Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273208

RESUMEN

Epilepsy is a chronic neurological disorder characterized by recurrent seizures that affects over 70 million people worldwide. Although many antiepileptic drugs that block seizures are available, they have little effect on preventing and curing epilepsy, and their side effects sometimes lead to serious morbidity. Therefore, prophylactic agents with anticonvulsant properties and no adverse effects need to be identified. Recent studies on probiotic administration have reported a variety of beneficial effects on the central nervous system via the microbiota-gut-brain axis. In this study, we investigated the effects of the oral administration of Bifidobacterium breve strain A1 [MCC1274] (B. breve A1) on tonic-clonic seizure in a pentylenetetrazole (PTZ)-induced kindling mouse (KD mouse) model. We found that the oral administration of B. breve A1 every other day for 15 days significantly reduced the seizure score, which gradually increased with repetitive injections of PTZ in KD mice. The administration of B. breve A1, but not saline, to KD mice significantly increased the level of Akt Ser473 phosphorylation (p-Akt) in the hippocampus; this increase was maintained for a minimum of 24 h after PTZ administration. Treatment of B. breve A1-administered KD mice with the selective inhibitor of integrin-linked kinase (ILK) Cpd22 significantly increased the seizure score and blocked the antiepileptic effect of B. breve A1. Moreover, Cpd22 blocked the B. breve A1-induced increase in hippocampal p-Akt levels. These results suggest that the ILK-induced phosphorylation of Akt Ser473 in the hippocampus might be involved in the antiepileptic effect of B. breve A1.


Asunto(s)
Bifidobacterium breve , Modelos Animales de Enfermedad , Excitación Neurológica , Pentilenotetrazol , Probióticos , Proteínas Serina-Treonina Quinasas , Convulsiones , Transducción de Señal , Animales , Probióticos/administración & dosificación , Probióticos/farmacología , Ratones , Convulsiones/metabolismo , Convulsiones/tratamiento farmacológico , Convulsiones/inducido químicamente , Bifidobacterium breve/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Administración Oral , Excitación Neurológica/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosforilación
2.
Bioorg Chem ; 132: 106364, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36706530

RESUMEN

Among the flavonoids of epimedium, epimedin B, epimedin C, and icariin are considered to be representative components and their structures are quite similar. Besides sharing the same backbone, the main difference is the sugar groups attached at the positions of C-3 and C-7. Despite their structural similarities, their potencies differ significantly, and only icariin is currently included in the Chinese Pharmacopoeia as a quality marker (Q-marker) for epimedium flavonoids. Furthermore, icariin has the functions of anti-aging, anti-inflammation, antioxidation, anti-osteoporosis, and ameliorating fibrosis. We used bioinformatics to look for the GH43 family ß-xylosidase genes BbXyl from Bifidobacterium breve K-110, which has a length of 1347 bp and codes for 448 amino acids. This will allow us to convert epimedin B and epimedin C into icariin in a specific way. The expression level of recombinant BbXyl in TB medium containing 1 % inulin as carbon source, with an inducer concentration of 0.05 mmol/L and a temperature of 28 °C, was 86.4 U/mL. Previous studies found that the α-l-rhamnosidase BtRha could convert epoetin C to produce icariin, so we combined BbXyl and BtRha to catalyze the conversion of epimedium total flavonoids in vitro and in vivo to obtain the product icariin. Under optimal conditions, in vitro hydrolysis of 5 g/L of total flavonoids of epimedium eventually yielded a concentration of icariin of 678.1 µmol/L. To explore the conversion of total flavonoids of epimedium in vivo. Under the optimal conditions, the yield of icariin reached 97.27 µmol/L when the total flavonoid concentration of epimedium was 1 g/L. This study is the first to screen xylosidases for the targeted conversion of epimedin B to produce icariin, and the first to report that epimedin B and epimedin C in the raw epimedium flavonoids can convert efficiently to icariin by a collaborative of ß-xylosidase and α-l-rhamnosidase.


Asunto(s)
Bifidobacterium breve , Epimedium , Xilosidasas , Epimedium/química , Bifidobacterium breve/metabolismo , Flavonoides/química , Xilosidasas/genética , Xilosidasas/metabolismo , Biotransformación
3.
Appl Microbiol Biotechnol ; 106(18): 6181-6194, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35962282

RESUMEN

Probiotics have the potential to be used in the prevention of Clostridioides difficile infection (CDI). In this study, selenium (Se)-enriched Bifidobacterium breve YH68-Se was obtained under optimal culture conditions with single-factor and response surface optimization. The overall environmental resistance of YH68-Se was superior to that of the parental strain YH68, mainly reflected in the substantial improvement of antioxidant activity and gastrointestinal tolerance. YH68-Se dramatically inhibited C. difficile growth, spore, biofilm, toxin production, and virulence gene expression, rapidly disrupted C. difficile cell membrane permeability and integrity, and altered the membrane proton motive force (PMF), induced a large outflow of intracellular substances and eventually caused bacterial death. The main factor inducing this process originated from the lactic acid (LD) in YH68-Se. In addition, the LD production of YH68 increased with increasing selenite concentration and was accompanied by enhanced activities of thioredoxin reductase (TrxR), glutathione peroxidase (GSH-Px), and increased concentration of autoinducer-2 (AI-2), which may be the crucial factors contributing to the outstanding probiotic properties of YH68-Se and their potent antagonism of C. difficile. KEY POINTS: • Compared with the parental strain B. breve YH68, the environmental resistance of YH68-Se was improved. • YH68-Se was able to produce more lactic acid, which suppressed the important physiological activities of C. difficile and rapidly disrupted their cell membrane structures. • Sodium selenite in the suitable concentration range gradually increases the yield of lactic acid and phenylacetic acid, increased the concentration of autoinducer-2, and enhanced the activities of antioxidant enzymes TrxR and GSH-Px in YH68.


Asunto(s)
Bifidobacterium breve , Clostridioides difficile , Selenio , Antioxidantes , Bifidobacterium breve/metabolismo , Clostridioides , Glutatión Peroxidasa/metabolismo , Ácido Láctico , Selenio/metabolismo
4.
Arch Microbiol ; 203(6): 2989-2998, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33772601

RESUMEN

Probiotic bacterial adhesion to the epithelial cell is a composite process and in vivo adhesion studies can be strengthened with the improved in vitro models for preliminary screening of potentially adherent strains. With this rationale, the study aimed is the first report to demonstrate the colonizing efficiency of probiotic Bacillus licheniformis MCC 2514 in comparison to Bifidobacterium breve NCIM 5671on HT-29 cell line. B. licheniformis (54.28 ± 0.99%) and Bif. breve (70.23 ± 0.85%) adhered in a higher percentage on fibronectin and mucin, respectively. However, the adhesion was higher for B. licheniformis when compared to Bif. breve. In adhesion score, B. licheniformis obtained about 138.85 ± 12.32, whereas Bif. breve got the score of 43.05 ± 9.12. The same trend continued in the adhesion percentage study, where B. licheniformis adhered 75.5 ± 5.2%, higher than Bif. breve which adhered 32.66 ± 3.2%. In invasion assay, both the bacteria significantly decreased the colonization of the pathogen Kocuria rhizophila ATCC 9341 about 97.32 ± 0.81% in the competitive assay, 97.87 ± 0.73% in exclusion assay and 82.19 ± 2.51% in displacement assay. The cytotoxicity effects of the test bacterial strains against HT-29 cell line through MTT assay determined no viability loss in the treated cells. Therefore, the data obtained from the in vitro studies showed that both B. licheniformis and Bif. breve had shown significantly good invasion on pathogen and adhesion capacity on HT-29 cell line.


Asunto(s)
Antibiosis , Bacillus licheniformis , Adhesión Bacteriana , Bifidobacterium breve , Probióticos , Antibiosis/fisiología , Bacillus licheniformis/metabolismo , Adhesión Bacteriana/fisiología , Bifidobacterium breve/metabolismo , Células HT29 , Humanos , Micrococcaceae/fisiología , Probióticos/metabolismo
5.
Int J Mol Sci ; 22(4)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33562104

RESUMEN

Food allergy (FA) and, in particular, IgE-mediated cow's milk allergy is associated with compositional and functional changes of gut microbiota. In this study, we compared the gut microbiota of cow's milk allergic (CMA) infants with that of cow's milk sensitized (CMS) infants and Healthy controls. The effect of the intake of a mixture of Bifidobacterium longum subsp. longum BB536, Bifidobacterium breve M-16V and Bifidobacterium longum subsp. infantis M-63 on gut microbiota modulation of CMA infants and probiotic persistence was also investigated. Gut microbiota of CMA infants resulted to be characterized by a dysbiotic status with a prevalence of some bacteria as Haemophilus, Klebsiella, Prevotella, Actinobacillus and Streptococcus. Among the three strains administered, B.longum subsp. infantis colonized the gastrointestinal tract and persisted in the gut microbiota of infants with CMA for 60 days. This colonization was associated with perturbations of the gut microbiota, specifically with the increase of Akkermansia and Ruminococcus. Multi-strain probiotic formulations can be studied for their persistence in the intestine by monitoring specific bacterial probes persistence and exploiting microbiota profiling modulation before the evaluation of their therapeutic effects.


Asunto(s)
Bifidobacterium breve/metabolismo , Bifidobacterium longum subspecies infantis/metabolismo , Bifidobacterium/metabolismo , Microbioma Gastrointestinal/fisiología , Hipersensibilidad a la Leche/terapia , Probióticos/uso terapéutico , Animales , Lactancia Materna , Preescolar , Disbiosis/microbiología , Femenino , Humanos , Inmunoglobulina E/inmunología , Lactante , Masculino , Leche/inmunología , Hipersensibilidad a la Leche/microbiología
6.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32220841

RESUMEN

Bifidobacterial species are common inhabitants of the gut of human infants during the period when milk is a major component of the diet. Bifidobacterium breve, Bifidobacterium bifidum, Bifidobacterium longum subspecies longum, and B. longum subspecies infantis have been detected frequently in infant feces, but B. longum subsp. infantis may be disadvantaged numerically in the gut of infants in westernized countries. This may be due to the different durations of breast milk feeding in different countries. Supplementation of the infant diet or replacement of breast milk using formula feeds is common in Western countries. Formula milks often contain galacto- and/or fructo-oligosaccharides (GOS and FOS, respectively) as additives to augment the concentration of oligosaccharides in ruminant milks, but the ability of B. longum subsp. infantis to utilize these potential growth substrates when they are in competition with other bifidobacterial species is unknown. We compared the growth and oligosaccharide utilization of GOS and FOS by bifidobacterial species in pure culture and coculture. Short-chain GOS and FOS (degrees of polymerization [DP] 2 and 3) were favored growth substrates for strains of B. bifidum and B. longum subsp. longum, whereas both B. breve and B. longum subsp. infantis had the ability to utilize both short- and longer-chain GOS and FOS (DP 2 to 6). B. breve was nevertheless numerically dominant over B. longum subsp. infantis in cocultures. This was probably related to the slower use of GOS of DP 3 by B. longum subsp. infantis, indicating that the kinetics of substrate utilization is an important ecological factor in the assemblage of gut communities.IMPORTANCE The kinds of bacteria that form the collection of microbes (the microbiota) in the gut of human infants may influence health and well-being. Knowledge of how the composition of the infant diet influences the assemblage of the bacterial collection is therefore important because dietary interventions may offer opportunities to alter the microbiota with the aim of improving health. Bifidobacterium longum subspecies infantis is a well-known bacterial species, but under modern child-rearing conditions it may be disadvantaged in the gut. Modern formula milks often contain particular oligosaccharide additives that are generally considered to support bifidobacterial growth. However, studies of the ability of various bifidobacterial species to grow together in the presence of these oligosaccharides have not been conducted. These kinds of studies are essential for developing concepts of microbial ecology related to the influence of human nutrition on the development of the gut microbiota.


Asunto(s)
Bifidobacterium bifidum/metabolismo , Bifidobacterium breve/metabolismo , Bifidobacterium longum subspecies infantis/metabolismo , Bifidobacterium/metabolismo , Microbioma Gastrointestinal , Oligosacáridos/metabolismo , Técnicas de Cocultivo , Humanos , Lactante , Recién Nacido
7.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32276972

RESUMEN

Cross-feeding based on the metabolite 1,2-propanediol has been proposed to have an important role in the establishment of trophic interactions among gut symbionts, but its ecological importance has not been empirically established. Here, we show that in vitro growth of Lactobacillus reuteri (syn. Limosilactobacillus reuteri) ATCC PTA 6475 is enhanced through 1,2-propanediol produced by Bifidobacterium breve UCC2003 and Escherichia coli MG1655 from the metabolization of fucose and rhamnose, respectively. Work with isogenic mutants showed that the trophic interaction is dependent on the pduCDE operon in L. reuteri, which encodes the ability to use 1,2-propanediol, and the l-fucose permease (fucP) gene in B. breve, which is required for 1,2-propanediol formation from fucose. Experiments in gnotobiotic mice revealed that, although the pduCDE operon bestows a fitness burden on L. reuteri ATCC PTA 6475 in the mouse digestive tract, the ecological performance of the strain was enhanced in the presence of B. breve UCC2003 and the mucus-degrading species Bifidobacterium bifidum The use of the respective pduCDE and fucP mutants of L. reuteri and B. breve in the mouse experiments indicated that the trophic interaction was specifically based on 1,2-propanediol. Overall, our work established the ecological importance of cross-feeding relationships based on 1,2-propanediol for the fitness of a bacterial symbiont in the vertebrate gut.IMPORTANCE Through experiments in gnotobiotic mice that employed isogenic mutants of bacterial strains that produce (Bifidobacterium breve) and utilize (Lactobacillus reuteri) 1,2-propanediol, this study provides mechanistic insight into the ecological ramifications of a trophic interaction between gut symbionts. The findings improve our understanding on how cross-feeding influences the competitive fitness of L. reuteri in the vertebrate gut and revealed a putative selective force that shaped the evolution of the species. The findings are relevant since they provide a basis to design rational microbial-based strategies to modulate gut ecosystems, which could employ mixtures of bacterial strains that establish trophic interactions or a personalized approach based on the ability of a resident microbiota to provide resources for the incoming microbe.


Asunto(s)
Bifidobacterium breve/metabolismo , Escherichia coli/metabolismo , Microbioma Gastrointestinal , Vida Libre de Gérmenes , Limosilactobacillus reuteri/metabolismo , Propilenglicol/metabolismo , Animales , Femenino , Masculino , Ratones
8.
Appl Environ Microbiol ; 85(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30683741

RESUMEN

Infants fed breast milk harbor a gut microbiota in which bifidobacteria are generally predominant. The metabolic interactions of bifidobacterial species need investigation because they may offer insight into the colonization of the gut in early life. Bifidobacterium bifidum ATCC 15696 hydrolyzes 2'-O-fucosyl-lactose (2FL; a major fucosylated human milk oligosaccharide) but does not use fucose released into the culture medium. However, fucose is a growth substrate for Bifidobacterium breve 24b, and both strains utilize lactose for growth. The provision of fucose and lactose by B. bifidum (the donor) allowing the growth of B. breve (the beneficiary) conforms to the concept of syntrophy, but both strains will compete for lactose to multiply. To determine the metabolic impact of this syntrophic/competitive relationship on the donor, the transcriptomes of B. bifidum were determined and compared in steady-state monoculture and coculture using transcriptome sequencing (RNA-seq) and reverse transcription-quantitative PCR (RT-qPCR). B. bifidum genes upregulated in coculture included those encoding alpha-l-fucosidase and carbohydrate transporters and those involved in energy production and conversion. B. bifidum abundance was the same in coculture as in monoculture, but B. breve dominated the coculture numerically. Cocultures during steady-state growth in 2FL medium produced mostly acetate with little lactate (acetate:lactate molar ratio, 8:1) compared to that in monobatch cultures containing lactose (2:1), which reflected the maintenance of steady-state cells in log-phase growth. Darwinian competition is an implicit feature of bacterial communities, but syntrophy is a phenomenon putatively based on cooperation. Our results suggest that the regulation of syntrophy, in addition to competition, may shape bacterial communities.IMPORTANCE This study addresses the microbiology and function of a natural ecosystem (the infant bowel) using in vitro experimentation with bacterial cultures maintained under controlled growth and environmental conditions. We studied the growth of bifidobacteria whose nutrition centered on the hydrolysis of a human milk oligosaccharide. The results revealed responses relating to metabolism occurring in a Bifidobacterium bifidum strain when it provided nutrients that allowed the growth of Bifidobacterium breve, and so discovered biochemical features of these bifidobacteria in relation to metabolic interaction in the shared environment. These kinds of experiments are essential in developing concepts of bifidobacterial ecology that relate to the development of the gut microbiota in early life.


Asunto(s)
Bifidobacterium bifidum/crecimiento & desarrollo , Bifidobacterium bifidum/metabolismo , Bifidobacterium breve/crecimiento & desarrollo , Bifidobacterium breve/metabolismo , Trisacáridos/metabolismo , Técnicas de Cultivo Celular por Lotes , Bifidobacterium bifidum/genética , Bifidobacterium breve/genética , Técnicas de Cocultivo , Medios de Cultivo/química , Ecosistema , Fucosa/metabolismo , Microbioma Gastrointestinal , Humanos , Intestinos/microbiología , Lactosa/metabolismo , Leche Humana/química , Oligosacáridos/metabolismo , Transcriptoma
9.
J Dairy Sci ; 102(6): 4832-4843, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30981490

RESUMEN

Yogurt is a popular product worldwide partly because of the health-promoting effects of the probiotics that it contains. Probiotics with high survivability constitute a promising direction for fortified yogurt products. This study aimed to prepare Bifidobacterium breve-loaded yogurt with the bacteria surviving transit to the lower part of small intestine or colon. Bifidobacterium breve beads were prepared through an ion-crosslinking method using low methoxyl pectin as the encapsulating material. Features such as encapsulation efficiency and stability during storage and passage through the simulated gastrointestinal tract were studied in vitro. A commercial starter was used for yogurt fermentation, and B. breve with or without encapsulation was added as a probiotic supplement with the starter or 3 to 4 h after fermentation. The effects of B. breve beads on yogurt characteristics were evaluated after different fermentation processes: BC, milk fermented with marketed yogurt starter; UBFF, unencapsulated B. breve added to fresh milk and then fermented; EBFF, encapsulated B. breve added to fresh milk and then fermented; UBAF, unencapsulated B. breve added after fermentation with the starter; and EBAF, encapsulated B. breve beads added 3 to 4 h after fermentation with the starter. Evaluation was based on texture, electronic nose, and electronic tongue analyses. The particle size analysis of B. breve beads showed that they were uniform, mostly spherical, 1 to 1.5 mm in diameter with encapsulating efficiency higher than 99%. Following treatment with the simulated gastrointestinal tract conditions, the number of B. breve decreased by 1.76 and 4.82 log cfu/g for B. breve beads and unencapsulated B. breve, respectively. The EBAF group showed the lowest viscosity (2,235.67 cP) at d 0, and the lower postfermentation degree was reflected by the slow increase in yogurt viscosity. All groups kept a relatively stable pH during storage. The cohesiveness values of the EBAF and UBAF groups were significantly higher than those of the other groups. The trends in texture changes within the BC, UBFF, and EBFF groups were similar, and the UBAF and EBAF groups showed similar trends. In conclusion, B. breve beads showed good stability in vitro and improved yogurt characteristics by increasing the survival rate of the encapsulated cells. Good compatibility of low methoxyl pectin beads with yogurt was also observed.


Asunto(s)
Bifidobacterium breve/metabolismo , Probióticos/metabolismo , Yogur/microbiología , Animales , Colon/microbiología , Fermentación , Calidad de los Alimentos , Almacenamiento de Alimentos , Concentración de Iones de Hidrógeno , Intestino Grueso/microbiología , Leche/microbiología , Pectinas , Viscosidad
10.
Anaerobe ; 52: 22-28, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29787815

RESUMEN

We investigated the roles of extracellular sialidases (SiaBb1 and SiaBb2) in cross-feeding between sialidase-carrying Bifidobacterium bifidum and sialic acid-utilizing Bifidobacterium breve. Using 6' sialyllactose (6'SL) as a carbon source, the number of wild-type B. bifidum cells increased while that of a siabb2-inactivated strain (Δsiabb2) did not. Coculture of these two strains in the presence of 6'SL resulted in similar increase in cell numbers. Coculture of wild-type B. bifidum, but not the Δsiabb2 strain, with sialic acid-utilizing Bifidobacterium breve, which cannot release sialic acids from carbohydrates, in the presence of 6'SL increased the number of B. breve cells. Moreover, when mucin was used as a carbon source, B. breve growth was increased in cocultures with B. bifidum wild-type and Δsiabb2 strains, suggesting that SiaBb1 may be involved. Additionally, B. breve cell numbers increased during cultivation with recombinant SiaBb1-and SiaBb2-treated mucin as the sole carbon source. These results indicated that B. bifidum SiaBb2 liberated sialic acid from sialyl-human milk oligosaccharides and -mucin glycans, supporting the growth of B. breve through sialic acid cross-feeding. SiaBb1 may assist in the degradation of mucin glycan. Collectively, our results revealed that both the B. bifidum extracellular sialidases promote the utilization of sialylated carbohydrates and supply free sialic acid to other Bifidobacterium strains.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bifidobacterium bifidum/enzimología , Bifidobacterium breve/crecimiento & desarrollo , Neuraminidasa/metabolismo , Oligosacáridos/metabolismo , Proteínas Bacterianas/genética , Bifidobacterium bifidum/genética , Bifidobacterium breve/metabolismo , Medios de Cultivo/metabolismo , Femenino , Humanos , Lactosa/análogos & derivados , Lactosa/metabolismo , Leche Humana/microbiología , Ácido N-Acetilneuramínico/metabolismo , Neuraminidasa/genética , Polisacáridos/metabolismo
11.
BMC Genomics ; 18(1): 991, 2017 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-29281966

RESUMEN

BACKGROUND: Bifidobacterium breve represents a common member of the infant gut microbiota and its presence in the gut has been associated with host well being. For this reason it is relevant to investigate and understand the molecular mechanisms underlying the establishment, persistence and activities of this gut commensal in the host environment. RESULTS: The assessment of vegetative promoters in the bifidobacterial prototype Bifidobacterium breve UCC2003 was performed employing a combination of RNA tiling array analysis and cDNA sequencing. Canonical -10 (TATAAT) and -35 (TTGACA) sequences were identified upstream of transcribed genes or operons, where deviations from this consensus correspond to transcription level variations. A Random Forest analysis assigned the -10 region of B. breve promoters as the element most impacting on the level of transcription, followed by the spacer length and the 5'-UTR length of transcripts. Furthermore, our transcriptome study also identified rho-independent termination as the most common and effective termination signal of highly and moderately transcribed operons in B. breve. CONCLUSION: The present study allowed us to identify genes and operons that are actively transcribed in this organism during logarithmic growth, and link promoter elements with levels of transcription of essential genes in this organism. As homologs of many of our identified genes are present across the whole genus Bifidobacterium, our dataset constitutes a transcriptomic reference to be used for future investigations of gene expression in members of this genus.


Asunto(s)
Bifidobacterium breve/genética , Regiones Promotoras Genéticas , Transcriptoma , Bifidobacterium breve/metabolismo , Perfilación de la Expresión Génica , Genes Esenciales , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Pequeño no Traducido/biosíntesis , Riboswitch , Análisis de Secuencia de ARN , Iniciación de la Transcripción Genética , Terminación de la Transcripción Genética
12.
Appl Environ Microbiol ; 83(7)2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28115383

RESUMEN

Bifidobacteria exert beneficial effects on hosts and are extensively used as probiotics. However, due to the genetic inaccessibility of these bacteria, little is known about their mechanisms of carbohydrate utilization and regulation. Bifidobacterium breve strain JCM1192 can grow on water-insoluble yeast (Saccharomyces cerevisiae) cell wall glucans (YCWG), which were recently considered as potential prebiotics. According to the results of 1H nuclear magnetic resonance (NMR) spectrometry, the YCWG were composed of highly branched (1→3,1→6)-ß-glucans and (1→4,1→6)-α-glucans. Although the YCWG were composed of 78.3% ß-glucans and 21.7% α-glucans, only α-glucans were consumed by the B. breve strain. The ABC transporter (malEFG1) and pullulanase (aapA) genes were transcriptionally upregulated in the metabolism of insoluble yeast glucans, suggesting their potential involvement in the process. A nonsense mutation identified in the gene encoding an ABC transporter ATP-binding protein (MalK) led to growth failure of an ethyl methanesulfonate-generated mutant with yeast glucans. Coculture of the wild-type strain and the mutant showed that this protein was responsible for the import of yeast glucans or their breakdown products, rather than the export of α-glucan-catabolizing enzymes. Further characterization of the carbohydrate utilization of the mutant and three of its revertants indicated that this mutation was pleiotropic: the mutant could not grow with maltose, glycogen, dextrin, raffinose, cellobiose, melibiose, or turanose. We propose that insoluble yeast α-glucans are hydrolyzed by extracellular pullulanase into maltose and/or maltooligosaccharides, which are then transported into the cell by the ABC transport system composed of MalEFG1 and MalK. The mechanism elucidated here will facilitate the development of B. breve and water-insoluble yeast glucans as novel synbiotics.IMPORTANCE In general, Bifidobacterium strains are genetically intractable. Coupling classic forward genetics with next-generation sequencing, here we identified an ABC transporter ATP-binding protein (MalK) responsible for the import of insoluble yeast glucan breakdown products by B. breve JCM1192. We demonstrated the pleiotropic effects of the ABC transporter ATP-binding protein in maltose/maltooligosaccharide, raffinose, cellobiose, melibiose, and turanose transport. With the addition of transcriptional analysis, we propose that insoluble yeast glucans are broken down by extracellular pullulanase into maltose and/or maltooligosaccharides, which are then transported into the cell by the ABC transport system composed of MalEFG1 and MalK. The mechanism elucidated here will facilitate the development of B. breve and water-insoluble yeast glucans as novel synbiotics.


Asunto(s)
Bifidobacterium breve/metabolismo , Glucanos/metabolismo , Saccharomyces cerevisiae/química , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bifidobacterium breve/efectos de los fármacos , Bifidobacterium breve/genética , Bifidobacterium breve/crecimiento & desarrollo , Pared Celular/química , Pared Celular/metabolismo , Dextrinas/farmacología , Glucógeno/farmacología , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Hidrólisis , Maltosa/metabolismo , Maltosa/farmacología , Mutación , Solubilidad , Simbióticos , Agua , beta-Glucanos/metabolismo
13.
Appl Environ Microbiol ; 82(22): 6611-6623, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27590817

RESUMEN

Bifidobacteria constitute a specific group of commensal bacteria typically found in the gastrointestinal tract (GIT) of humans and other mammals. Bifidobacterium breve strains are numerically prevalent among the gut microbiota of many healthy breastfed infants. In the present study, we investigated glycosulfatase activity in a bacterial isolate from a nursling stool sample, B. breve UCC2003. Two putative sulfatases were identified on the genome of B. breve UCC2003. The sulfated monosaccharide N-acetylglucosamine-6-sulfate (GlcNAc-6-S) was shown to support the growth of B. breve UCC2003, while N-acetylglucosamine-3-sulfate, N-acetylgalactosamine-3-sulfate, and N-acetylgalactosamine-6-sulfate did not support appreciable growth. By using a combination of transcriptomic and functional genomic approaches, a gene cluster designated ats2 was shown to be specifically required for GlcNAc-6-S metabolism. Transcription of the ats2 cluster is regulated by a repressor open reading frame kinase (ROK) family transcriptional repressor. This study represents the first description of glycosulfatase activity within the Bifidobacterium genus. IMPORTANCE: Bifidobacteria are saccharolytic organisms naturally found in the digestive tract of mammals and insects. Bifidobacterium breve strains utilize a variety of plant- and host-derived carbohydrates that allow them to be present as prominent members of the infant gut microbiota as well as being present in the gastrointestinal tract of adults. In this study, we introduce a previously unexplored area of carbohydrate metabolism in bifidobacteria, namely, the metabolism of sulfated carbohydrates. B. breve UCC2003 was shown to metabolize N-acetylglucosamine-6-sulfate (GlcNAc-6-S) through one of two sulfatase-encoding gene clusters identified on its genome. GlcNAc-6-S can be found in terminal or branched positions of mucin oligosaccharides, the glycoprotein component of the mucous layer that covers the digestive tract. The results of this study provide further evidence of the ability of this species to utilize mucin-derived sugars, a trait which may provide a competitive advantage in both the infant gut and adult gut.


Asunto(s)
Bifidobacterium breve/genética , Heces/microbiología , Genes Bacterianos , Familia de Multigenes , Sulfatasas/genética , Acetilglucosamina/análogos & derivados , Acetilglucosamina/metabolismo , Bifidobacterium breve/enzimología , Bifidobacterium breve/crecimiento & desarrollo , Bifidobacterium breve/metabolismo , Lactancia Materna , ADN Bacteriano/genética , Tracto Gastrointestinal/microbiología , Perfilación de la Expresión Génica , Genoma Bacteriano , Genómica/métodos , Humanos , Lactante , Oligosacáridos/metabolismo , Sulfatasas/clasificación , Sulfatasas/aislamiento & purificación
14.
J Agric Food Chem ; 72(3): 1561-1570, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38197881

RESUMEN

Purine metabolism plays a pivotal role in numerous biological processes with potential implications for brain function and emotional regulation. This study utilizes gene-edited probiotics and pseudo-germ-free mice to unravel this intricate interplay. Transcriptomic analysis identified a ribonucleoside-diphosphate reductase ß chain (nrdB) as a pivotal gene in purine metabolism within Bifidobacterium breve CCFM1025. Comparative evaluation between the wild-type and nrdB mutant strains revealed CCFM1025's effective reduction of xanthine and xanthosine levels in the serum and brain of stressed mice. Concomitantly, it downregulated the expression of the adenosine receptor gene (Adora2b) and inhibited the overactivation of microglia. These findings emphasize the potential of psychobiotics in modulating emotional responses by regulating purine metabolites and adenosine receptors. This study sheds light on novel pathways that influence emotional well-being through gut microbiota interactions and purine metabolic processes.


Asunto(s)
Bifidobacterium breve , Microbioma Gastrointestinal , Probióticos , Ratones , Animales , Bifidobacterium breve/genética , Bifidobacterium breve/metabolismo , Purinas/metabolismo , Emociones
15.
Microb Biotechnol ; 17(1): e14405, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38206097

RESUMEN

The 190 kb megaplasmid pMP7017 of Bifidobacterium breve JCM7017 represents the first conjugative and largest plasmid characterised within this genus to date. In the current study, we adopted an integrated approach combining transcriptomics, whole genome comparative analysis and metagenomic data mining to understand the biology of pMP7017 and related megaplasmids, and to assess the impact of plasmid-carriage on the host strain. The data generated revealed variations within basic features of promoter elements which correlate with a high level of transcription on the plasmid and highlight the transcriptional activity of genes encoding both offensive and defensive adaptations, including a Type IIL restriction-modification system, an anti-restriction system and four Type II toxin-antitoxin systems. Furthermore, a highly transcribed tmRNA, which likely provides translational support to the host strain, was identified, making pMP7017 the first plasmid of the Bifidobacterium genus and the smallest plasmid known to express a tmRNA. Analyses of synteny and variability among pMP7017 and related plasmids indicate substantial diversity in gene organisation and accessory gene cargo highlighting diverse (co-)evolution and potential host-specific rearrangements and adaptations. Systematic analysis of the codon usage profile of transcriptionally active pMP7017-encoded genes suggests that pMP7017 originated from (sub)species of Bifidobacterium longum. Furthermore, mining of metagenomic data suggests the presence of pMP7017-homologues in ~10% of microbiome samples, mostly infants and/or mothers from various geographical locations. Comparative transcriptome analysis of the B. breve UCC2003 chromosome in the presence or absence of pMP7017 revealed differential expression of genes representing 8% of the total gene pool. Genes involved in genetic information processing were exclusively upregulated, while altered expression of genes involved in biofilm production and polysaccharide biosynthesis was also observed.


Asunto(s)
Bifidobacterium breve , Humanos , Bifidobacterium breve/genética , Bifidobacterium breve/metabolismo , Transcriptoma , Bifidobacterium/genética , Plásmidos/genética , Perfilación de la Expresión Génica
16.
Food Funct ; 15(3): 1598-1611, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38240388

RESUMEN

Psychobiotics that modulate the gut-brain axis have emerged as promising interventions for clinical mental disorders. Bifidobacterium breve CCFM1025 has demonstrated antidepressant effects in both mice and patients with major depression. Nevertheless, the precise mechanism of action of CCFM1025 in emotional regulation remains ambiguous. This study aimed to explore the colonization capacity of CCFM1025 and its dose-dependent effect on emotional regulation in mice exposed to chronic unpredictable mild stress (CUMS). Additionally, we examined its regulatory effects on intestinal and serum metabolites in mice. The results revealed that CCFM1025 did not exhibit a heightened gut retention capability compared to the conspecific control strain. Nevertheless, CCFM1025 exhibited dose-dependent mitigation of anxiety-like behavior and memory impairment induced by CUMS, while also restoring gut microbiota homeostasis. Notably, CCFM1025 demonstrated a robust ability to exert potent gut metabolite regulation, resulting in significant elevation of bile acid and tryptophan metabolites in the gut contents and serum of mice. These findings indicate that the impact of CCFM1025 on emotional regulation may be attributed to its regulation of gut metabolites rather than its gut retention capability. The potential of Bifidobacterium to modulate bile acid metabolism may serve as a valuable avenue for regulating the gut microbiota and successfully exert emotion regulation.


Asunto(s)
Bifidobacterium breve , Trastorno Depresivo Mayor , Regulación Emocional , Humanos , Ratones , Animales , Bifidobacterium breve/metabolismo , Bifidobacterium , Estrés Psicológico/metabolismo , Ácidos y Sales Biliares/metabolismo , Depresión/metabolismo
17.
Mol Metab ; 88: 102004, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39127167

RESUMEN

BACKGROUND: Recent advances have significantly expanded our understanding of the gut microbiome's influence on host physiology and metabolism. However, the specific role of certain microorganisms in gestational health and fetal development remains underexplored. OBJECTIVE: This study investigates the impact of Bifidobacterium breve UCC2003 on fetal brain metabolism when colonized in the maternal gut during pregnancy. METHODS: Germ-free pregnant mice were colonized with or without B. breve UCC2003 during pregnancy. The metabolic profiles of fetal brains were analyzed, focusing on the presence of key metabolites and the expression of critical metabolic and cellular pathways. RESULTS: Maternal colonization with B. breve resulted in significant metabolic changes in the fetal brain. Specifically, ten metabolites, including citrate, 3-hydroxyisobutyrate, and carnitine, were reduced in the fetal brain. These alterations were accompanied by increased abundance of transporters involved in glucose and branched-chain amino acid uptake. Furthermore, supplementation with this bacterium was associated with elevated expression of critical metabolic pathways such as PI3K-AKT, AMPK, STAT5, and Wnt-ß-catenin signaling, including its receptor Frizzled-7. Additionally, there was stabilization of HIF-2 protein and modifications in genes and proteins related to cellular growth, axogenesis, and mitochondrial function. CONCLUSIONS: The presence of maternal B. breve during pregnancy plays a crucial role in modulating fetal brain metabolism and growth. These findings suggest that Bifidobacterium could modify fetal brain development, potentially offering new avenues for enhancing gestational health and fetal development through microbiota-targeted interventions.


Asunto(s)
Bifidobacterium breve , Encéfalo , Microbioma Gastrointestinal , Animales , Femenino , Ratones , Bifidobacterium breve/metabolismo , Encéfalo/metabolismo , Embarazo , Microbioma Gastrointestinal/fisiología , Feto/metabolismo , Vida Libre de Gérmenes , Desarrollo Fetal , Ratones Endogámicos C57BL
18.
Nutrients ; 16(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38398861

RESUMEN

We previously demonstrated that orally supplemented Bifidobacterium breve MCC1274 (B. breve MCC1274) mitigated Alzheimer's disease (AD) pathologies in both 7-month-old AppNL-G-F mice and wild-type mice; thus, B. breve MCC1274 supplementation might potentially prevent the progression of AD. However, the possibility of using this probiotic as a treatment for AD remains unclear. Thus, we investigated the potential therapeutic effects of this probiotic on AD using 17-month-old AppNL-G-F mice with memory deficits and amyloid beta saturation in the brain. B. breve MCC1274 supplementation ameliorated memory impairment via an amyloid-cascade-independent pathway. It reduced hippocampal and cortical levels of phosphorylated extracellular signal-regulated kinase and c-Jun N-terminal kinase as well as heat shock protein 90, which might have suppressed tau hyperphosphorylation and chronic stress. Moreover, B. breve MCC1274 supplementation increased hippocampal synaptic protein levels and upregulated neuronal activity. Thus, B. breve MCC1274 supplementation may alleviate cognitive dysfunction by reducing chronic stress and tau hyperphosphorylation, thereby enhancing both synaptic density and neuronal activity in 17-month-old AppNL-G-F mice. Overall, this study suggests that B. breve MCC1274 has anti-AD effects and can be used as a potential treatment for AD.


Asunto(s)
Enfermedad de Alzheimer , Bifidobacterium breve , Aplicaciones Móviles , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Bifidobacterium breve/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad , Trastornos de la Memoria/tratamiento farmacológico , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo
19.
Theranostics ; 14(7): 2719-2735, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38773969

RESUMEN

Aim: To elucidate dynamics and functions in colonic macrophage subsets, and their regulation by Bifidobacterium breve (B. breve) and its associated metabolites in the initiation of colitis-associated colorectal cancer (CAC). Methods: Azoxymethane (AOM) and dextran sodium sulfate (DSS) were used to create a CAC model. The tumor-suppressive effect of B. breve and variations of macrophage subsets were evaluated. Intestinal macrophages were ablated to determine their role in the protective effects of B. breve. Efficacious molecules produced by B. breve were identified by non-targeted and targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The molecular mechanism was further verified in murine bone marrow-derived macrophages (BMDMs), macrophages derived from human peripheral blood mononuclear cells (hPBMCs), and demonstrated in CAC mice. Results: B. breve alleviated colitis symptoms, delayed colonic tumorigenesis, and promoted phenotypic differentiation of immature inflammatory macrophages into mature homeostatic macrophages. On the contrary, the ablation of intestinal macrophages largely annulled the protective effects of B. breve. Microbial analysis of colonic contents revealed the enrichment of probiotics and the depletion of potential pathogens following B. breve supplementation. Moreover, indole-3-lactic acid (ILA) was positively correlated with B. breve in CAC mice and highly enriched in the culture supernatant of B. breve. Also, the addition of ILA directly promoted AKT phosphorylation and restricted the pro-inflammatory response of murine BMDMs and macrophages derived from hPBMCs in vitro. The effects of ILA in murine BMDMs and macrophages derived from hPBMCs were abolished by the aryl hydrocarbon receptor (AhR) antagonist CH-223191 or the AKT inhibitor MK-2206. Furthermore, ILA could protect against tumorigenesis by regulating macrophage differentiation in CAC mice; the AhR antagonist largely abrogated the effects of B. breve and ILA in relieving colitis and tumorigenesis. Conclusion: B. breve-mediated tryptophan metabolism ameliorates the precancerous inflammatory intestinal milieu to inhibit tumorigenesis by directing the differentiation of immature colonic macrophages.


Asunto(s)
Bifidobacterium breve , Diferenciación Celular , Colitis , Indoles , Macrófagos , Probióticos , Animales , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Bifidobacterium breve/metabolismo , Indoles/farmacología , Indoles/metabolismo , Humanos , Colitis/inducido químicamente , Colitis/microbiología , Colitis/complicaciones , Diferenciación Celular/efectos de los fármacos , Probióticos/farmacología , Probióticos/administración & dosificación , Modelos Animales de Enfermedad , Carcinogénesis/efectos de los fármacos , Neoplasias Asociadas a Colitis/patología , Neoplasias Asociadas a Colitis/microbiología , Neoplasias Asociadas a Colitis/metabolismo , Ratones Endogámicos C57BL , Colon/microbiología , Colon/patología , Colon/metabolismo , Sulfato de Dextran , Masculino , Microbioma Gastrointestinal , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/microbiología , Azoximetano
20.
J Agric Food Chem ; 71(49): 19791-19803, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38031933

RESUMEN

In this study, a novel homogeneous mannose-rich polysaccharide named EPS-1 from the fermentation broth of Bifidobacterium breve H4-2 was isolated and purified by anion exchange column chromatography and gel column chromatography. The primary structure of EPS-1 was analyzed by high-performance liquid chromatography, Fourier-transform infrared spectroscopy, gas chromatography-mass spectrometry, and nuclear magnetic resonance. The results indicated that EPS-1 had typical functional groups of polysaccharides. EPS-1 with an average molecular weight of 3.99 × 104 Da was mainly composed of mannose (89.65%) and glucose (5.84%). The backbone of EPS-1 was →2,6)-α-d-Manp-(1→2)-α-d-Manp-(1→2,6)-α-d-Manp-(1→2)-α-d-Manp-(1→2,6)-α-d-Manp-(1→6)-α-d-Glcp-(1→ simultaneously containing two kinds of branched chains (α-d-Manp-(1→3)-α-d-Manp-(1→ and α-d-Manp-(1→). Besides, EPS-1 had a triple-helical conformation and exhibited excellent thermal stability. Moreover, the immunomodulatory activity of EPS-1 was evaluated by RAW 264.7 cells. Results indicated that EPS-1 significantly enhanced the viability of RAW 264.7 cells. EPS-1 could also be recognized by toll-like receptor 4, thereby activating the nuclear factors-κB (NF-κB) signaling pathway, promoting phosphorylation of related nuclear transcription factors, improving cell phagocytic activity, and promoting the secretion of NO, IL-6, IL-1ß, and TNF-α. Thus, EPS-1 could activate the TLR4-NF-κB signaling pathway to emerge immunomodulatory activity on macrophages. The above results indicate that EPS-1 can serve as a potential immune-stimulating polysaccharide.


Asunto(s)
Bifidobacterium breve , Manosa , Animales , Ratones , Manosa/metabolismo , Bifidobacterium breve/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Polisacáridos/química , Macrófagos/metabolismo , Células RAW 264.7 , Peso Molecular
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda