Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Semin Cell Dev Biol ; 88: 129-137, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29432952

RESUMEN

The gastrointestinal tract is a complex environment in which the host immune system interacts with a diverse array of microorganisms, both symbiotic and pathogenic. As such, mobilizing a rapid and appropriate antimicrobial response depending on the nature of each stimulus is crucial for maintaining the balance between homeostasis and inflammation in the gut. Here we focus on the mechanisms by which intestinal antimicrobial peptides regulate microbial communities during dysbiosis and infection. We also discuss classes of bacterial peptides that contribute to reducing enteric pathogen outgrowth. This review aims to provide a comprehensive overview on the interplay of diverse antimicrobial responses with enteric pathogens and the gut microbiota.


Asunto(s)
Bacteriocinas/inmunología , Defensinas/inmunología , Disbiosis/prevención & control , Tracto Gastrointestinal/inmunología , Mucosa Intestinal/inmunología , Animales , Bacteriocinas/biosíntesis , Bacteriocinas/farmacología , Catelicidinas/biosíntesis , Catelicidinas/inmunología , Catelicidinas/farmacología , Defensinas/biosíntesis , Defensinas/farmacología , Disbiosis/inmunología , Disbiosis/microbiología , Microbioma Gastrointestinal/inmunología , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/microbiología , Expresión Génica/inmunología , Humanos , Inmunidad Mucosa/efectos de los fármacos , Inflamación , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/microbiología , Lipocalina 2/biosíntesis , Lipocalina 2/inmunología , Lipocalina 2/farmacología , Muramidasa/biosíntesis , Muramidasa/inmunología , Muramidasa/farmacología , Simbiosis/inmunología
2.
Biochem Soc Trans ; 49(2): 617-627, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33704415

RESUMEN

The human skin microbiota forms a key barrier against skin pathogens and is important in modulating immune responses. Recent studies identify lactobacilli as endogenous inhabitants of healthy skin, while inflammatory skin conditions are often associated with a disturbed skin microbiome. Consequently, lactobacilli-based probiotics are explored as a novel treatment of inflammatory skin conditions through their topical skin application. This review focuses on the potential beneficial role of lactobacilli (family Lactobacillaceae) in the skin habitat, where they can exert multifactorial local mechanisms of action against pathogens and inflammation. On one hand, lactobacilli have been shown to directly compete with skin pathogens through adhesion inhibition, production of antimicrobial metabolites, and by influencing pathogen metabolism. The competitive anti-pathogenic action of lactobacilli has already been described mechanistically for common different skin pathogens, such as Staphylococcus aureus, Cutibacterium acnes, and Candida albicans. On the other hand, lactobacilli also have an immunomodulatory capacity associated with a reduction in excessive skin inflammation. Their influence on the immune system is mediated by bacterial metabolites and cell wall-associated or excreted microbe-associated molecular patterns (MAMPs). In addition, lactobacilli can also enhance the skin barrier function, which is often disrupted as a result of infection or in inflammatory skin diseases. Some clinical trials have already translated these mechanistic insights into beneficial clinical outcomes, showing that topically applied lactobacilli can temporarily colonize the skin and promote skin health, but more and larger clinical trials are required to generate in vivo mechanistic insights and in-depth skin microbiome analysis.


Asunto(s)
Antibiosis/inmunología , Candida albicans/inmunología , Inflamación/inmunología , Lactobacillus/inmunología , Piel/inmunología , Staphylococcus aureus/inmunología , Antibiosis/fisiología , Adhesión Bacteriana/inmunología , Bacteriocinas/inmunología , Bacteriocinas/metabolismo , Candida albicans/fisiología , Humanos , Sistema Inmunológico/inmunología , Sistema Inmunológico/microbiología , Inflamación/microbiología , Lactobacillus/metabolismo , Lactobacillus/fisiología , Piel/microbiología , Piel/patología , Staphylococcus aureus/fisiología
3.
BMC Microbiol ; 20(1): 273, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32867691

RESUMEN

BACKGROUND: Pectobacterium carotovorum subsp. carotovorum belongs to the Enterobacteriaceae family, which causes soft-rot disease in numerous plants worldwide resulting in significant economic losses. Results from our previous studies showed that the strain H-rif-8-6 produces low-molecular-weight bacteriocin (LMWB) Carocin S1. Interestingly, TH22-10, the caroS1K:Tn5 insertional mutant in H-rif-8-6, loses Carocin S1 producing ability, but still produces other LMWBs which the indicator strain SP33 can detect. The SP33 is one of the many strains that are sensitive toward the cytotoxic effects of Carocin S3K, but not Carocin S1. The result revealed that H-rif-8-6 is a multiple-bacteriocin producing strain. RESULTS: In this study, a 4.1-kb DNA fragment was isolated from the chromosomal DNA of Pcc strain, H-rif-8-6, by a DNA probe using the caroS1K gene as the template. DNA sequencing and analysis by GenBank revealed two complete open reading frames (ORFs), designated ORF1 and ORF2, which were identified within the sequence fragment. ORF1 and ORF2, similar to the identified carocin S2 genes, encode the killer (Carocin S3K) and the immunity (Carocin S3I) proteins, respectively, which were homologous to the colicin E3 gene. Carocin S3K and Carocin S3I were expressed, isolated, and purified in Escherichia coli BL21 after subcloning of the expression plasmid pGS3KI or pGSK3I. SDS-PAGE analysis showed that the relative masses of Carocin S3K and Carocin S3I were 95.6 kDa and 10.2 kDa, respectively. The results reveal that Carocin S3K has higher antimicrobial and specific antimicrobial activities for Pcc along with a nuclease activity than Carocin S3I. However, Carocin S3I inhibits the activity of Carocin S3K. Interestingly, a high concentration of Carocin S3I protein is also a DNA nuclease, and Carocin S3K also inhibits its activity. CONCLUSION: This study showed that another type of bacteriocin was found in Pectobacterium carotovorum. This new type of bacteriocin, Carocin S3, has the killer protein, Carocin S3K, and the immunity protein, Carocin S3I.


Asunto(s)
Bacteriocinas/genética , Bacteriocinas/farmacología , Pectobacterium/genética , Bacteriocinas/química , Bacteriocinas/inmunología , Clonación Molecular , Desoxirribonucleasas/metabolismo , Escherichia coli/genética , Biblioteca de Genes , Peso Molecular , Pectobacterium/efectos de los fármacos , Pectobacterium/metabolismo , Espectrometría de Masa por Ionización de Electrospray
4.
Mol Microbiol ; 105(6): 922-933, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28692133

RESUMEN

The role of the class IIa bacteriocin membrane receptor protein remains unclear, and the following two different mechanisms have been proposed: the bacteriocin could interact with the receptor changing it to an open conformation or the receptor might act as an anchor allowing subsequent bacteriocin insertion and membrane disruption. Bacteriocin-producing cells synthesize an immunity protein that forms an inactive bacteriocin-receptor-immunity complex. To better understand the molecular mechanism of enterocin CRL35, the peptide was expressed as the suicidal probe EtpM-enterocin CRL35 in Escherichia coli, a naturally insensitive microorganism since it does not express the receptor. When the bacteriocin is anchored to the periplasmic face of the plasma membrane through the bitopic membrane protein, EtpM, E. coli cells depolarize and die. Moreover, co-expression of the immunity protein prevents the deleterious effect of EtpM-enterocin CRL35. The binding and anchoring of the bacteriocin to the membrane has demonstrated to be a sufficient condition for its membrane insertion. The final step of membrane disruption by EtpM-enterocin CRL35 is independent from the receptor, which means that the mannose PTS might not be involved in the pore structure. In addition, the immunity protein can protect even in the absence of the receptor.


Asunto(s)
Bacteriocinas/metabolismo , Escherichia coli/metabolismo , Antibacterianos/farmacología , Bacteriocinas/inmunología , Membrana Celular/metabolismo , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Listeria , Potenciales de la Membrana/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Péptidos/metabolismo , Periplasma/metabolismo
5.
Curr Genet ; 64(2): 345-351, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28983718

RESUMEN

This review attempts to analyze the mechanism of action and immunity of class IIa bacteriocins. These peptides are promising alternative food preservatives and they have a great potential application in medical sciences. Class IIa bacteriocins act on the cytoplasmic membrane of Gram-positive cells dissipating the transmembrane electrical potential by forming pores. However, their toxicity and immunity mechanism remains elusive. Here we discuss the role of the mannose phosphotransferase system (man-PTS) as the receptor for class IIa bacteriocins and the influence of the membrane composition on the activity of these antimicrobial peptides. A model that is consistent with experimental results obtained by different researchers involves the non-specific binding of the bacteriocin to the negatively charged membrane of target bacteria. This step would facilitate a specific binding to the receptor protein, altering its functionality and forming an independent pore in which the bacteriocin is inserted in the membrane. An immunity protein could specifically recognize and block the pore. Bacteriocins function in bacterial ecosystems and energetic costs associated with their production are also discussed. Theoretical models based on solid experimental evidence are vital to understand bacteriocins mechanism of action and to promote new technological developments.


Asunto(s)
Antibacterianos/química , Bacteriocinas/química , Inmunidad/genética , Pediocinas/química , Antibacterianos/inmunología , Antibacterianos/uso terapéutico , Bacteriocinas/inmunología , Conservación de Alimentos , Humanos , Inmunidad/efectos de los fármacos , Modelos Teóricos , Pediocinas/inmunología , Péptidos/química , Péptidos/inmunología
6.
Antonie Van Leeuwenhoek ; 111(12): 2349-2360, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30006688

RESUMEN

The structural gene that encodes thurincin H, a bacteriocin produced by Bacillus thuringiensis, is harboured in a genetic cluster (thnP, E, D, R, A1, A2, A3, B, T, I) that controls its synthesis, modification, secretion and autoimmunity. The specific genes in the cassette that confer immunity in B. thuringiensis to thurincin H are unknown. To identify these immunity determinants, we generated constructs that were used to transform a natural thurincin H-sensitive B. thuringiensis strain (i.e. Btk 404), and resistance or susceptibility to the bacteriocin in resultant recombinants was evaluated. When Btk 404/pHT3101-ThnARDEP and Btk 404/pHT3101-ThnABTI were exposed to thurincin H, immunity was demonstrated by the former only, indicating that ThnI does not play a role in resistance to the bacteriocin as previously proposed. Furthermore, we generated different sub-cassettes under the control of divergent promoters pThnR and pThur of the thurincin H locus, and pChi, and using the green fluorescent protein gene as reporter, which demonstrated that all promoters were recognised by ThnR, except pChi. We show for the first time that the small operon composed of thnR, thnD and thnE is required for immunity of B. thuringiensis to thurincin H, and thnI is not necessary for this response.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/inmunología , Bacillus thuringiensis/inmunología , Bacteriocinas/inmunología , Transportadoras de Casetes de Unión a ATP/genética , Autoinmunidad , Bacillus thuringiensis/efectos de los fármacos , Bacillus thuringiensis/genética , Bacteriocinas/genética , Bacteriocinas/farmacología , Regulación Bacteriana de la Expresión Génica , Genes Reguladores , Familia de Multigenes , Operón , Regiones Promotoras Genéticas
7.
Infect Immun ; 84(5): 1424-1437, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26902727

RESUMEN

Members of the Burkholderia cepacia complex (Bcc) cause chronic opportunistic lung infections in people with cystic fibrosis (CF), resulting in a gradual lung function decline and, ultimately, patient death. The Bcc is a complex of 20 species and is rarely eradicated once a patient is colonized; therefore, vaccination may represent a better therapeutic option. We developed a new proteomics approach to identify bacterial proteins that are involved in the attachment of Bcc bacteria to lung epithelial cells. Fourteen proteins were reproducibly identified by two-dimensional gel electrophoresis from four Bcc strains representative of two Bcc species: Burkholderia cenocepacia, the most virulent, and B. multivorans, the most frequently acquired. Seven proteins were identified in both species, but only two were common to all four strains, linocin and OmpW. Both proteins were selected based on previously reported data on these proteins in other species. Escherichia coli strains expressing recombinant linocin and OmpW showed enhanced attachment (4.2- and 3.9-fold) to lung cells compared to the control, confirming that both proteins are involved in host cell attachment. Immunoproteomic analysis using serum from Bcc-colonized CF patients confirmed that both proteins elicit potent humoral responses in vivo Mice immunized with either recombinant linocin or OmpW were protected from B. cenocepacia and B. multivorans challenge. Both antigens induced potent antigen-specific antibody responses and stimulated strong cytokine responses. In conclusion, our approach identified adhesins that induced excellent protection against two Bcc species and are promising vaccine candidates for a multisubunit vaccine. Furthermore, this study highlights the potential of our proteomics approach to identify potent antigens against other difficult pathogens.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana , Proteínas de la Membrana Bacteriana Externa/metabolismo , Bacteriocinas/metabolismo , Infecciones por Burkholderia/prevención & control , Complejo Burkholderia cepacia/fisiología , Células Epiteliales/microbiología , Adhesinas Bacterianas/inmunología , Animales , Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/inmunología , Bacteriocinas/inmunología , Infecciones por Burkholderia/inmunología , Fibrosis Quística/inmunología , Fibrosis Quística/microbiología , Modelos Animales de Enfermedad , Escherichia coli/genética , Escherichia coli/fisiología , Femenino , Expresión Génica , Humanos , Ratones Endogámicos BALB C , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Resultado del Tratamiento
8.
Microbiology (Reading) ; 161(Pt 4): 683-700, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25406453

RESUMEN

Bacteriocins are prokaryotic proteins or peptides with antimicrobial activity. Most of them exhibit a broad spectrum of activity, inhibiting micro-organisms belonging to different genera and species, including many bacterial pathogens which cause human, animal or plant infections. Therefore, these substances have potential biotechnological applications in either food preservation or prevention and control of bacterial infectious diseases. However, there is concern that continuous exposure of bacteria to bacteriocins may select cells resistant to them, as observed for conventional antimicrobials. Based on the models already investigated, bacteriocin resistance may be either innate or acquired and seems to be a complex phenomenon, arising at different frequencies (generally from 10(-9) to 10(-2)) and by different mechanisms, even amongst strains of the same bacterial species. In the present review, we discuss the prevalence, development and molecular mechanisms involved in resistance to bacteriocins produced by Gram-positive bacteria. These mechanisms generally involve changes in the bacterial cell envelope, which result in (i) reduction or loss of bacteriocin binding or insertion, (ii) bacteriocin sequestering, (iii) bacteriocin efflux pumping (export) and (iv) bacteriocin degradation, amongst others. Strategies that can be used to overcome this resistance are also addressed.


Asunto(s)
Antiinfecciosos , Antibiosis , Bacteriocinas/biosíntesis , Bacterias Grampositivas/metabolismo , Animales , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/inmunología , Bacteriocinas/inmunología , Pared Celular , Sitios Genéticos , Bacterias Grampositivas/genética , Bacterias Grampositivas/inmunología , Infecciones por Bacterias Grampositivas/inmunología , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Inmunidad Innata , Proteolisis
9.
Appl Environ Microbiol ; 80(20): 6303-15, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25085495

RESUMEN

Subtilomycin was detected from the plant endophytic strain Bacillus subtilis BSn5 and was first reported from B. subtilis strain MMA7. In this study, a gene cluster that has been proposed to be related to subtilomycin biosynthesis was isolated from the BSn5 genome and was experimentally validated by gene inactivation and heterologous expression. Comparison of the subtilomycin gene cluster with other verified related lantibiotic gene clusters revealed a particular organization of the genes apnI and apnT downstream of apnAPBC, which may be involved in subtilomycin immunity. Through analysis of expression of the apnI and/or apnT genes in the subtilomycin-sensitive strain CU1065 and inactivation of apnI and apnT in the producer strain BSn5, we showed that the single gene apnI, encoding a putative transmembrane protein, was responsible for subtilomycin immunity. To our knowledge, evidence for lantibiotic immunity that is solely dependent on a transmembrane protein is quite rare. Further bioinformatic analysis revealed the abundant presence of ApnI-like proteins that may be responsible for lantibiotic immunity in Bacillus and Paenibacillus. We cloned the paeI gene, encoding one such ApnI-like protein, into CU1065 and showed that it confers resistance to paenibacillin. However, no cross-resistance was detected between ApnI and PaeI, even though subtilomycin and paenibacillin share similar structures, suggesting that the protection provided by ApnI/ApnI-like proteins involves a specific-sequence recognition mechanism. Peptide release/binding assays indicated that the recombinant B. subtilis expressing apnI interacted with subtilomycin. Thus, ApnI represents a novel model for lantibiotic immunity that appears to be common.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/inmunología , Bacteriocinas/genética , Bacteriocinas/inmunología , Bacteriocinas/farmacología , Familia de Multigenes , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/inmunología , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Clonación Molecular , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana/inmunología , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Pruebas de Sensibilidad Microbiana
10.
Curr Microbiol ; 69(4): 423-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24838664

RESUMEN

The immunity proteins of pediocin-like bacteriocins possess a positively charged region which is located at the C-terminus in all three subclasses. It has been suggested that this region may be involved in directing the immunity protein to the surface of the bacterial cell membrane. The aim of this study was to determine whether the positively charged residue lysine-46 (K46) around the hydrophobic pocket played a key role for immunity activity of subgroup A immunity protein PedB. At first, heterologous expression of the immune gene pedB from Lactobacillus plantarum BM-1 rendered the sensitive Lactobacillus plantarum WQ0815 resistant to bacteriocin BM-1. Then, using site-directed mutagenesis, the residue K46 was replaced by five different amino-acid residues, including arginine (R), aspartate (D), glutamate (E), glutamine (Q), and threonine (T). Western blot analysis confirmed that all mutated pedB genes were successfully expressed in the host L. plantarum WQ0815. Bacteriocin activity assays subsequently showed that any substitution of the K46 residue significantly reduced its immunity activity. Our present results indicated that the positively charged residue K46 located near the hydrophobic pocket was essential for the functionality of the immunity protein PedB.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bacteriocinas/química , Lactobacillus plantarum/genética , Lisina/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/inmunología , Bacteriocinas/genética , Bacteriocinas/inmunología , Lactobacillus plantarum/química , Lactobacillus plantarum/inmunología , Lisina/inmunología , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Homología de Secuencia de Aminoácido
11.
J Dairy Sci ; 97(7): 4115-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24767890

RESUMEN

Heterologous expression of bacteriocin genetic determinants (or operons) has long been a research interest for the functional analysis of genes involved in bacteriocin biosynthesis, regulation, modification, and immunity. Previously, construction of genomic libraries of the bacteriocin producer strains was usually required to identify new bacteriocin operons, a method that is tedious and time consuming. For the first time, we directly amplified an 8.14-kb bioinformatically identified thurincin H gene cluster using a one-step PCR method with 100% accuracy. This amplified gene cluster was cloned into plasmid pHT315, resulting in plasmid pGW139, and subsequently transformed to Bacillus thuringiensis EG10368, a strain naturally sensitive to thurincin H. Heterologous expression of the gene cluster makes the sensitive B. thuringiensis EG10368 produce thurincin H at a higher level compared with the wild-type producer, B. thuringiensis SF361. Moreover, B. thuringiensis EG10368pGW139 acquired complete immunity to thurincin H. The results indicated that one-step PCR is a promising tool to accurately amplify long bacteriocin gene clusters used in bacteriocin functional analysis studies and it is an effective way to produce bacteriocins at a higher level, without the need to clone large chromosomal fragments.


Asunto(s)
Bacillus thuringiensis/genética , Bacteriocinas/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Familia de Multigenes , Bacillus thuringiensis/inmunología , Bacillus thuringiensis/metabolismo , Bacteriocinas/inmunología , Bacteriocinas/metabolismo , Productos Lácteos/microbiología , Conservantes de Alimentos/química , Amplificación de Genes , Plásmidos/genética
12.
J Immunol ; 184(1): 359-68, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19955519

RESUMEN

Many pathogenic enveloped viruses, including HIV-1, escape complement-mediated virolysis by incorporating host cell regulators of complement activation into their own viral envelope. The presence of complement regulators including CD59 on the external surface of the viral envelope confers resistance to complement-mediated virolysis, which may explain why human pathogenic viruses such as HIV-1 are not neutralized by complement in human fluids, even in the presence of high Ab titers against the viral surface proteins. In this study, we report the development of a recombinant form of the fourth domain of the bacterial toxin intermedilysin (the recombinant domain 4 of intermedilysin [rILYd4]), a 114 aa protein that inhibits human CD59 function with high affinity and specificity. In the presence of rILYd4, HIV-1 virions derived from either cell lines or peripheral blood mononuclear cells of HIV-1-infected patients became highly sensitive to complement-mediated lysis activated by either anti-HIV-1 gp120 Abs or by viral infection-induced Abs present in the plasma of HIV-1-infected individuals. We also demonstrated that rILYd4 together with serum or plasma from HIV-1-infected patients as a source of anti-HIV-1 Abs and complement did not mediate complement-mediated lysis of either erythrocytes or peripheral blood mononuclear cells. These results indicate that rILYd4 may represent a novel therapeutic agent against HIV-1/AIDS.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/inmunología , Bacteriocinas/inmunología , Antígenos CD59/metabolismo , Proteínas del Sistema Complemento/inmunología , VIH-1/inmunología , Bacteriocinas/farmacología , Antígenos CD59/inmunología , Activación de Complemento/inmunología , Citometría de Flujo , Humanos , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/farmacología
13.
Microbiol Mol Biol Rev ; 70(2): 564-82, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16760314

RESUMEN

Many bacteria produce antimicrobial peptides, which are also referred to as peptide bacteriocins. The class IIa bacteriocins, often designated pediocin-like bacteriocins, constitute the most dominant group of antimicrobial peptides produced by lactic acid bacteria. The bacteriocins that belong to this class are structurally related and kill target cells by membrane permeabilization. Despite their structural similarity, class IIa bacteriocins display different target cell specificities. In the search for new antibiotic substances, the class IIa bacteriocins have been identified as promising new candidates and have thus received much attention. They kill some pathogenic bacteria (e.g., Listeria) with high efficiency, and they constitute a good model system for structure-function analyses of antimicrobial peptides in general. This review focuses on class IIa bacteriocins, especially on their structure, function, mode of action, biosynthesis, bacteriocin immunity, and current food applications. The genetics and biosynthesis of class IIa bacteriocins are well understood. The bacteriocins are ribosomally synthesized with an N-terminal leader sequence, which is cleaved off upon secretion. After externalization, the class IIa bacteriocins attach to potential target cells and, through electrostatic and hydrophobic interactions, subsequently permeabilize the cell membrane of sensitive cells. Recent observations suggest that a chiral interaction and possibly the presence of a mannose permease protein on the target cell surface are required for a bacteria to be sensitive to class IIa bacteriocins. There is also substantial evidence that the C-terminal half penetrates into the target cell membrane, and it plays an important role in determining the target cell specificity of these bacteriocins. Immunity proteins protect the bacteriocin producer from the bacteriocin it secretes. The three-dimensional structures of two class IIa immunity proteins have been determined, and it has been shown that the C-terminal halves of these cytosolic four-helix bundle proteins specify which class IIa bacteriocin they protect against.


Asunto(s)
Antibacterianos/farmacología , Bacteriocinas/biosíntesis , Bacteriocinas/farmacología , Secuencia de Aminoácidos , Antibacterianos/química , Bacteriocinas/química , Bacteriocinas/clasificación , Bacteriocinas/inmunología , Predicción , Modelos Biológicos , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
14.
J Bacteriol ; 192(8): 2068-76, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20154137

RESUMEN

The Abi protein family consists of putative membrane-bound metalloproteases. While they are involved in membrane anchoring of proteins in eukaryotes, little is known about their function in prokaryotes. In some known bacteriocin loci, Abi genes have been found downstream of bacteriocin structural genes (e.g., pln locus from Lactobacillus plantarum and sag locus from Streptococcus pyogenes), where they probably are involved in self-immunity. By modifying the profile hidden Markov model used to select Abi proteins in the Pfam protein family database, we show that this family is larger than presently recognized. Using bacteriocin-associated Abi genes as a means to search for novel bacteriocins in sequenced genomes, seven new bacteriocin-like loci were identified in Gram-positive bacteria. One such locus, from Lactobacillus sakei 23K, was selected for further experimental study, and it was confirmed that the bacteriocin-like genes (skkAB) exhibited antimicrobial activity when expressed in a heterologous host and that the associated Abi gene (skkI) conferred immunity against the cognate bacteriocin. Similar investigation of the Abi gene plnI and the Abi-like gene plnL from L. plantarum also confirmed their involvement in immunity to their cognate bacteriocins (PlnEF and PlnJK, respectively). Interestingly, the immunity genes from these three systems conferred a high degree of cross-immunity against each other's bacteriocins, suggesting the recognition of a common receptor. Site-directed mutagenesis demonstrated that the conserved motifs constituting the putative proteolytic active site of the Abi proteins are essential for the immunity function of SkkI, and to our knowledge, this represents a new concept in self-immunity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriocinas/inmunología , Lactobacillus/inmunología , Lactobacillus/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Lactobacillus/genética , Mutagénesis Sitio-Dirigida
15.
Mol Microbiol ; 71(4): 1043-54, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19183281

RESUMEN

Lantibiotics are antimicrobial peptides that possess great potential as clinical therapeutic agents. These peptides exhibit many beneficial traits and in many cases the emergence of resistance is extremely rare. In contrast, producers of lantibiotics synthesize dedicated immunity proteins to provide self-protection. These proteins have very specific activities and cross-immunity is rare. However, producers of two peptide lantibiotics, such as lacticin 3147, face the unusual challenge of exposure to two active peptides (alpha and beta). Here, in addition to establishing the contribution of LtnI and LtnFE to lacticin 3147 immunity, investigations were carried out to determine if production of a closely related lantibiotic (i.e. staphylococcin C55) or possession of LtnI/LtnFE homologues could provide protection. Here we establish that not only are staphylococcin C55 producers cross-immune to lacticin 3147, and therefore represent a natural repository of Staphylococcus aureus strains that are protected against lacticin 3147, but that functional immunity homologues are also produced by strains of Bacillus licheniformis and Enterococcus faecium. This result raises the spectre of resistance through immune mimicry, i.e. the emergence of lantibiotic-resistant strains from the environment resulting from the possession/acquisition of immunity gene homologues. These phenomena will have to be considered carefully when developing lantibiotics for clinical application.


Asunto(s)
Bacillus/inmunología , Bacteriocinas/inmunología , Enterococcus faecium/inmunología , Staphylococcus aureus/inmunología , Bacillus/genética , Proteínas Bacterianas/inmunología , Enterococcus faecium/genética , Pruebas de Sensibilidad Microbiana , Plásmidos , Staphylococcus aureus/genética
16.
Microbiology (Reading) ; 156(Pt 6): 1883-1889, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20203056

RESUMEN

The importance of 3D structuring in the N- and C-terminal ends of the two peptides (39-mer LcnG-alpha and 35-mer LcnG-beta) that constitute the two-peptide bacteriocin lactococcin G was analysed by replacing residues in the end regions with the corresponding D-isomeric residues. When assayed for antibacterial activity in combination with the complementary wild-type peptide, LcnG-alpha with four D-residues in its C-terminal region and LcnG-beta with four d-residues in either its N- or its C-terminal region were relatively active (two- to 20-fold reduction in activity). 3D structuring of the C-terminal region in LcnG-alpha and the C- and N-terminal regions in LcnG-beta is thus not particularly critical for retaining antibacterial activity, indicating that the 3D structure of these regions is not vital for interpeptide interactions or for interactions between the peptides and cellular components. The 3D structure of the N-terminal region in LcnG-alpha may be more important, as LcnG-alpha with four N-terminal D-residues was the least active of these four peptides (10- to 100-fold reduction in activity). The results are consistent with a proposed structural model of lactococcin G in which LcnG-alpha and -beta form a transmembrane parallel helix-helix structure involving approximately 20 residues in each peptide, starting near the N terminus of LcnG-alpha and at about residue 13 in LcnG-beta. Upon expressing the lactococcin G immunity protein, sensitive target cells became resistant to all of these D-residue-containing peptides. The end regions of the two lactococcin G peptides are consequently not involved in essential structure-dependent interactions with the immunity protein. The relatively high activity of most of the D-residue-containing peptides suggests that bacteriocins with increased resistance to exopeptidases may be generated by replacing their N- and C-terminal residues with d-residues.


Asunto(s)
Bacteriocinas/química , Lactobacillus/química , Secuencia de Aminoácidos , Bacteriocinas/inmunología , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Péptidos/química
17.
FEBS Lett ; 594(23): 3920-3942, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33040342

RESUMEN

Bacteria produce under certain stress conditions bacteriocins and microcins that display antibacterial activity against closely related species for survival. Bacteriocins and microcins exert their antibacterial activity by either disrupting the membrane or inhibiting essential intracellular processes of the bacterial target. To this end, they can lyse bacterial membranes and cause subsequent loss of their integrity or nutrients, or hijack membrane receptors for internalisation. Both bacteriocins and microcins are ribosomally synthesised and several are posttranslationally modified, whereas others are not. Such peptides are also toxic to the producer bacteria, which utilise immunity proteins or/and dedicated ATP-binding cassette (ABC) transporters to achieve self-immunity and peptide export. In this review, we discuss the structure and mechanism of self-protection that is conferred by these ABC transporters.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Bacteriocinas/metabolismo , Farmacorresistencia Bacteriana , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/metabolismo , Bacteriocinas/inmunología , Humanos
18.
Genes (Basel) ; 11(7)2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679707

RESUMEN

Itaconic acid is an immunoregulatory metabolite produced by macrophages in response to pathogen invasion. It also exhibits antibacterial activity because it is an uncompetitive inhibitor of isocitrate lyase, whose activity is required for the glyoxylate shunt to be operational. Some bacteria, such as Yersinia pestis, encode enzymes that can degrade itaconic acid and therefore eliminate this metabolic inhibitor. Studies, primarily with Salmonella enterica subspecies enterica serovar Typhimurium, have demonstrated the presence of similar genes in this pathogen and the importance of these genes for the persistence of the pathogen in murine hosts. This minireview demonstrates that, based on Blast searches of 1063 complete Salmonella genome sequences, not all Salmonella serovars possess these genes. It is also shown that the growth of Salmonella isolates that do not possess these genes is sensitive to the acid under glucose-limiting conditions. Interestingly, most of the serovars without the three genes, including serovar Typhi, harbor DNA at the corresponding genomic location that encodes two open reading frames that are similar to bacteriocin immunity genes. It is hypothesized that these genes could be important for Salmonella that finds itself in strong competition with other Enterobacteriacea in the intestinal tract-for example, during inflammation.


Asunto(s)
Bacteriocinas/genética , Salmonella enterica/genética , Salmonella enterica/patogenicidad , Succinatos/metabolismo , Animales , Bacteriocinas/inmunología , Interacciones Huésped-Patógeno/genética , Humanos , Intestinos/microbiología , Isocitratoliasa/genética , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Salmonella enterica/enzimología , Salmonella enterica/inmunología , Succinatos/inmunología , Yersinia pestis/enzimología
19.
Biochem Biophys Res Commun ; 378(3): 574-8, 2009 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-19061861

RESUMEN

Bacteriocin-producing lactic acid bacteria (LAB) possess a self-protection factor, which is generally called an immunity protein. In this study, we determine the crystal structure of an immunity protein, designated Mun-im, which was classified into subgroup B immunity proteins for class IIa bacteriocins. The Mun-im protein takes a left-turning antiparallel four-helix bundle structure with the flexible N- and C-terminal parts. Although the amino acid sequences of the subgroup B immunity proteins are distinguished from those of the subgroup A, the core structure of Mun-im is well-superimposed with that of the subgroup A immunity protein, EntA-im, and the C-terminus of both proteins is flexible. However, the C-terminus of Mun-im is obviously shorter than that of the subgroup A. We found through mutagenic study of Mun-im that the C-terminus and the K86 residue on the helix 4 in the immunity protein molecule are important for expression of the immunity activity on the subgroup B immunity proteins.


Asunto(s)
Proteínas Bacterianas/química , Bacteriocinas/inmunología , Enterococcus/inmunología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Cristalografía por Rayos X , Análisis Mutacional de ADN , Enterococcus/genética , Enterococcus/metabolismo , Datos de Secuencia Molecular , Conformación Proteica
20.
BMC Microbiol ; 9: 207, 2009 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-19781080

RESUMEN

BACKGROUND: Bacteriocins are antimicrobial proteins and peptides ribosomally synthesized by some bacteria which can effect both intraspecies and interspecies killing. RESULTS: Moraxella catarrhalis strain E22 containing plasmid pLQ510 was shown to inhibit the growth of M. catarrhalis strain O35E. Two genes (mcbA and mcbB) in pLQ510 encoded proteins predicted to be involved in the secretion of a bacteriocin. Immediately downstream from these two genes, a very short ORF (mcbC) encoded a protein which had some homology to double-glycine bacteriocins produced by other bacteria. A second very short ORF (mcbI) immediately downstream from mcbC encoded a protein which had no significant similarity to other proteins in the databases. Cloning and expression of the mcbI gene in M. catarrhalis O35E indicated that this gene encoded the cognate immunity factor. Reverse transcriptase-PCR was used to show that the mcbA, mcbB, mcbC, and mcbI ORFs were transcriptionally linked. This four-gene cluster was subsequently shown to be present in the chromosome of several M. catarrhalis strains including O12E. Inactivation of the mcbA, mcbB, or mcbC ORFs in M. catarrhalis O12E eliminated the ability of this strain to inhibit the growth of M. catarrhalis O35E. In co-culture experiments involving a M. catarrhalis strain containing the mcbABCI locus and one which lacked this locus, the former strain became the predominant member of the culture after overnight growth in broth. CONCLUSION: This is the first description of a bacteriocin and its cognate immunity factor produced by M. catarrhalis. The killing activity of the McbC protein raises the possibility that it might serve to lyse other M. catarrhalis strains that lack the mcbABCI locus, thereby making their DNA available for lateral gene transfer.


Asunto(s)
Antibiosis , Bacteriocinas/genética , Moraxella catarrhalis/genética , Secuencia de Aminoácidos , Bacteriocinas/inmunología , Clonación Molecular , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Datos de Secuencia Molecular , Moraxella catarrhalis/inmunología , Familia de Multigenes , Sistemas de Lectura Abierta , Plásmidos , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda