Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.658
Filtrar
1.
Nature ; 609(7926): 348-353, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35978195

RESUMEN

The mammalian immune system uses various pattern recognition receptors to recognize invaders and host damage and transmits this information to downstream immunometabolic signalling outcomes. Laccase domain-containing 1 (LACC1) protein is an enzyme highly expressed in inflammatory macrophages and serves a central regulatory role in multiple inflammatory diseases such as inflammatory bowel diseases, arthritis and clearance of microbial infection1-4. However, the biochemical roles required for LACC1 functions remain largely undefined. Here we elucidated a shared biochemical function of LACC1 in mice and humans, converting L-citrulline to L-ornithine (L-Orn) and isocyanic acid and serving as a bridge between proinflammatory nitric oxide synthase (NOS2) and polyamine immunometabolism. We validated the genetic and mechanistic connections among NOS2, LACC1 and ornithine decarboxylase 1 (ODC1) in mouse models and bone marrow-derived macrophages infected by Salmonella enterica Typhimurium. Strikingly, LACC1 phenotypes required upstream NOS2 and downstream ODC1, and Lacc1-/- chemical complementation with its product L-Orn significantly restored wild-type activities. Our findings illuminate a previously unidentified pathway in inflammatory macrophages, explain why its deficiency may contribute to human inflammatory diseases and suggest that L-Orn could serve as a nutraceutical to ameliorate LACC1-associated immunological dysfunctions such as arthritis or inflammatory bowel disease.


Asunto(s)
Inflamación , Péptidos y Proteínas de Señalización Intracelular , Macrófagos , Óxido Nítrico Sintasa de Tipo II , Animales , Artritis/inmunología , Artritis/metabolismo , Citrulina/metabolismo , Cianatos/metabolismo , Humanos , Inflamación/enzimología , Inflamación/inmunología , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ornitina/metabolismo , Ornitina Descarboxilasa/metabolismo , Poliaminas/metabolismo , Salmonella typhimurium/inmunología
2.
Mol Med ; 30(1): 48, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594612

RESUMEN

BACKGROUND: Immune-mediated arthritis is a group of autoinflammatory diseases, where the patient's own immune system attacks and destroys synovial joints. Sustained remission is not always achieved with available immunosuppressive treatments, warranting more detailed studies of T cell responses that perpetuate synovial inflammation in treatment-refractory patients. METHODS: In this study, we investigated CD4 + and CD8 + T lymphocytes from the synovial tissue and peripheral blood of patients with treatment-resistant immune-mediated arthritis using paired single-cell RNA and TCR-sequencing. To gain insights into the trafficking of clonal families, we compared the phenotypes of clones with the exact same TCRß amino acid sequence between the two tissues. RESULTS: Our results show that both CD4 + and CD8 + T cells display a more activated and inflamed phenotype in the synovial tissue compared to peripheral blood both at the population level and within individual T cell families. Furthermore, we found that both cell subtypes exhibited clonal expansion in the synovial tissue. CONCLUSIONS: Our findings suggest that the local environment in the synovium drives the proliferation of activated cytotoxic T cells, and both CD4 + and CD8 + T cells may contribute to tissue destruction and disease pathogenesis.


Asunto(s)
Artritis , Linfocitos T CD8-positivos , Humanos , Linfocitos T CD8-positivos/metabolismo , Artritis/metabolismo , Artritis/patología , Membrana Sinovial , Células Clonales , Secuencia de Aminoácidos , Linfocitos T CD4-Positivos/metabolismo
3.
Ann Rheum Dis ; 83(4): 518-528, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38071515

RESUMEN

OBJECTIVES: Osteoclasts (OCs) are myeloid-derived multinucleated cells uniquely able to degrade bone. However, the exact nature of their myeloid precursors is not yet defined. METHODS: CD11c-diphtheria toxin receptor (CD11cDTR) transgenic mice were treated with diphtheria toxin (DT) or phosphate buffered saline (PBS) during serum transfer arthritis (STA) and human tumour necrosis factor transgenic (hTNFtg) arthritis and scored clinically and histologically. We measured cytokines in synovitis by quantitative polymerase chain reaction (qPCR). We performed ovariectomy in CD11cDTR mice treated with PBS or DT. We analysed CD11cDTR, CD11c-Cre/CX3CR1-STOP-DTR and Zbtb46-DTR-treated mice with DT using histomorphometry and OC of CD11c and Zbtb46 fate reporter mice by fluorescent imaging. We sorted murine and human OC precursors and stimulated them with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL) to generate OCs. RESULTS: Targeting CD11c+ cells in vivo in models of inflammatory arthritis (STA and hTNFtg) ameliorates arthritis by reducing inflammatory bone destruction and OC generation. Targeting CD11c-expressing cells in unchallenged mice removes all OCs in their long bones. OCs do not seem to be derived from CD11c+ cells expressing CX3CR1+, but from Zbtb46+conventional dendritic cells (cDCs) as all OCs in Zbtb46-Tomato fate reporter mice are Tomato+. In line, administration of DT in Zbtb46-DTR mice depletes all OCs in long bones. Finally, human CD1c-expressing cDCs readily differentiated into bone resorbing OCs. CONCLUSION: Taken together, we identify DCs as important OC precursors in bone homeostasis and inflammation, which might open new avenues for therapeutic interventions in OC-mediated diseases.


Asunto(s)
Artritis , Osteoclastos , Femenino , Ratones , Humanos , Animales , Citocinas/metabolismo , Diferenciación Celular , Artritis/metabolismo , Células Dendríticas/metabolismo , Ligando RANK/metabolismo
4.
J Transl Med ; 22(1): 327, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566233

RESUMEN

BACKGROUND: Regulatory T cells (Tregs) are crucial in maintaining immune homeostasis and preventing autoimmunity and inflammation. A proportion of Treg cells can lose Foxp3 expression and become unstable under inflammation conditions. The precise mechanisms underlying this phenomenon remain unclear. METHODS: The PI16 gene knockout mice (PI16fl/flFoxp3Cre) in Treg were constructed, and the genotypes were identified. The proportion and phenotypic differences of immune cells in 8-week-old mice were detected by cell counter and flow cytometry. Two groups of mouse Naïve CD4+T cells were induced to differentiate into iTreg cells to observe the effect of PI16 on the differentiation and proliferation of iTreg cells, CD4+CD25+Treg and CD4+CD25- effector T cells (Teff) were selected and co-cultured with antigen presenting cells (APC) to observe the effect of PI16 on the inhibitory ability of Treg cells in vitro. The effects of directed knockout of PI16 in Treg cells on inflammatory symptoms, histopathological changes and immune cell expression in mice with enteritis and autoimmune arthritis were observed by constructing the model of antigen-induced arthritis (AIA) and colitis induced by dextran sulfate sodium salt (DSS). RESULTS: We identified peptidase inhibitor 16 (PI16) as a negative regulator of Treg cells. Our findings demonstrate that conditional knock-out of PI16 in Tregs significantly enhances their differentiation and suppressive functions. The conditional knockout of the PI16 gene resulted in a significantly higher abundance of Foxp3 expression (35.12 ± 5.71% vs. 20.00 ± 1.61%, p = 0.034) in iTreg cells induced in vitro compared to wild-type mice. Mice with Treg cell-specific PI16 ablation are protected from autoimmune arthritis (AIA) and dextran sulfate sodium (DSS)-induced colitis development. The AIA model of PI16CKO is characterized by the reduction of joint structure and the attenuation of synovial inflammation and in DSS-induced colitis model, conditional knockout of the PI16 reduce intestinal structural damage. Additionally, we found that the deletion of the PI16 gene in Treg can increase the proportion of Treg (1.46 ± 0.14% vs. 0.64 ± 0.07%, p < 0.0001) and decrease the proportion of Th17 (1.00 ± 0.12% vs. 3.84 ± 0.64%, p = 0.001). This change will enhance the shift of Th17/Treg toward Treg cells in AIA arthritis model (0.71 ± 0.06% vs. 8.07 ± 1.98%, p = 0.003). In DSS-induced colitis model of PI16CKO, the proportion of Treg in spleen was significantly increased (1.40 ± 0.15% vs. 0.50 ± 0.11%, p = 0.003), Th17 (2.18 ± 0.55% vs. 6.42 ± 1.47%, p = 0.017), Th1 (3.42 ± 0.19% vs. 6.59 ± 1.28%, p = 0.028) and Th2 (1.52 ± 0.27% vs. 2.76 ± 0.38%, p = 0.018) in spleen was significantly decreased and the Th17/Treg balance swift toward Treg cells (1.44 ± 0.50% vs. 24.09 ± 7.18%, p = 0.012). CONCLUSION: PI16 plays an essential role in inhibiting Treg cell differentiation and function. Conditional knock out PI16 gene in Treg can promote the Treg/Th17 balance towards Treg dominance, thereby alleviating the condition. Targeting PI16 may facilitate Treg cell-based therapies for preventing autoimmune diseases and inflammatory diseases. The research provides us with novel insights and future research avenues for the treatment of autoimmune diseases, particularly arthritis and colitis.


Asunto(s)
Artritis , Enfermedades Autoinmunes , Colitis , Animales , Ratones , Artritis/metabolismo , Artritis/patología , Enfermedades Autoinmunes/metabolismo , Diferenciación Celular , Colitis/inducido químicamente , Colitis/patología , Sulfato de Dextran/efectos adversos , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Inflamación/patología , Ratones Endogámicos C57BL , Linfocitos T Reguladores , Células Th17
5.
Brain Behav Immun ; 119: 572-596, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38663771

RESUMEN

Chronic stress enhances the risk of neuropsychiatric disorders and contributes to the aggravation and chronicity of pain. The development of stress-associated diseases, including pain, is affected by individual vulnerability or resilience to stress, although the mechanisms remain elusive. We used the repeated social defeat stress model promoting susceptible and resilient phenotypes in male and female mice and induced knee mono-arthritis to investigate the impact of stress vulnerability on pain and immune system regulation. We analyzed different pain-related behaviors, measured blood cytokine and immune cell levels, and performed histological analyses at the knee joints and pain/stress-related brain areas. Stress susceptible male and female mice showed prolonged arthritis-associated hypersensitivity. Interestingly, hypersensitivity was exacerbated in male but not female mice. In males, stress promoted transiently increased neutrophils and Ly6Chigh monocytes, lasting longer in susceptible than resilient mice. While resilient male mice displayed persistently increased levels of the anti-inflammatory interleukin (IL)-10, susceptible mice showed increased levels of the pro-inflammatory IL-6 at the early- and IL-12 at the late arthritis stage. Although joint inflammation levels were comparable among groups, macrophage and neutrophil infiltration was higher in the synovium of susceptible mice. Notably, only susceptible male mice, but not females, presented microgliosis and monocyte infiltration in the prefrontal cortex at the late arthritis stage. Blood Ly6Chigh monocyte depletion during the early inflammatory phase abrogated late-stage hypersensitivity and the associated histological alterations in susceptible male mice. Thus, recruitment of blood Ly6Chigh monocytes during the early arthritis phase might be a key factor mediating the persistence of arthritis pain in susceptible male mice. Alternative neuro-immune pathways that remain to be explored might be involved in females.


Asunto(s)
Derrota Social , Estrés Psicológico , Animales , Masculino , Femenino , Ratones , Estrés Psicológico/complicaciones , Estrés Psicológico/inmunología , Estrés Psicológico/metabolismo , Ratones Endogámicos C57BL , Citocinas/metabolismo , Artritis/inmunología , Artritis/metabolismo , Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Artritis Experimental/patología , Corteza Prefrontal/metabolismo , Hipersensibilidad/inmunología , Hipersensibilidad/metabolismo , Inflamación/metabolismo , Inflamación/inmunología , Neutrófilos/metabolismo , Neutrófilos/inmunología , Dolor/metabolismo , Monocitos/metabolismo , Monocitos/inmunología , Encéfalo/metabolismo , Encéfalo/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Modelos Animales de Enfermedad , Factores Sexuales
6.
Neurochem Res ; 49(5): 1268-1277, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38337134

RESUMEN

Electroacupuncture (EA) effectively improves arthritis-induced hyperalgesia and allodynia by repressing spinal microglial activation, which plays a crucial role in pain hypersensitivity following tissue inflammation. However, the mechanism by which EA suppresses spinal microglial activation in monoarthritis (MA) remains unclear. In the present study, a rat model of MA was established through unilateral ankle intra-articular injection of complete Freund's adjuvant (CFA). The relationship among P2Y12 receptor (P2Y12R) expression, spinal microglial activation, and EA analgesia was investigated using quantitative real-time PCR (qRT‒PCR), western blotting, immunofluorescence (IF), and behavioral testing. The results found that EA treatment at the ipsilateral "Huantiao" (GB30) and "Yanglingquan" (GB34) acupoints markedly attenuated pain and spinal microglia M1 polarization in MA rats. In particular, P2Y12R expression was significantly increased at the mRNA and protein levels in the spinal dorsal horn in MA rats, whereas EA treatment effectively repressed the MA-induced upregulation of P2Y12R. IF analysis further revealed that most P2Y12R was expressed in microglia in the spinal dorsal horn. Pharmacological inhibition of P2Y12R by its antagonist (AR-C69931MX) decreased MA-induced spinal microglial activation and subsequent proinflammatory cytokine production. Consequently, AR-C69931MX significantly intensified the anti-pain hypersensitive function of EA in MA rats. Taken together, these results demonstrate that EA alleviates MA-induced pain by suppressing P2Y12R-dependent microglial activation.


Asunto(s)
Artritis , Electroacupuntura , Ratas , Animales , Microglía/metabolismo , Ratas Sprague-Dawley , Electroacupuntura/métodos , Médula Espinal/metabolismo , Dolor/inducido químicamente , Dolor/metabolismo , Hiperalgesia/terapia , Hiperalgesia/tratamiento farmacológico , Artritis/metabolismo , Artritis/terapia
7.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34408018

RESUMEN

Inflammatory arthritis (IA) is a common disease that affects millions of individuals worldwide. Proinflammatory events during IA pathogenesis are well studied; however, loss of protective immunity remains underexplored. Earlier, we reported that 14-3-3zeta (ζ) has a role in T-cell polarization and interleukin (IL)-17A signal transduction. Here, we demonstrate that 14-3-3ζ knockout (KO) rats develop early-onset severe arthritis in two independent models of IA, pristane-induced arthritis and collagen-induced arthritis. Arthritic 14-3-3ζ KO animals showed an increase in bone loss and immune cell infiltration in synovial joints. Induction of arthritis coincided with the loss of anti-14-3-3ζ antibodies; however, rescue experiments to supplement the 14-3-3ζ antibody by passive immunization did not suppress arthritis. Instead, 14-3-3ζ immunization during the presymptomatic phase resulted in significant suppression of arthritis in both wild-type and 14-3-3ζ KO animals. Mechanistically, 14-3-3ζ KO rats exhibited elevated inflammatory gene signatures at the messenger RNA and protein levels, particularly for IL-1ß. Furthermore, the immunization with recombinant 14-3-3ζ protein suppressed IL-1ß levels, significantly increased anti-14-3-3ζ antibody levels and collagen production, and preserved bone quality. The 14-3-3ζ protein increased collagen expression in primary rat mesenchymal cells. Together, our findings indicate that 14-3-3ζ causes immune suppression and extracellular remodeling, which lead to a previously unrecognized IA-suppressive function.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/farmacología , Artritis/inducido químicamente , Inflamación/tratamiento farmacológico , Proteínas 14-3-3/genética , Proteínas 14-3-3/inmunología , Animales , Anticuerpos , Artritis/genética , Artritis/metabolismo , Densidad Ósea , Enfermedades Óseas/metabolismo , Enfermedades Óseas/prevención & control , Colágeno/metabolismo , Colágeno/toxicidad , Femenino , Adyuvante de Freund/farmacología , Eliminación de Gen , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Inmunización Pasiva , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Terpenos/toxicidad
8.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39125782

RESUMEN

Ferroptosis is a form of iron-dependent regulated cell death caused by the accumulation of lipid peroxides. In this review, we summarize research on the impact of ferroptosis on disease models and isolated cells in various types of arthritis. While most studies have focused on rheumatoid arthritis (RA) and osteoarthritis (OA), there is limited research on spondylarthritis and crystal arthropathies. The effects of inducing or inhibiting ferroptosis on the disease strongly depend on the studied cell type. In the search for new therapeutic targets, inhibiting ferroptosis in chondrocytes might have promising effects for any type of arthritis. On the other hand, ferroptosis induction may also lead to a desired decrease of synovial fibroblasts in RA. Thus, ferroptosis research must consider the cell-type-specific effects on arthritis. Further investigation is needed to clarify these complexities.


Asunto(s)
Ferroptosis , Osteoartritis , Humanos , Animales , Osteoartritis/metabolismo , Osteoartritis/patología , Condrocitos/metabolismo , Condrocitos/patología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/patología , Artritis/metabolismo , Artritis/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Hierro/metabolismo
9.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125957

RESUMEN

Blau syndrome (BS) is a rare autoinflammatory granulomatosis characterized by granulomatous arthritis, uveitis, and dermatitis. Ocular complications are particularly severe in BS, significantly contributing to morbidity. This study aims to identify potential biomarkers for BS ocular degeneration through proteomic profiling of tear samples from affected patients. Seven subjects from the same family, including four carriers of the BS-associated NOD2 mutation (p.E383K), were recruited alongside healthy controls. Tear samples were collected using Schirmer strips and analyzed via mass spectrometry. A total of 387 proteins were identified, with significant differences in protein expression between BS patients, healthy familial subjects, and healthy controls. Key findings include the overexpression of alpha-2-macroglobulin (A2M) and immunoglobulin heavy constant gamma 4 (IGHG4) in BS patients. Bioinformatic analysis revealed that differentially expressed proteins are involved in acute-phase response, extracellular exosome formation, and protein binding. Notably, neutrophils' azurophilic granule components, as azurocidin (AZU1), myeloperoxidases (MPO), and defensins (DEFA3), were highly expressed in the most severely affected subject, suggesting a potential role of neutrophils in BS ocular severity. These proteins might be promising biomarkers for ocular involvement in BS, facilitating early detection and tailored treatment strategies.


Asunto(s)
Artritis , Biomarcadores , Proteómica , Sarcoidosis , Sinovitis , Lágrimas , Uveítis , Humanos , Lágrimas/metabolismo , Biomarcadores/metabolismo , Uveítis/metabolismo , Uveítis/genética , Uveítis/diagnóstico , Femenino , Masculino , Artritis/genética , Artritis/metabolismo , Sinovitis/metabolismo , Sinovitis/genética , Sarcoidosis/genética , Sarcoidosis/metabolismo , Adulto , Proteómica/métodos , Proteína Adaptadora de Señalización NOD2/genética , Proteína Adaptadora de Señalización NOD2/metabolismo , Persona de Mediana Edad , Mutación , Proteoma/metabolismo , Enfermedades Autoinflamatorias Hereditarias
10.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000275

RESUMEN

In tumor cells, interleukin-6 (IL-6) signaling can lead to activation of the epidermal growth factor receptor (EGFR), which prolongs Stat3 activation. In the present experiments, we tested the hypothesis that IL-6 signaling activates EGFR signaling in peripheral and spinal nociception and examined whether EGFR localization and activation coincide with pain-related behaviors in arthritis. In vivo in anesthetized rats, spinal application of the EGFR receptor blocker gefitinib reduced the responses of spinal cord neurons to noxious joint stimulation, but only after spinal pretreatment with IL-6 and soluble IL-6 receptor. Using Western blots, we found that IL-6-induced Stat3 activation was reduced by gefitinib in microglial cells of the BV2 cell line, but not in cultured DRG neurons. Immunohistochemistry showed EGFR localization in most DRG neurons from normal rats, but significant downregulation in the acute and most painful arthritis phase. In the spinal cord of mice, EGFR was highly activated mainly in the chronic phase of inflammation, with localization in neurons. These data suggest that spinal IL-6 signaling may activate spinal EGFR signaling. Downregulation of EGFR in DRG neurons in acute arthritis may limit nociception, but pronounced delayed activation of EGFR in the spinal cord may be involved in chronic inflammatory pain.


Asunto(s)
Receptores ErbB , Interleucina-6 , Células Receptoras Sensoriales , Médula Espinal , Animales , Femenino , Ratones , Ratas , Artritis/metabolismo , Artritis Experimental/metabolismo , Línea Celular , Receptores ErbB/metabolismo , Ganglios Espinales/metabolismo , Gefitinib/farmacología , Interleucina-6/metabolismo , Receptores de Interleucina-6/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Transducción de Señal , Médula Espinal/metabolismo , Factor de Transcripción STAT3/metabolismo
11.
Immunol Rev ; 294(1): 48-62, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31944344

RESUMEN

Inflammasomes are intracellular multiprotein signaling platforms that initiate inflammatory responses in response to pathogens and cellular damage. Active inflammasomes induce the enzymatic activity of caspase-1, resulting in the induction of inflammatory cell death, pyroptosis, and the maturation and secretion of inflammatory cytokines IL-1ß and IL-18. Inflammasomes are activated in many inflammatory diseases, including autoinflammatory disorders and arthritis, and inflammasome-specific therapies are under development for the treatment of inflammatory conditions. In this review, we outline the different inflammasome platforms and recent findings contributing to our knowledge about inflammasome biology in health and disease. In particular, we discuss the role of the inflammasome in the pathogenesis of arthritic diseases, including rheumatoid arthritis, gout, ankylosing spondylitis, and juvenile idiopathic arthritis, and the potential of newly developed therapies that specifically target the inflammasome or its products for the treatment of inflammatory diseases.


Asunto(s)
Artritis/metabolismo , Inflamasomas/metabolismo , Inflamación/metabolismo , Animales , Artritis/inmunología , Proteínas Adaptadoras de Señalización CARD/metabolismo , Humanos , Inmunidad Innata , Inflamación/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas de Neoplasias/metabolismo , Transducción de Señal
12.
Rheumatology (Oxford) ; 62(8): 2887-2897, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36625523

RESUMEN

OBJECTIVES: How the local inflammatory environment regulates epigenetic changes in the context of inflammatory arthritis remains unclear. Here we assessed the transcriptional and active enhancer profile of monocytes derived from the inflamed joints of JIA patients, a model well-suited for studying inflammatory arthritis. METHODS: RNA sequencing and H3K27me3 chromatin immunoprecipitation sequencing (ChIP-seq) were used to analyse the transcriptional and epigenetic profile, respectively, of JIA synovial fluid-derived monocytes. RESULTS: Synovial-derived monocytes display an activated phenotype, which is regulated on the epigenetic level. IFN signalling-associated genes are increased and epigenetically altered in synovial monocytes, indicating a driving role for IFN in establishing the local inflammatory phenotype. Treatment of synovial monocytes with the Janus-associated kinase (JAK) inhibitor ruxolitinib, which inhibits IFN signalling, transformed the activated enhancer landscape and reduced disease-associated gene expression, thereby inhibiting the inflammatory phenotype. CONCLUSION: This study provides novel insights into epigenetic regulation of inflammatory arthritis patient-derived monocytes and highlights the therapeutic potential of epigenetic modulation for the treatment of inflammatory rheumatic diseases.


Asunto(s)
Artritis , Monocitos , Humanos , Monocitos/metabolismo , Epigénesis Genética , Artritis/metabolismo , Líquido Sinovial/metabolismo , Fenotipo
13.
Rheumatology (Oxford) ; 62(2): 872-885, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35792833

RESUMEN

OBJECTIVE: IL-17A and TNF act in synergy to induce proinflammatory mediators in synovial fibroblasts thus contributing to diseases associated with chronic arthritis. Many of these factors are regulated by transcription factor E74-like factor-3 (ELF3). Therefore, we sought to investigate ELF3 as a downstream target of IL-17A and TNF signalling and to characterize its role in the molecular mechanism of synergy between IL-17A and TNF. METHODS: Regulation of ELF3 expression by IL-17A and TNF was studied in synovial fibroblasts of RA and OA patients and RA synovial explants. Signalling leading to ELF3 mRNA induction and the impact of ELF3 on the response to IL-17A and TNF were studied using siRNA, transient overexpression and signalling inhibitors in synovial fibroblasts and HEK293 cells. RESULTS: ELF3 was marginally affected by IL-17A or TNF alone, but their combination resulted in high and sustained expression. ELF3 expression was regulated by the nuclear factor-κB (NF-κB) pathway and CCAAT/enhancer-binding protein ß (C/EBPß), but its induction required synthesis of the NF-κB co-factor IκB (inhibitor of NF-κB) ζ. siRNA-mediated depletion of ELF3 attenuated the induction of cytokines and matrix metalloproteinases by the combination of IL-17A and TNF. Overexpression of ELF3 or IκBζ showed synergistic effect with TNF in upregulating expression of chemokine (C-C motif) ligand 8 (CCL8), and depletion of ELF3 abrogated CCL8 mRNA induction by the combination of IκBζ overexpression and TNF. CONCLUSION: Altogether, our results establish ELF3 as an important mediator of the synergistic effect of IL-17A and TNF in synovial fibroblasts. The findings provide novel information of the pathogenic mechanisms of IL-17A in chronic arthritis and implicate ELF3 as a potential therapeutic target.


Asunto(s)
Artritis , FN-kappa B , Humanos , Interleucina-17/farmacología , Interleucina-17/metabolismo , Células HEK293 , ARN Interferente Pequeño/farmacología , ARN Mensajero/metabolismo , Artritis/metabolismo , Fibroblastos/metabolismo , Membrana Sinovial/metabolismo , Células Cultivadas , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Proto-Oncogénicas c-ets/farmacología
14.
Cell Biol Int ; 47(9): 1488-1490, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37366569

RESUMEN

Laccase domain-containing 1 (LACC1) protein is an enzyme highly expressed in inflammatory macrophages, and studies have shown that it has a key role in diseases such as inflammatory bowel disease, arthritis, and microbial infections. Therefore, in this review, we focus on LACC1-mediated catalysis. In detail, LACC1 converts l-CITrulline (l-CIT) to l-ORNithine (l-ORN) and isocyanic acid in mice and humans and acts as a bridge between proinflammatory nitric oxide synthase (NOS2) and polyamine immunometabolism, thus exerting anti-inflammatory and antibacterial effects. Considering the actions of LACC1, targeting LACC1 may be a potent therapeutic avenue for inflammation-related diseases and microbial infection diseases.


Asunto(s)
Artritis , Enfermedades Inflamatorias del Intestino , Humanos , Ratones , Animales , Lacasa/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/metabolismo , Artritis/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Óxido Nítrico/metabolismo
15.
Proc Natl Acad Sci U S A ; 117(6): 3103-3113, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31980518

RESUMEN

Neutrophils are the most abundant immune cells found in actively inflamed joints of patients with rheumatoid arthritis (RA), and most animal models for RA depend on neutrophils for the induction of joint inflammation. Exogenous IL-4 and IL-13 protect mice from antibody-mediated joint inflammation, although the mechanism is not understood. Neutrophils display a very strong basal expression of STAT6, which is responsible for signaling following exposure to IL-4 and IL-13. Still, the role of IL-4 and IL-13 in neutrophil biology has not been well studied. This can be explained by the low neutrophil surface expression of the IL-4 receptor α-chain (IL-4Rα), essential for IL-4- and IL-13-induced STAT6 signaling. Here we identify that colony stimulating factor 3 (CSF3), released during acute inflammation, mediates potent STAT3-dependent neutrophil IL-4Rα up-regulation during sterile inflammatory conditions. We further demonstrate that IL-4 limits neutrophil migration to inflamed joints, and that CSF3 combined with IL-4 or IL-13 results in a prominent neutrophil up-regulation of the inhibitory Fcγ receptor (FcγR2b). Taking these data together, we demonstrate that the IL-4 and CSF3 pathways are linked and play important roles in regulating proinflammatory neutrophil behavior.


Asunto(s)
Artritis/metabolismo , Interleucina-4 , Infiltración Neutrófila/fisiología , Neutrófilos/metabolismo , Receptores de IgG/metabolismo , Animales , Modelos Animales de Enfermedad , Interleucina-4/genética , Interleucina-4/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados
16.
J Cell Physiol ; 237(1): 480-488, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34550600

RESUMEN

Leukocyte cell-derived chemotaxin-2 (LECT2 or LECT-2), also called chondromodulin II (ChM-II or CHM2) plays a versatile role in various tissues. It was first identified as a chemotactic factor to promote the migration of neutrophils. It was also reported as a hepatokine to regulate glucose metabolism, obesity, and nonalcoholic fatty liver disease. As a secreted factor, LECT2 binds to several cell surface receptors CD209a, Tie1, and Met to regulate inflammatory reaction, fibrogenesis, vascular invasion, and tumor metastasis in various cell types. As an intracellular molecule, it is associated with LECT2-mediated amyloidosis, in which LECT2 misfolding results in insoluble fibrils in multiple tissues such as the kidney, liver, and lung. Recently, LECT2 was found to be associated with the development of rheumatoid arthritis and osteoarthritis, involving the dysregulation of osteoclasts, mesenchymal stem cells, osteoblasts, chondrocytes, and endothelial cells in the bone microenvironment. LECT2 is implicated in the development of cancers, such as hepatocellular carcinoma via MET-mediated PTP1B/Raf1/ERK signaling pathways and is proposed as a biomarker. The mechanisms by which LECT2 regulates diverse pathogenic conditions in various tissues remain to be fully elucidated. Further research to understand the role of LECT2 in a tissue tropism-dependent manner would facilitate the development of LECT2 as a biomarker for diagnosis and therapeutic target.


Asunto(s)
Artritis , Neoplasias , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Artritis/genética , Artritis/metabolismo , Biomarcadores/metabolismo , Células Endoteliales/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Estructura Molecular , Neoplasias/genética , Neoplasias/metabolismo , Microambiente Tumoral
17.
Ann Rheum Dis ; 81(6): 805-814, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35168946

RESUMEN

OBJECTIVE: Neutrophils are typically the most abundant leucocyte in arthritic synovial fluid. We sought to understand changes that occur in neutrophils as they migrate from blood to joint. METHODS: We performed RNA sequencing of neutrophils from healthy human blood, arthritic blood and arthritic synovial fluid, comparing transcriptional signatures with those from murine K/BxN serum transfer arthritis. We employed mass cytometry to quantify protein expression and sought to reproduce the synovial fluid phenotype ex vivo in cultured healthy blood neutrophils. RESULTS: Blood neutrophils from healthy donors and patients with active arthritis showed largely similar transcriptional signatures. By contrast, synovial fluid neutrophils exhibited more than 1600 differentially expressed genes. Gene signatures identified a prominent response to interferon gamma (IFN-γ), as well as to tumour necrosis factor, interleukin-6 and hypoxia, in both humans and mice. Mass cytometry confirmed that healthy and arthritic donor blood neutrophils are largely indistinguishable but revealed a range of neutrophil phenotypes in synovial fluid defined by downregulation of CXCR1 and upregulation of FcγRI, HLA-DR, PD-L1, ICAM-1 and CXCR4. Reproduction of key elements of this signature in cultured blood neutrophils required both IFN-γ and prolonged culture. CONCLUSIONS: Circulating neutrophils from patients with arthritis resemble those from healthy controls, but joint fluid cells exhibit a network of changes, conserved across species, that implicate IFN-γ response and ageing as complementary drivers of the synovial fluid neutrophil phenotype.


Asunto(s)
Artritis , Neutrófilos , Envejecimiento , Animales , Artritis/metabolismo , Humanos , Interferón gamma/metabolismo , Ratones , Neutrófilos/metabolismo , Fenotipo , Líquido Sinovial/metabolismo
18.
Cell Mol Biol Lett ; 27(1): 74, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064322

RESUMEN

Exosomes, known as a type of extracellular vesicles (EVs), are lipid particles comprising heterogeneous contents such as nucleic acids, proteins, and DNA. These bi-layered particles are naturally released into the extracellular periphery by a variety of cells such as neoplastic cells. Given that exosomes have unique properties, they can be used as vectors and carriers of biological and medicinal particles like drugs for delivering to the desired areas. The proteins and RNAs being encompassed by the circulating exosomes in B-cell malignancies are deemed as the promising sources for diagnostic and prognostic biomarkers, as well as therapeutic agents. Exosomes can also provide a "snapshot" view of the tumor and metastatic landscape at any particular time. Further, clinical research has shown that exosomes are produced by immune cells such as dendritic cells can stimulate the immune system, so these exosomes can be used in antitumor vaccines. Despite the great potential of exosomes in the fields of diagnostic and treatment, further studies are in need for these purposes to reach a convergence notion. This review highlights the applications of exosomes in multiple immune-related diseases, including chronic lymphocytic leukemia, multiple sclerosis, and arthritis rheumatoid, as well as explaining sundry aspects of exosome therapy and the function of exosomes in diagnosing diseases.


Asunto(s)
Artritis , Exosomas , Vesículas Extracelulares , Leucemia , Esclerosis Múltiple , Neoplasias , Artritis/metabolismo , Exosomas/metabolismo , Humanos , Leucemia/metabolismo , Esclerosis Múltiple/metabolismo , Neoplasias/metabolismo , Proteínas/metabolismo
19.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35055042

RESUMEN

The tumor necrosis factor (TNF) and IL-23/IL-17 axes are the main therapeutic targets in spondyloarthritis. Despite the clinical efficacy of blocking either pathway, monotherapy does not induce remission in all patients and its effect on new bone formation remains unclear. We aimed to study the effect of TNF and IL-17A dual inhibition on clinical disease and structural damage using the HLA-B27/human ß2-microglobulin transgenic rat model of SpA. Immunized rats were randomized according to arthritis severity, 1 week after arthritis incidence reached 50%, to be treated twice weekly for a period of 5 weeks with either a dual blockade therapy of an anti-TNF antibody and an anti-IL-17A antibody, a single therapy of either antibody, or PBS as vehicle control. Treatment-blinded observers assessed inflammation and structural damage clinically, histologically and by micro-CT imaging. Both single therapies as well as TNF and IL-17A dual blockade therapy reduced clinical spondylitis and peripheral arthritis effectively and similarly. Clinical improvement was confirmed for all treatments by a reduction of histological inflammation and pannus formation (p < 0.05) at the caudal spine. All treatments showed an improvement of structural changes at the axial and peripheral joints on micro-CT imaging, with a significant decrease for roughness (p < 0.05), which reflects both erosion and new bone formation, at the level of the caudal spine. The effect of dual blockade therapy on new bone formation was more prominent at the axial than the peripheral level. Collectively, our study showed that dual blockade therapy significantly reduces inflammation and structural changes, including new bone formation. However, we could not confirm a more pronounced effect of dual inhibition compared to single inhibition.


Asunto(s)
Interleucina-17/antagonistas & inhibidores , Espondiloartritis/etiología , Espondiloartritis/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Animales , Artritis/tratamiento farmacológico , Artritis/etiología , Artritis/metabolismo , Artritis/patología , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Imagenología Tridimensional , Inmunohistoquímica , Masculino , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Ratas , Ratas Transgénicas , Espondiloartritis/diagnóstico , Espondiloartritis/tratamiento farmacológico , Microtomografía por Rayos X
20.
J Cell Physiol ; 236(6): 4231-4243, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33241566

RESUMEN

MicroRNA-128 (miR-128) is associated with cell proliferation, differentiation, migration, apoptosis, and survival. Genetic analysis studies have demonstrated that miR-128 participates in bone metabolism, which involves bone marrow-derived mesenchymal stem cells, osteoblasts, osteoclasts, and adipocytes. miR-128 also participates in regeneration of skeletal muscles by targeting myoblast-associated proteins. The deregulation of miR-128 could lead to a series of musculoskeletal diseases. In this review, we discuss recent findings of miR-128 in relation to bone metabolism and muscle regeneration to determine its potential therapeutic effects in musculoskeletal diseases, and to propose directions for future research in this significant field.


Asunto(s)
Remodelación Ósea , MicroARNs/metabolismo , Desarrollo de Músculos , Enfermedades Musculoesqueléticas/metabolismo , Sistema Musculoesquelético/metabolismo , Osteogénesis , Artritis/genética , Artritis/metabolismo , Artritis/fisiopatología , Remodelación Ósea/genética , Exosomas/genética , Exosomas/metabolismo , Regulación de la Expresión Génica , Humanos , Masculino , MicroARNs/genética , Desarrollo de Músculos/genética , Enfermedades Musculoesqueléticas/genética , Enfermedades Musculoesqueléticas/fisiopatología , Sistema Musculoesquelético/fisiopatología , Osteogénesis/genética , Osteoporosis/genética , Osteoporosis/metabolismo , Osteoporosis/fisiopatología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda