animal body shape is framed by the skeleton, which is composed of extracellular matrix (ECM). Although how the body plan manifests in skeletal morphology has been studied intensively, cellular mechanisms that directly control skeletal ECM morphology remain elusive. In particular, how dynamic behaviors of ECM-secreting cells, such as shape changes and movements, contribute to ECM morphogenesis is unclear. Strict control of ECM morphology is crucial in the joints, where opposing sides of the skeleton must have precisely reciprocal shapes to fit each other. Here we found that, in the development of ball-and-socket joints in the Drosophila leg, the two sides of ECM form sequentially. We show that distinct cell populations produce the 'ball' and the 'socket', and that these cells undergo extensive shape changes while depositing ECM. We propose that shape changes of ECM-producing cells enable the sequential ECM formation to allow the morphological coupling of adjacent components. Our results highlight the importance of dynamic cell behaviors in precise shaping of skeletal ECM architecture.


Asunto(s)
Drosophila/fisiología , Matriz Extracelular/fisiología , Extremidades/crecimiento & desarrollo , Articulaciones/crecimiento & desarrollo , Morfogénesis , Animales
16.
Nat Genet ; 36(4): 405-10, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14991055

RESUMEN

The filamins are cytoplasmic proteins that regulate the structure and activity of the cytoskeleton by cross-linking actin into three-dimensional networks, linking the cell membrane to the cytoskeleton and serving as scaffolds on which intracellular signaling and protein trafficking pathways are organized (reviewed in refs. 1,2). We identified mutations in the gene encoding filamin B in four human skeletal disorders. We found homozygosity or compound heterozygosity with respect to stop-codon mutations in autosomal recessive spondylocarpotarsal syndrome (SCT, OMIM 272460) and missense mutations in individuals with autosomal dominant Larsen syndrome (OMIM 150250) and the perinatal lethal atelosteogenesis I and III phenotypes (AOI, OMIM 108720; AOIII, OMIM 108721). We found that filamin B is expressed in human growth plate chondrocytes and in the developing vertebral bodies in the mouse. These data indicate an unexpected role in vertebral segmentation, joint formation and endochondral ossification for this ubiquitously expressed cytoskeletal protein.


Asunto(s)
Proteínas Contráctiles/genética , Articulaciones/crecimiento & desarrollo , Proteínas de Microfilamentos/genética , Mutación Puntual , Columna Vertebral/crecimiento & desarrollo , Codón de Terminación , Filaminas , Técnica del Anticuerpo Fluorescente , Heterocigoto , Homocigoto , Linaje , Transporte de Proteínas , Transducción de Señal
17.
Biochim Biophys Acta ; 1812(11): 1542-56, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21827850

RESUMEN

The mucopolysaccharidoses (MPS) are prominent among the lysosomal storage diseases. The intra-lysosomal accumulation of glycosaminoglycans (GAGs) in this group of diseases, which are caused by several different enzyme deficiencies, induces a cascade of responses that affect cellular functions and maintenance of the extra-cellular matrix. Against the background of normal tissue-specific processes, this review summarizes and discusses the histological and biochemical abnormalities reported in the bones, joints, teeth and extracellular matrix of MPS patients and animal models. With an eye to the possibilities and limitations of reversing the pathological changes in the various tissues, we address therapeutic challenges, and present a model in which the cascade of pathologic events is depicted in terms of primary and secondary events.


Asunto(s)
Huesos/citología , Articulaciones/crecimiento & desarrollo , Mucopolisacaridosis/fisiopatología , Mucopolisacaridosis/terapia , Diente/crecimiento & desarrollo , Animales , Humanos
18.
Development ; 136(16): 2825-35, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19633173

RESUMEN

The glycosaminoglycan hyaluronan (HA) is a structural component of extracellular matrices and also interacts with cell surface receptors to directly influence cell behavior. To explore functions of HA in limb skeletal development, we conditionally inactivated the gene for HA synthase 2, Has2, in limb bud mesoderm using mice that harbor a floxed allele of Has2 and mice carrying a limb mesoderm-specific Prx1-Cre transgene. The skeletal elements of Has2-deficient limbs are severely shortened, indicating that HA is essential for normal longitudinal growth of all limb skeletal elements. Proximal phalanges are duplicated in Has2 mutant limbs indicating an involvement of HA in patterning specific portions of the digits. The growth plates of Has2-deficient skeletal elements are severely abnormal and disorganized, with a decrease in the deposition of aggrecan in the matrix and a disruption in normal columnar cellular relationships. Furthermore, there is a striking reduction in the number of hypertrophic chondrocytes and in the expression domains of markers of hypertrophic differentiation in the mutant growth plates, indicating that HA is necessary for the normal progression of chondrocyte maturation. In addition, secondary ossification centers do not form in the central regions of Has2 mutant growth plates owing to a failure of hypertrophic differentiation. In addition to skeletal defects, the formation of synovial joint cavities is defective in Has2-deficient limbs. Taken together, our results demonstrate that HA has a crucial role in skeletal growth, patterning, chondrocyte maturation and synovial joint formation in the developing limb.


Asunto(s)
Desarrollo Óseo/fisiología , Condrocitos/fisiología , Extremidades , Silenciador del Gen , Glucuronosiltransferasa , Ácido Hialurónico/metabolismo , Articulaciones , Agrecanos/metabolismo , Animales , Tipificación del Cuerpo/fisiología , Proliferación Celular , Condrocitos/citología , Colágeno Tipo X/genética , Colágeno Tipo X/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Extremidades/embriología , Extremidades/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Hialuronano Sintasas , Ácido Hialurónico/genética , Articulaciones/anomalías , Articulaciones/embriología , Articulaciones/crecimiento & desarrollo , Deformidades Congénitas de las Extremidades/genética , Mesodermo/fisiología , Ratones , Ratones Noqueados
19.
J Cell Biol ; 177(6): 1105-17, 2007 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-17576802

RESUMEN

Despite its clinical significance, joint morphogenesis is still an obscure process. In this study, we determine the role of transforming growth factor beta (TGF-beta) signaling in mice lacking the TGF-beta type II receptor gene (Tgfbr2) in their limbs (Tgfbr2(PRX-1KO)). In Tgfbr2(PRX-1KO) mice, the loss of TGF-beta responsiveness resulted in the absence of interphalangeal joints. The Tgfbr2(Prx1KO) joint phenotype is similar to that in patients with symphalangism (SYM1-OMIM185800). By generating a Tgfbr2-green fluorescent protein-beta-GEO-bacterial artificial chromosome beta-galactosidase reporter transgenic mouse and by in situ hybridization and immunofluorescence, we determined that Tgfbr2 is highly and specifically expressed in developing joints. We demonstrated that in Tgfbr2(PRX-1KO) mice, the failure of joint interzone development resulted from an aberrant persistence of differentiated chondrocytes and failure of Jagged-1 expression. We found that TGF-beta receptor II signaling regulates Noggin, Wnt9a, and growth and differentiation factor-5 joint morphogenic gene expressions. In Tgfbr2(PRX-1KO) growth plates adjacent to interphalangeal joints, Indian hedgehog expression is increased, whereas Collagen 10 expression decreased. We propose a model for joint development in which TGF-beta signaling represents a means of entry to initiate the process.


Asunto(s)
Articulaciones/crecimiento & desarrollo , Morfogénesis , Transducción de Señal , Factor de Crecimiento Transformador beta/fisiología , Animales , Embrión de Mamíferos , Extremidades , Articulaciones/química , Articulaciones/embriología , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/análisis , Receptores de Factores de Crecimiento Transformadores beta/deficiencia
20.
Stud Health Technol Inform ; 176: 213-6, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22744493

RESUMEN

Researches on the development of the vertebral column were focused mainly on the growth of lumbar and cervical regions. However, none of them were related to the development of costovertebral joints. To our knowledge, the relationship between ribs and thoracic vertebrae has never been addressed. The aims of the presented study are: (1) to trace the formation of processes of vertebral arches and articular surfaces of the vertebral bodies, and (2) to trace the development of the ribs, particularly their joint surfaces. Study subjects are staged human embryos (from the 5th week) from the collection of the Department of Anatomy, Poznan University of Medical Sciences in Poland. Serial sections were stained according to methods allowed for tracing the development of investigated structures. The primordia of costovertebral joints are interzones from which differentiate all structures of synovial joints such as joint surfaces, capsule and cavity. Based on the result of this study, these interzones appeared in the embryonic stages 17 and 18 with approximately 40 to 42 postfertilizational days, and the cavitation within the interzone was observed in some embryos from stage 19 with approximately postfertilizational 44 days.


Asunto(s)
Articulaciones/embriología , Articulaciones/crecimiento & desarrollo , Costillas/embriología , Costillas/crecimiento & desarrollo , Vértebras Torácicas/embriología , Vértebras Torácicas/crecimiento & desarrollo , Humanos , Articulaciones/anatomía & histología , Costillas/anatomía & histología , Vértebras Torácicas/anatomía & histología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda