RESUMEN
Within each bacterial species, different strains may vary in the set of genes they encode or in the copy number of these genes. Yet, taxonomic characterization of the human microbiota is often limited to the species level or to previously sequenced strains, and accordingly, the prevalence of intra-species variation, its functional role, and its relation to host health remain unclear. Here, we present a comprehensive large-scale analysis of intra-species copy-number variation in the gut microbiome, introducing a rigorous computational pipeline for detecting such variation directly from shotgun metagenomic data. We uncover a large set of variable genes in numerous species and demonstrate that this variation has significant functional and clinically relevant implications. We additionally infer intra-species compositional profiles, identifying population structure shifts and the presence of yet uncharacterized variants. Our results highlight the complex relationship between microbiome composition and functional capacity, linking metagenome-level compositional shifts to strain-level variation.
Asunto(s)
Bacteroidaceae/genética , Bacteroidetes/genética , Enterobacteriaceae/genética , Tracto Gastrointestinal/microbiología , Dosificación de Gen , Bacterias Grampositivas/genética , Microbiota , Bacteroidaceae/clasificación , Bacteroidetes/clasificación , Enterobacteriaceae/clasificación , Bacterias Grampositivas/clasificación , Humanos , Enfermedades Inflamatorias del Intestino/microbiología , Obesidad/microbiología , Análisis de Componente PrincipalRESUMEN
Peptidoglycan and almost all surface glycopolymers in bacteria are built in the cytoplasm on the lipid carrier undecaprenyl phosphate (UndP)1-4. These UndP-linked precursors are transported across the membrane and polymerized or directly transferred to surface polymers, lipids or proteins. UndP is then flipped to regenerate the pool of cytoplasmic-facing UndP. The identity of the flippase that catalyses transport has remained unknown. Here, using the antibiotic amphomycin that targets UndP5-7, we identified two broadly conserved protein families that affect UndP recycling. One (UptA) is a member of the DedA superfamily8; the other (PopT) contains the domain DUF368. Genetic, cytological and syntenic analyses indicate that these proteins are UndP transporters. Notably, homologues from Gram-positive and Gram-negative bacteria promote UndP transport in Bacillus subtilis, indicating that recycling activity is broadly conserved among family members. Inhibitors of these flippases could potentiate the activity of antibiotics targeting the cell envelope.
Asunto(s)
Proteínas Bacterianas , Proteínas Portadoras , Secuencia Conservada , Evolución Molecular , Bacterias Gramnegativas , Bacterias Grampositivas , Fosfatos de Poliisoprenilo , Antibacterianos/farmacología , Bacillus subtilis/citología , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/clasificación , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Bacterias Gramnegativas/citología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/citología , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/genética , Bacterias Grampositivas/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , Sintenía , Peptidoglicano/metabolismo , Pared Celular/química , Pared Celular/metabolismoRESUMEN
All bacteria produce secreted vesicles that carry out a variety of important biological functions. These extracellular vesicles can improve adaptation and survival by relieving bacterial stress and eliminating toxic compounds, as well as by facilitating membrane remodeling and ameliorating inhospitable environments. However, vesicle production comes with a price. It is energetically costly and, in the case of colonizing pathogens, it elicits host immune responses, which reduce bacterial viability. This raises an interesting paradox regarding why bacteria produce vesicles and begs the question as to whether the benefits of producing vesicles outweigh their costs. In this review, we discuss the various advantages and disadvantages associated with Gram-negative and Gram-positive bacterial vesicle production and offer perspective on the ultimate score. We also highlight questions needed to advance the field in determining the role for vesicles in bacterial survival, interkingdom communication, and virulence.
Asunto(s)
Vesículas Extracelulares/metabolismo , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/metabolismo , Viabilidad Microbiana/genética , Vesículas Secretoras/metabolismo , Factores de Virulencia/genética , Animales , Vesículas Extracelulares/química , Expresión Génica , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Gramnegativas/patogenicidad , Bacterias Grampositivas/genética , Bacterias Grampositivas/crecimiento & desarrollo , Bacterias Grampositivas/patogenicidad , Interacciones Huésped-Parásitos/genética , Humanos , Inmunidad Innata , Percepción de Quorum/genética , Vesículas Secretoras/química , Virulencia , Factores de Virulencia/metabolismoRESUMEN
Posttranscriptional modifications of tRNA are widely conserved in all domains of life. Especially, those occurring within the anticodon often modulate translational efficiency. Derivatives of 5-hydroxyuridine are specifically found in bacterial tRNA, where 5-methoxyuridine and 5-carboxymethoxyuridine are the major species in Gram-positive and Gram-negative bacteria, respectively. In certain tRNA species, 5-carboxymethoxyuridine can be further methylated by CmoM to form the methyl ester. In this report, we present the X-ray crystal structure of Escherichia coli CmoM complexed with tRNASer1, which contains 5-carboxymethoxyuridine at the 5'-end of anticodon (the 34th position of tRNA). The 2.22 Å resolution structure of the enzyme-tRNA complex reveals that both the protein and tRNA undergo local conformational changes around the binding interface. Especially, the hypomodified uracil base is flipped out from the canonical stacked conformation enabling the specific molecular interactions with the enzyme. Moreover, the structure illustrates that the enzyme senses exclusively the anticodon arm region of the substrate tRNA and examines the presence of key determinants, 5-carboxymethoxyuridine at position 34 and guanosine at position 35, offering molecular basis for the discriminatory mechanism against non-cognate tRNAs.
Asunto(s)
ARN de Transferencia , Anticodón , Escherichia coli/metabolismo , Bacterias Gramnegativas/genética , Bacterias Grampositivas/genética , Metilación , Conformación de Ácido Nucleico , ARN de Transferencia/metabolismo , Uridina/metabolismoRESUMEN
Genome-encoded antibiotic resistance (ARE) ATP-binding cassette (ABC) proteins of the F subfamily (ARE-ABCFs) mediate intrinsic resistance in diverse Gram-positive bacteria. The diversity of chromosomally-encoded ARE-ABCFs is far from being fully experimentally explored. Here we characterise phylogenetically diverse genome-encoded ABCFs from Actinomycetia (Ard1 from Streptomyces capreolus, producer of the nucleoside antibiotic A201A), Bacilli (VmlR2 from soil bacterium Neobacillus vireti) and Clostridia (CplR from Clostridium perfringens, Clostridium sporogenes and Clostridioides difficile). We demonstrate that Ard1 is a narrow spectrum ARE-ABCF that specifically mediates self-resistance against nucleoside antibiotics. The single-particle cryo-EM structure of a VmlR2-ribosome complex allows us to rationalise the resistance spectrum of this ARE-ABCF that is equipped with an unusually long antibiotic resistance determinant (ARD) subdomain. We show that CplR contributes to intrinsic pleuromutilin, lincosamide and streptogramin A resistance in Clostridioides, and demonstrate that C. difficile CplR (CDIF630_02847) synergises with the transposon-encoded 23S ribosomal RNA methyltransferase Erm to grant high levels of antibiotic resistance to the C. difficile 630 clinical isolate. Finally, assisted by uORF4u, our novel tool for detection of upstream open reading frames, we dissect the translational attenuation mechanism that controls the induction of cplR expression upon an antibiotic challenge.
Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Genes Bacterianos , Bacterias Grampositivas , Antibacterianos/farmacología , Antibacterianos/química , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/genética , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/genética , Nucleósidos/química , Nucleósidos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Genes Bacterianos/genética , Clostridium/efectos de los fármacos , Clostridium/genética , Microscopía por CrioelectrónRESUMEN
The wobble bases of tRNAs that decode split codons are often heavily modified. In bacteria, tRNAGlu, Gln, Asp contains a variety of xnm5s2U derivatives. The synthesis pathway for these modifications is complex and fully elucidated only in a handful of organisms, including the Gram-negative Escherichia coli K12 model. Despite the ubiquitous presence of mnm5s2U modification, genomic analysis shows the absence of mnmC orthologous genes, suggesting the occurrence of alternate biosynthetic schemes for the conversion of cmnm5s2U to mnm5s2U. Using a combination of comparative genomics and genetic studies, a member of the YtqA subgroup of the radical Sam superfamily was found to be involved in the synthesis of mnm5s2U in both Bacillus subtilis and Streptococcus mutans. This protein, renamed MnmL, is encoded in an operon with the recently discovered MnmM methylase involved in the methylation of the pathway intermediate nm5s2U into mnm5s2U in B. subtilis. Analysis of tRNA modifications of both S. mutans and Streptococcus pneumoniae shows that growth conditions and genetic backgrounds influence the ratios of pathway intermediates owing to regulatory loops that are not yet understood. The MnmLM pathway is widespread along the bacterial tree, with some phyla, such as Bacilli, relying exclusively on these two enzymes. Although mechanistic details of these newly discovered components are not fully resolved, the occurrence of fusion proteins, alternate arrangements of biosynthetic components, and loss of biosynthetic branches provide examples of biosynthetic diversity to retain a conserved tRNA modification in Nature.IMPORTANCEThe xnm5s2U modifications found in several tRNAs at the wobble base position are widespread in bacteria where they have an important role in decoding efficiency and accuracy. This work identifies a novel enzyme (MnmL) that is a member of a subgroup of the very versatile radical SAM superfamily and is involved in the synthesis of mnm5s2U in several Gram-positive bacteria, including human pathogens. This is another novel example of a non-orthologous displacement in the field of tRNA modification synthesis, showing how different solutions evolve to retain U34 tRNA modifications.
Asunto(s)
Escherichia coli K12 , ARN de Transferencia , Humanos , ARN de Transferencia/genética , Escherichia coli K12/genética , Bacterias/genética , Metilación , Bacterias Grampositivas/genéticaRESUMEN
The Soudan Underground Mine State Park, found in the Vermilion Iron Range in northern Minnesota, provides access to a ~ 2.7 billion-year-old banded iron formation. Exploratory boreholes drilled between 1958 and 1962 on the 27th level (713 m underground) of the mine intersect calcium and iron-rich brines that have recently been subject to metagenomic analysis and microbial enrichments. Using concentrated brine samples pumped from a borehole depth of up to 55 m, a novel Gram-positive bacterium was enriched under anaerobic, acetate-oxidizing, and Fe(III) citrate-reducing conditions. The isolated bacterium, designated strain MK1, is non-motile, rod-shaped, spore-forming, anaerobic, and mesophilic, with a growth range between 24°C and 30°C. The complete circular MK1 genome was found to be 3,720,236 bp and encodes 25 putative multiheme cytochromes, including homologs to inner membrane cytochromes in the Gram-negative bacterium Geobacter sulfurreducens and cytoplasmic membrane and periplasmic cytochromes in the Gram-positive bacterium Thermincola potens. However, MK1 does not encode homologs of the peptidoglycan (CwcA) and cell surface-associated (OcwA) multiheme cytochromes proposed to be required by T. potens to perform extracellular electron transfer. The 16S rRNA gene sequence of MK1 indicates that its closest related isolate is Desulfitibacter alkalitolerans strain sk.kt5 (91% sequence identity), which places MK1 in a novel genus within the Desulfitibacteraceae family and Moorellales order. Within the Moorellales order, only Calderihabitans maritimus strain KKC1 has been reported to reduce Fe(III), and only D. alkalitolerans can also grow in temperatures below 40°C. Thus, MK1 represents a novel species within a novel genus, for which we propose the name "Metallumcola ferriviriculae" strain MK1, and provides a unique opportunity to study a cytochrome-rich, mesophilic, Gram-positive, spore-forming Fe(III)-reducing bacterium.IMPORTANCEThe Soudan Underground Mine State Park gives access to understudied regions of the deep terrestrial subsurface that potentially predate the Great Oxidation Event. Studying organisms that have been relatively unperturbed by surface conditions for as long as 2.7 billion years may give us a window into ancient life before oxygen dominated the planet. Additionally, studying microbes from anoxic and iron-rich environments can help us better understand the requirements of life in analogous environments, such as on Mars. The isolation and characterization of "Metallumcola ferriviriculae" strain MK1 give us insights into a novel genus and species that is distinct both from its closest related isolates and from iron reducers characterized to date. "M. ferriviriculae" strain MK1 may also act as a model organism to study how the processes of sporulation and germination are affected by insoluble extracellular acceptors, as well as the impact of spores in the deep terrestrial biosphere.
Asunto(s)
Genoma Bacteriano , Oxidación-Reducción , Filogenia , Minería , Hierro/metabolismo , ARN Ribosómico 16S/genética , Compuestos Férricos/metabolismo , Minnesota , Bacterias Grampositivas/genética , Bacterias Grampositivas/clasificación , Bacterias Grampositivas/metabolismo , Bacterias Grampositivas/aislamiento & purificaciónRESUMEN
This study describes the discovery and characterization of raffinocyclicin, a novel plasmid-encoded circular bacteriocin, produced by the raw milk isolate Lactococcus raffinolactis APC 3967. This bacteriocin has a molecular mass of 6,092 Da and contains 61 amino acids with a three-amino acid leader peptide. It shows the highest identity to the circular bacteriocins bacicyclicin XIN-1 (42.62%), aureocyclicin 4185 (42.62%), and garvicin ML (41.53%). A broad inhibitory spectrum includes strains from Staphylococcus, Enterococcus, Streptococcus, Micrococcus, Lactobacillus, Leuconostoc, and Listeria, in addition to a pronounced inhibitory effect against Lactococcus and Clostridium. It displays low sensitivity to trypsin, most likely as a result of its circular nature. The raffinocyclicin gene cluster is composed of 10 genes: 6 core genes, genes encoding an accessory three-component ABC transporter (rafCDE), and a putative transcriptional regulator related to the MutR family. A lack of inhibitory activity in the cell-free supernatant combined with the pronounced activity of cell extracts suggests that the majority of raffinocyclicin is associated with the cell rather than being released to the extracellular environment. This is the first report of a bacteriocin produced by the L. raffinolactis species.IMPORTANCEThe present study aimed to characterize raffinocyclicin, a novel circular bacteriocin produced by the lactic acid bacteria Lactococcus raffinolactis APC 3967. Bacteriocins are generally cationic and hydrophobic peptides with antimicrobial activity, which present diverse biotechnological properties of interest for the food industry. Raffinocyclicin inhibits a wide range of bacteria, including foodborne pathogens, and is stable against different treatments which suggest its potential as a natural biopreservative. Whole-genome sequencing and the genetic analysis of the raffinocyclicin gene cluster showed that it is encoded by plasmid that could be used in the future to transfer the ability to produce the bacteriocin to other lactic acid bacteria for industrial applications. These results together highlight the potential of this novel antimicrobial as a biopreservative to be used by the food industry.
Asunto(s)
Antibacterianos , Bacteriocinas , Lactococcus , Bacteriocinas/genética , Bacteriocinas/farmacología , Bacteriocinas/metabolismo , Lactococcus/genética , Lactococcus/metabolismo , Antibacterianos/farmacología , Plásmidos/genética , Microbiología de Alimentos , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/genética , Familia de Multigenes , AnimalesRESUMEN
The RNA-based study provides an excellent indication of an organism's gene expression profile. Obtaining high-yield and high-purity RNA from Gram-positive and acid-fast bacteria is difficult without high-end kits and facilities. We optimised effective and simple protocol for RNA isolation that is a combination of enzymatic, physical and chemical treatment to disrupt cells. We successfully isolated high quality intact total RNA with yields ranging from 23.13 ± 0.40 to 61.51 ± 0.27 µg and the 260/280 purity ratio of 1.95 ± 0.01 to 2.05 ± 0.01 from Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, and Mycobacterium smegmatis. These results represents a significantly enhanced yield and purity compared to other combination of techniques which we performed. Compared to previous studies the yield obtained by this method is high for the studied organisms. Furthermore the yielded RNA was successfully used for downstream applications such as quantitative real time PCR. The described method can be easily optimised and used for various bacteria.
Asunto(s)
ARN Bacteriano , ARN Bacteriano/genética , ARN Bacteriano/aislamiento & purificación , Staphylococcus aureus/genética , Staphylococcus aureus/aislamiento & purificación , Bacterias Grampositivas/genética , Bacterias Grampositivas/aislamiento & purificación , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/aislamiento & purificación , Enterococcus faecalis/genética , Enterococcus faecalis/aislamiento & purificación , Mycobacterium smegmatis/genéticaRESUMEN
Water-filled sinkholes known locally as cenotes, found on the Yucatán Peninsula, have remarkable biodiversity. The primary objective of this study was to explore the biotechnological potential of Gram-positive cultivable bacteria obtained from sediment samples collected at the coastal cenote Pol-Ac in Yucatán, Mexico. Specifically, the investigation aimed to assess production of hydrolytic enzymes and antimicrobial compounds. 16 S rRNA gene sequencing led to the identification of 49 Gram-positive bacterial isolates belonging to the phyla Bacillota (n = 29) and Actinomycetota (n = 20) divided into the common genera Bacillus and Streptomyces, as well as the genera Virgibacillus, Halobacillus, Metabacillus, Solibacillus, Neobacillus, Rossellomorea, Nocardiopsis and Corynebacterium. With growth at 55ºC, 21 of the 49 strains were classified as moderately thermotolerant. All strains were classified as halotolerant and 24 were dependent on marine water for growth. Screening for six extracellular hydrolytic enzymes revealed gelatinase, amylase, lipase, cellulase, protease and chitinase activities in 93.9%, 67.3%, 63.3%, 59.2%, 59.2% and 38.8%, of isolated strains, respectively. The genes for polyketide synthases type I, were detected in 24 of the strains. Of 18 strains that achieved > 25% inhibition of growth in the bacterial pathogen Staphylococcus aureus ATCC 6538, 4 also inhibited growth in Escherichia coli ATCC 35,218. Isolates Streptomyces sp. NCA_378 and Bacillus sp. NCA_374 demonstrated 50-75% growth inhibition against at least one of the two pathogens tested, along with significant enzymatic activity across all six extracellular enzymes. This is the first comprehensive report on the biotechnological potential of Gram-positive bacteria isolated from sediments in the cenotes of the Yucatán Peninsula.
Asunto(s)
Biodiversidad , Sedimentos Geológicos , Bacterias Grampositivas , ARN Ribosómico 16S , Sedimentos Geológicos/microbiología , México , Bacterias Grampositivas/aislamiento & purificación , Bacterias Grampositivas/genética , Bacterias Grampositivas/clasificación , ARN Ribosómico 16S/genética , Bioprospección , Filogenia , Antibacterianos/farmacología , Agua de Mar/microbiologíaRESUMEN
Extracellular electron transfer (EET) describes microbial bioelectrochemical processes in which electrons are transferred from the cytosol to the exterior of the cell1. Mineral-respiring bacteria use elaborate haem-based electron transfer mechanisms2-4 but the existence and mechanistic basis of other EETs remain largely unknown. Here we show that the food-borne pathogen Listeria monocytogenes uses a distinctive flavin-based EET mechanism to deliver electrons to iron or an electrode. By performing a forward genetic screen to identify L. monocytogenes mutants with diminished extracellular ferric iron reductase activity, we identified an eight-gene locus that is responsible for EET. This locus encodes a specialized NADH dehydrogenase that segregates EET from aerobic respiration by channelling electrons to a discrete membrane-localized quinone pool. Other proteins facilitate the assembly of an abundant extracellular flavoprotein that, in conjunction with free-molecule flavin shuttles, mediates electron transfer to extracellular acceptors. This system thus establishes a simple electron conduit that is compatible with the single-membrane structure of the Gram-positive cell. Activation of EET supports growth on non-fermentable carbon sources, and an EET mutant exhibited a competitive defect within the mouse gastrointestinal tract. Orthologues of the genes responsible for EET are present in hundreds of species across the Firmicutes phylum, including multiple pathogens and commensal members of the intestinal microbiota, and correlate with EET activity in assayed strains. These findings suggest a greater prevalence of EET-based growth capabilities and establish a previously underappreciated relevance for electrogenic bacteria across diverse environments, including host-associated microbial communities and infectious disease.
Asunto(s)
Transporte de Electrón , Flavinas/metabolismo , Bacterias Grampositivas/metabolismo , Aerobiosis , Animales , Benzoquinonas/metabolismo , Respiración de la Célula , Electrodos , Transporte de Electrón/genética , Electrones , Femenino , Firmicutes/enzimología , Firmicutes/genética , Firmicutes/metabolismo , Tracto Gastrointestinal/microbiología , Bacterias Grampositivas/enzimología , Bacterias Grampositivas/genética , Hierro/química , Listeria monocytogenes/enzimología , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Ratones , NADH Deshidrogenasa/metabolismoRESUMEN
A novel Gram-positive, anaerobic, nonspore-forming, rod-shaped bacterium, designated strain NGMCC 1.200840 T, was isolated from the alpacas fresh feces. The taxonomic position of the novel strain was determined using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed strain NGMCC 1.200840 T was a member of the genus Clostridium and closely related to Clostridium tertium DSM 2485 T (98.16% sequence similarity). Between strains NGMCC 1.200840 T and C. tertium DSM 2485 T, the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) were 79.91% and 23.50%, respectively. Genomic DNA G + C content is 28.44 mol%. The strain can utilise D-glucose, D-mannitol, D-lactose, D-saccharose, D-maltose, D-xylose, L-arabinose, D-cellobiose, D-mannose, D-melezitose, D-raffinose, D-sorbitol, L-rhamnose, D-trehalose, D-galactose and Arbutin to produce acid. The optimal growth pH was 7, the temperature was 37 °C, and the salt concentration was 0-0.5% (w/v). The major cellular fatty acids (> 10%) included iso-C15:0, anteiso-C15:0 and iso-C17:0 3-OH. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unidentified phospholipids and two unidentified aminolipids. Based on phenotypic, phylogenetic and chemotaxonomic characteristics, NGMCC 1.200840 T represents a novel species within the genus Clostridium, for which the named Clostridium lamae sp. nov. is proposed. The type strain is NGMCC 1.200840 T (= CGMCC 1.18014 T = JCM 35704 T).
Asunto(s)
Camélidos del Nuevo Mundo , Animales , Camélidos del Nuevo Mundo/genética , Filogenia , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Fosfolípidos/química , Ácidos Grasos/química , Clostridium , Bacterias Grampositivas/genética , Heces , Análisis de Secuencia de ADN , Técnicas de Tipificación BacterianaRESUMEN
From industry to food to health, bacteria play an important role in all facets of life. Some of the most important bacteria have been purposely engineered to produce commercial quantities of antibiotics and therapeutics, and non-classical secretion systems are at the forefront of these technologies. Unlike the classical Sec or Tat pathways, non-classically secreted proteins share few common characteristics and use much more diverse secretion pathways for protein transport. Systematically categorizing and investigating the non-classically secreted proteins will enable a deeper understanding of their associated secretion mechanisms and provide a landscape of the Gram-positive secretion pathway distribution. We therefore developed PncsHub (https://pncshub.erc.monash.edu/), the first universal platform for comprehensively annotating and analyzing Gram-positive bacterial non-classically secreted proteins. PncsHub catalogs 4,914 non-classically secreted proteins, which are delicately categorized into 8 subtypes (including the 'unknown' subtype) and annotated with data compiled from up to 26 resources and visualisation tools. It incorporates state-of-the-art predictors to identify new and homologous non-classically secreted proteins and includes three analytical modules to visualise the relationships between known and putative non-classically secreted proteins. As such, PncsHub aims to provide integrated services for investigating, predicting and identifying non-classically secreted proteins to promote hypothesis-driven laboratory-based experiments.
Asunto(s)
Proteínas Bacterianas/genética , Bases de Datos de Proteínas , Bacterias Grampositivas/genética , Interfaz Usuario-Computador , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Bacterias Grampositivas/clasificación , Bacterias Grampositivas/metabolismo , Internet , Anotación de Secuencia Molecular , Filogenia , Transporte de ProteínasRESUMEN
Integrative and conjugative elements (ICEs) are important drivers of horizontal gene transfer in prokaryotes. They are responsible for antimicrobial resistance spread, a major current health concern. ICEs are initially processed by relaxases that recognize the binding site of oriT sequence and nick at a conserved nic site. The ICESt3/Tn916/ICEBs1 superfamily, which is widespread among Firmicutes, encodes uncanonical relaxases belonging to a recently identified family called MOBT. This family is related to the rolling circle replication initiators of the Rep_trans family. The nic site of these MOBT relaxases is conserved but their DNA binding site is still unknown. Here, we identified the bind site of RelSt3, the MOBT relaxase from ICESt3. Unexpectedly, we found this bind site distantly located from the nic site. We revealed that the binding of the RelSt3 N-terminal HTH domain is required for efficient nicking activity. We also deciphered the role of RelSt3 in the initial and final stages of DNA processing during conjugation. Especially, we demonstrated a strand transfer activity, and the formation of covalent DNA-relaxase intermediate for a MOBT relaxase.
Asunto(s)
Proteínas Bacterianas , Conjugación Genética , ADN Nucleotidiltransferasas , Bacterias Grampositivas , Secuencias Repetitivas Esparcidas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , ADN Nucleotidiltransferasas/genética , ADN Nucleotidiltransferasas/metabolismo , ADN Bacteriano/genética , Transferencia de Gen Horizontal , Bacterias Grampositivas/genética , Plásmidos/genéticaRESUMEN
The monotopic phosphoglycosyl transferase (monoPGT) superfamily comprises over 38,000 nonredundant sequences represented in bacterial and archaeal domains of life. Members of the superfamily catalyze the first membrane-committed step in en bloc oligosaccharide biosynthetic pathways, transferring a phosphosugar from a soluble nucleoside diphosphosugar to a membrane-resident polyprenol phosphate. The singularity of the monoPGT fold and its employment in the pivotal first membrane-committed step allows confident assignment of both protein and corresponding pathway. The diversity of the family is revealed by the generation and analysis of a sequence similarity network for the superfamily, with fusion of monoPGTs with other pathway members being the most frequent and extensive elaboration. Three common fusions were identified: sugar-modifying enzymes, glycosyl transferases, and regulatory domains. Additionally, unexpected fusions of the monoPGT with members of the polytopic PGT superfamily were discovered, implying a possible evolutionary link through the shared polyprenol phosphate substrate. Notably, a phylogenetic reconstruction of the monoPGT superfamily shows a radial burst of functionalization, with a minority of members comprising only the minimal PGT catalytic domain. The commonality and identity of the fusion partners in the monoPGT superfamily is consistent with advantageous colocalization of pathway members at membrane interfaces.
Asunto(s)
Proteínas Bacterianas/química , Glicoconjugados/química , Glicosiltransferasas/química , Bacterias Gramnegativas/enzimología , Bacterias Grampositivas/enzimología , Polisacáridos/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Citoplasma/enzimología , Citoplasma/genética , Evolución Molecular , Expresión Génica , Redes Reguladoras de Genes , Glicoconjugados/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Bacterias Gramnegativas/clasificación , Bacterias Gramnegativas/genética , Bacterias Grampositivas/clasificación , Bacterias Grampositivas/genética , Redes y Vías Metabólicas/genética , Modelos Moleculares , Periplasma/enzimología , Periplasma/genética , Filogenia , Polisacáridos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por SustratoRESUMEN
The dynamics of lung microbiota in tuberculosis remains poorly understood. Sequencing of variable regions of the 16S rRNA gene from surgically excised tuberculosis foci and biopsy specimens of normal lung tissue allowed characterization of the diversity and predictive potential of bacterial communities. Taxonomic diversity indices attested to differences in the structure of microbial communities between "healthy" lungs and tuberculomas. The microbial composition of "healthy" lungs varied in taxonomic diversity and was presented by both gram-positive and gram-negative bacteria with sufficiently similar metabolic potential. The microbiota of the examined tuberculomas consisted of Mycobacterium tuberculosis in 99.9% of cases. A significant part of the metabolic pathways predicted by PICRUSt2 included cholesterol catabolism, sulfate assimilation, and various pathways for the biosynthesis of cell wall components.
Asunto(s)
Pulmón , Mycobacterium tuberculosis , ARN Ribosómico 16S , Tuberculoma , Humanos , ARN Ribosómico 16S/genética , Mycobacterium tuberculosis/genética , Tuberculoma/microbiología , Tuberculoma/patología , Tuberculoma/genética , Pulmón/microbiología , Pulmón/patología , Pulmón/metabolismo , Microbiota/genética , Microbiota/fisiología , Masculino , Adulto , Tuberculosis Pulmonar/microbiología , Femenino , Persona de Mediana Edad , Bacterias Gramnegativas/genética , Bacterias Grampositivas/genética , Bacterias Grampositivas/metabolismo , Bacterias Grampositivas/clasificaciónRESUMEN
Efflux proteins are transporter molecules that actively pump out a variety of substrates, including antibiotics, from cells to the environment. They are found in both Gram-positive and Gram-negative bacteria and eukaryotic cells. Based on their protein sequence homology, energy source, and overall structure, efflux proteins can be divided into seven groups. Multidrug efflux pumps are transmembrane proteins produced by microbes to enhance their survival in harsh environments and contribute to antibiotic resistance. These pumps are present in all bacterial genomes studied, indicating their ancestral origins. Many bacterial genes encoding efflux pumps are involved in transport, a significant contributor to antibiotic resistance in microbes. Efflux pumps are widely implicated in the extrusion of clinically relevant antibiotics from cells to the extracellular environment and, as such, represent a significant challenge to antimicrobial therapy. This review aims to provide an overview of the structures and mechanisms of action, substrate profiles, regulation, and possible inhibition of clinically relevant efflux pumps. Additionally, recent advances in research and the pharmacological exploitation of efflux pump inhibitors as a promising intervention for combating drug resistance will be discussed.
Asunto(s)
Proteínas Bacterianas , Bacterias Gramnegativas , Proteínas Bacterianas/metabolismo , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Bacterias Grampositivas/genética , Bacterias Grampositivas/metabolismoRESUMEN
Streptomyces, the main source of antibiotics essential for human health, are widely distributed in nature among terrestrial, oceanic and atmospheric environments. New trends in antibiotic discovery are focused in the search for novel bioactive strains in unexplored habitats. We provide here evidence of the presence of diverse Streptomyces populations in wild bird feathers, such as the seagull, Larus michahellis, collected at Northern Spain; the sparrow, Passer domesticus, and the hoopoe, Upupa epops, both collected in Southern Spain. Taxonomic identification of fourteen bioactive strains, by sequencing their 16S rRNA gene and phylogenetic analyses, revealed that all of them are homologous to a total of 10 different Streptomyces. Strains from seagull samples are homologous to other antibiotic producers previously isolated from atmospheric, marine and terrestrial environments in the Cantabrian Sea region, Northern Spain. Isolates form Southern feather samples, from a house sparrow and a Eurasian hoopoe, are homologues to Streptomyces strains previously isolated mainly from soils along the Mediterranean region. The most relevant feature is that they are producers of diverse antibiotics with activity against Gram-positive, Gram-negative bacteria and fungi. We report here the successful activation of silent antibiotic biosynthetic pathways in response to changes in environmental conditions, such as incubation temperature and salinity of the culture medium, in agreement with the OSMAC approach, One Strain Many Compounds. The finding of bioactive Streptomyces in bird's plumage might be of relevance, not only in the ecology of Streptomyces-birds associations, but also in medicine and biotechnology since they can be regarded as a potential source for novel antibiotics.
Asunto(s)
Antibacterianos , Streptomyces , Animales , Humanos , Antibacterianos/farmacología , Antibacterianos/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Plumas , Bacterias Grampositivas/genética , Bacterias Gramnegativas/genética , AvesRESUMEN
The urgent need for new antimicrobials arises from antimicrobial resistance. Actinobacteria, especially Streptomyces genus, are responsible for production of numerous clinical antibiotics and anticancer agents. Genome mining reveals the biosynthetic gene clusters (BGCs) related to secondary metabolites and the genetic potential of a strain to produce natural products. However, this potential may not be expressed under laboratory conditions. In the present study, the Antarctic bacterium was taxonomically affiliated as Streptomyces albidoflavus ANT_B131 (CBMAI 1855). The crude extracts showed antimicrobial activity against both fungi, Gram-positive and Gram-negative bacteria and antiproliferative activity against five human tumor cell lines. Whole-genome sequencing reveals a genome size of 6.96 Mb, and the genome mining identified 24 BGCs, representing 13.3% of the genome. The use of three culture media and three extraction methods reveals the expression and recovery of 20.8% of the BGCs. The natural products identified included compounds, such as surugamide A, surugamide D, desferrioxamine B + Al, desferrioxamine E, and ectoine. This study reveals the potential of S. albidoflavus ANT_B131 as a natural product producer. Yet, the diversity of culture media and extraction methods could enhance the BGCs expression and recovery of natural products, and could be a strategy to intensify the BGC expression of natural products.
Asunto(s)
Antiinfecciosos , Productos Biológicos , Streptomyces , Humanos , Antibacterianos/metabolismo , Bacterias Gramnegativas/genética , Bacterias Grampositivas/genética , Antiinfecciosos/metabolismo , Productos Biológicos/farmacología , Productos Biológicos/metabolismo , Medios de Cultivo/metabolismo , Familia de MultigenesRESUMEN
Infections by ESKAPE (Enterococcus sp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens cause major concern due to their multi-drug resistance (MDR). The ESKAPE pathogens are frequently linked to greater mortality, diseases, and economic burden in healthcare worldwide. Therefore, the use of plants as a natural source of antimicrobial agents provide a solution as they are easily available and safe to use. These natural drugs can also be enhanced by incorporating silver nanoparticles and combining them with existing antibiotics. By focussing the attention on the ESKAPE organisms, the MDR issue can be addressed much better.