Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Neurosci ; 40(11): 2200-2214, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32047055

RESUMEN

The dentate gyrus (DG) in the hippocampus may play key roles in remembering distinct episodes through pattern separation, which may be subserved by the sparse firing properties of granule cells (GCs) in the DG. Low intrinsic excitability is characteristic of mature GCs, but ion channel mechanisms are not fully understood. Here, we investigated ionic channel mechanisms for firing frequency regulation in hippocampal GCs using male and female mice, and identified Kv4.1 as a key player. Immunofluorescence analysis showed that Kv4.1 was preferentially expressed in the DG, and its expression level determined by Western blot analysis was higher at 8-week than 3-week-old mice, suggesting a developmental regulation of Kv4.1 expression. With respect to firing frequency, GCs are categorized into two distinctive groups: low-frequency (LF) and high-frequency (HF) firing GCs. Input resistance (Rin) of most LF-GCs is lower than 200 MΩ, suggesting that LF-GCs are fully mature GCs. Kv4.1 channel inhibition by intracellular perfusion of Kv4.1 antibody increased firing rates and gain of the input-output relationship selectively in LF-GCs with no significant effect on resting membrane potential and Rin, but had no effect in HF-GCs. Importantly, mature GCs from mice depleted of Kv4.1 transcripts in the DG showed increased firing frequency, and these mice showed an impairment in contextual discrimination task. Our findings suggest that Kv4.1 expression occurring at late stage of GC maturation is essential for low excitability of DG networks and thereby contributes to pattern separation.SIGNIFICANCE STATEMENT The sparse activity of dentate granule cells (GCs), which is essential for pattern separation, is supported by high inhibitory inputs and low intrinsic excitability of GCs. Low excitability of GCs is thought to be attributable to a high K+ conductance at resting membrane potentials, but this study identifies Kv4.1, a depolarization-activated K+ channel, as a key ion channel that regulates firing of GCs without affecting resting membrane potentials. Kv4.1 expression is developmentally regulated and Kv4.1 currents are detected only in mature GCs that show low-frequency firing, but not in less mature high-frequency firing GCs. Furthermore, mice depleted of Kv4.1 transcripts in the dentate gyrus show impaired pattern separation, suggesting that Kv4.1 is crucial for sparse coding and pattern separation.


Asunto(s)
Reacción de Prevención/fisiología , Giro Dentado/citología , Discriminación en Psicología/fisiología , Neuronas/fisiología , Canales de Potasio Shal/fisiología , Potenciales de Acción , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Condicionamiento Clásico , Giro Dentado/fisiología , Electrochoque , Femenino , Reacción Cataléptica de Congelación/fisiología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen , Genes Reporteros , Humanos , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Neuronas/clasificación , Técnicas de Placa-Clamp , Células Piramidales/fisiología , Interferencia de ARN , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/genética , ARN Interferente Pequeño/farmacología , Canales de Potasio Shal/biosíntesis , Canales de Potasio Shal/genética , Organismos Libres de Patógenos Específicos
2.
J Biol Chem ; 295(34): 12099-12110, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32641494

RESUMEN

Voltage-gated potassium (Kv) channels of the Kv4 subfamily associate with Kv channel-interacting proteins (KChIPs), which leads to enhanced surface expression and shapes the inactivation gating of these channels. KChIP3 has been reported to also interact with the late endosomal/lysosomal membrane glycoprotein CLN3 (ceroid lipofuscinosis neuronal 3), which is modified because of gene mutation in juvenile neuronal ceroid lipofuscinosis (JNCL). The present study was undertaken to find out whether and how CLN3, by its interaction with KChIP3, may indirectly modulate Kv4.2 channel expression and function. To this end, we expressed KChIP3 and CLN3, either individually or simultaneously, together with Kv4.2 in HEK 293 cells. We performed co-immunoprecipitation experiments and found a lower amount of KChIP3 bound to Kv4.2 in the presence of CLN3. In whole-cell patch-clamp experiments, we examined the effects of CLN3 co-expression on the KChIP3-mediated modulation of Kv4.2 channels. Simultaneous co-expression of CLN3 and KChIP3 with Kv4.2 resulted in a suppression of the typical KChIP3-mediated modulation; i.e. we observed less increase in current density, less slowing of macroscopic current decay, less acceleration of recovery from inactivation, and a less positively shifted voltage dependence of steady-state inactivation. The suppression of the KChIP3-mediated modulation of Kv4.2 channels was weaker for the JNCL-related missense mutant CLN3R334C and for a JNCL-related C-terminal deletion mutant (CLN3ΔC). Our data support the notion that CLN3 is involved in Kv4.2/KChIP3 somatodendritic A-type channel formation, trafficking, and function, a feature that may be lost in JNCL.


Asunto(s)
Regulación de la Expresión Génica/genética , Proteínas de Interacción con los Canales Kv , Glicoproteínas de Membrana , Chaperonas Moleculares , Mutación Missense , Lipofuscinosis Ceroideas Neuronales , Proteínas Represoras , Canales de Potasio Shal , Sustitución de Aminoácidos , Células HEK293 , Humanos , Proteínas de Interacción con los Canales Kv/genética , Proteínas de Interacción con los Canales Kv/metabolismo , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo , Lipofuscinosis Ceroideas Neuronales/patología , Unión Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Canales de Potasio Shal/biosíntesis , Canales de Potasio Shal/genética
3.
J Biol Chem ; 291(33): 17369-81, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27307045

RESUMEN

Neuritin is an important neurotrophin that regulates neural development, synaptic plasticity, and neuronal survival. Elucidating the downstream molecular signaling is important for potential therapeutic applications of neuritin in neuronal dysfunctions. We previously showed that neuritin up-regulates transient potassium outward current (IA) subunit Kv4.2 expression and increases IA densities, in part by activating the insulin receptor signaling pathway. Molecular mechanisms of neuritin-induced Kv4.2 expression remain elusive. Here, we report that the Ca(2+)/calcineurin (CaN)/nuclear factor of activated T-cells (NFAT) c4 axis is required for neuritin-induced Kv4.2 transcriptional expression and potentiation of IA densities in cerebellum granule neurons. We found that neuritin elevates intracellular Ca(2+) and increases Kv4.2 expression and IA densities; this effect was sensitive to CaN inhibition and was eliminated in Nfatc4(-/-) mice but not in Nfatc2(-/-) mice. Stimulation with neuritin significantly increased nuclear accumulation of NFATc4 in cerebellum granule cells and HeLa cells, which expressed IR. Furthermore, NFATc4 was recruited to the Kv4.2 gene promoter loci detected by luciferase reporter and chromatin immunoprecipitation assays. More importantly, data obtained from cortical neurons following adeno-associated virus-mediated overexpression of neuritin indicated that reduced neuronal excitability and increased formation of dendritic spines were abrogated in the Nfatc4(-/-) mice. Together, these data demonstrate an indispensable role for the CaN/NFATc4 signaling pathway in neuritin-regulated neuronal functions.


Asunto(s)
Calcineurina/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Espinas Dendríticas/metabolismo , Regulación de la Expresión Génica/fisiología , Factores de Transcripción NFATC/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuropéptidos/metabolismo , Canales de Potasio Shal/biosíntesis , Animales , Calcineurina/genética , Cerebelo/metabolismo , Espinas Dendríticas/genética , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Células HeLa , Humanos , Ratones , Ratones Noqueados , Factores de Transcripción NFATC/genética , Proteínas del Tejido Nervioso/genética , Neuropéptidos/genética , Canales de Potasio Shal/genética
4.
Alcohol Clin Exp Res ; 40(6): 1251-61, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27147118

RESUMEN

BACKGROUND: Exposure to chronic ethanol (EtOH) results in changes in the expression of proteins that regulate neuronal excitability. This study examined whether chronic EtOH alters the hippocampal expression and function of fragile X mental retardation protein (FMRP) and the role of FMRP in the modulation of chronic EtOH-induced changes in the expression of NMDA receptors and Kv4.2 channels. METHODS: For in vivo studies, C57BL/6J mice underwent a chronic intermittent EtOH (CIE) vapor exposure procedure. After CIE, hippocampal tissue was collected and subjected to immunoblot blot analysis of NMDA receptor subunits (GluN1, GluN2B), Kv4.2, and its accessory protein KChIP3. For in vitro studies, hippocampal slice cultures were exposed to 75 mM EtOH for 8 days. Following EtOH exposure, mRNAs bound to FMRP was measured. In a separate set of studies, cultures were exposed to an inhibitor of S6K1 (PF-4708671 [PF], 6 µM) in order to assess whether EtOH-induced homeostatic changes in protein expression depend upon changes in FMRP activity. RESULTS: Immunoblot blot analysis revealed increases in GluN1 and GluN2B but reductions in Kv4.2 and KChIP3. Analysis of mRNAs bound to FMRP revealed a similar bidirectional change observed as reduction of GluN2B and increase in Kv4.2 and KChIP3 mRNA transcripts. Analysis of FMRP further revealed that while chronic EtOH did not alter the expression of FMRP, it significantly increased phosphorylation of FMRP at the S499 residue that is known to critically regulate its activity. Inhibition of S6K1 prevented the chronic EtOH-induced increase in phospho-FMRP and changes in NMDA subunits, Kv4.2, and KChIP3. In contrast, PF had no effect in the absence of alcohol, indicating it was specific for the chronic EtOH-induced changes. CONCLUSIONS: These findings demonstrate that chronic EtOH exposure enhances translational control of plasticity-related proteins by FMRP, and that S6K1 and FMRP activities are required for expression of chronic EtOH-induced homeostatic plasticity at glutamatergic synapses in the hippocampus.


Asunto(s)
Etanol/farmacología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Hipocampo/metabolismo , Proteínas de Interacción con los Canales Kv/biosíntesis , Receptores de N-Metil-D-Aspartato/biosíntesis , Canales de Potasio Shal/biosíntesis , Administración por Inhalación , Animales , Etanol/administración & dosificación , Etanol/antagonistas & inhibidores , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/efectos de los fármacos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Imidazoles/farmacología , Masculino , Ratones , Fosforilación/efectos de los fármacos , Piperazinas/farmacología , Ratas , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores
5.
J Mol Cell Cardiol ; 86: 85-94, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26205295

RESUMEN

BACKGROUND AND OBJECTIVE: We have previously shown that androgens upregulate cardiac K(+) channels and shorten repolarization. However, the effects that estrogens (E2) and estrogen receptors (ER) might have on the various repolarizing K(+) currents and underlying ion channels remain incompletely understood. Accordingly, our objective was to verify whether and how E2 and its ERs subtypes influence these K(+) currents. METHODS AND RESULTS: In order to examine the influence of E2 and ERs on K(+) currents we drastically lowered the E2 level through ovariectomy (OVX; 74% reduction vs CTL) and in parallel, we used female mice lacking either ERα (ERαKO) or ERß (ERßKO). In OVX mice, results showed a specific increase of 35% in the density of the Ca(2+)-independent transient outward K(+) current (Ito) compared to CTL. Western blots showed increase in Kv4.2 and Kv4.3 sarcolemmal protein expression while qPCR revealed higher mRNA expression of only Kv4.3 in OVX mice. This upregulation of Ito was correlated with a shorter ventricular action potential duration and QTc interval. In ERαKO but not ERßKO mice, the mRNA of Kv4.3 was selectively increased. Furthermore, when ventricular myocytes obtained from ERαKO and ERßKO were cultured in the presence of E2, results showed that E2 reduced Ito density only in ERßKO myocytes confirming the repressive role of E2-ERα in regulating Ito. CONCLUSION: Altogether, these results suggest that E2 negatively regulates the density of Ito through ERα, this highlights a potential role for this female hormone and its α-subtype receptor in modulating cardiac electrical activity.


Asunto(s)
Receptor alfa de Estrógeno/genética , Estrógenos/metabolismo , Ventrículos Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Canales de Potasio Shal/biosíntesis , Potenciales de Acción , Animales , Calcio/metabolismo , Receptor beta de Estrógeno/genética , Estrógenos/genética , Femenino , Ventrículos Cardíacos/patología , Humanos , Ratones , Ratones Noqueados , Miocitos Cardíacos/patología , Ovariectomía , Técnicas de Placa-Clamp , ARN Mensajero/biosíntesis , Canales de Potasio Shal/genética
6.
Circ J ; 78(8): 1950-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24859499

RESUMEN

BACKGROUND: This study was designed to investigate the role of a primary hyperoxidative stress in myocardial electrical remodeling using heterozygous heart/muscle-specific manganese superoxide dismutase-deficient (H/M-Sod2(+/-)) mice treated with L-buthionine-sulfoximine (BSO). METHODS AND RESULTS: Both H/M-Sod2(+/-)and wild-type (WT) mice were treated with intra-peritoneal BSO or saline for 7 days, and divided into 4 groups: H/M-Sod2(+/-)+BSO, WT+BSO, H/M-Sod2(+/-)control, and WT control. The ventricular effective refractory period (ERP) and the monophasic action potential duration (MAPD) were determined. Levels of oxidative stress, potassium channel-related molecules, and K(+)channel-interacting protein-2 (KChIP2) were also evaluated. The H/M-Sod2(+/-)+BSO group exhibited markedly prolonged MAPD20, MAPD90 and ERP in comparison with the other groups (MAPD20: 14 ± 1 vs. 11 ± 1 ms, MAPD90: 77 ± 7 vs. 58 ± 4 ms, ERP: 61 ± 6 vs. 41 ± 3 ms, H/M-Sod2(+/-)+BSO vs. WT control; P<0.05). Mitochondrial superoxide and hydrogen peroxide formation in the myocardium increased in the H/M-Sod2(+/-)+BSO group in comparison with the WT+BSO group (P<0.05). Real-time RT-PCR and Western blotting revealed that Kv4.2 expression was downregulated in both BSO-treated groups, whereas KChIP2 expression was downregulated only in the H/M-Sod2(+/-)+BSO group (P<0.05). CONCLUSIONS: BSO treatment caused hyperoxidative stress in the myocardium of H/M-Sod2(+/-)mice. Changes in the expression and function of potassium channels were considered to be involved in the mechanism of electrical remodeling in this model.


Asunto(s)
Regulación hacia Abajo , Proteínas de Interacción con los Canales Kv/biosíntesis , Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , Estrés Oxidativo , Canales de Potasio Shal/biosíntesis , Superóxidos/metabolismo , Animales , Antimetabolitos/farmacología , Butionina Sulfoximina/farmacología , Peróxido de Hidrógeno/metabolismo , Proteínas de Interacción con los Canales Kv/genética , Ratones , Ratones Noqueados , Miocitos Cardíacos , Canales de Potasio Shal/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
7.
J Biol Chem ; 287(21): 17656-17661, 2012 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-22511771

RESUMEN

The dorsal and ventral regions of the hippocampus perform different functions. Whether the integrative properties of hippocampal cells reflect this heterogeneity is unknown. We focused on dendrites where most synaptic input integration takes place. We report enhanced backpropagation and theta resonance and decreased summation of synaptic inputs in ventral versus dorsal CA1 pyramidal cell distal dendrites. Transcriptional Kv4.2 down-regulation and post-transcriptional hyperpolarization-activated cyclic AMP-gated channel (HCN1/2) up-regulation may underlie these differences, respectively. Our results reveal differential dendritic integrative properties along the dorso-ventral axis, reflecting diverse computational needs.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/biosíntesis , Dendritas/metabolismo , Regulación hacia Abajo/fisiología , Canales Iónicos/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Canales de Potasio/biosíntesis , Células Piramidales/metabolismo , Canales de Potasio Shal/biosíntesis , Regulación hacia Arriba/fisiología , Animales , Dendritas/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Especificidad de Órganos , Células Piramidales/citología , Ratas , Transcripción Genética/fisiología
8.
J Neurosci ; 31(15): 5693-8, 2011 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-21490210

RESUMEN

A prominent characteristic of the inherited intellectual impairment disease fragile X syndrome (FXS) is neuronal hyperexcitability, resulting in a variety of symptoms, such as hyperactivity, increased sensitivity to sensory stimuli, and a high incidence of epileptic seizures. These symptoms account for a significant part of the disease pattern, but the underlying molecular mechanisms of neuronal hyperexcitability in FXS remain poorly understood. FXS is caused by loss of expression of fragile X mental retardation protein (FMRP), which regulates synaptic protein synthesis and is a key player to limit signaling pathways downstream of metabotropic glutamate receptors 1/5 (mGlu1/5). Recent findings suggest that FMRP might also directly regulate voltage-gated potassium channels. Here, we show that total and plasma membrane protein levels of Kv4.2, the major potassium channel regulating hippocampal neuronal excitability, are reduced in the brain of an FXS mouse model. Antagonizing mGlu5 activity with 2-methyl-6-(phenylethynyl)-pyridine (MPEP) partially rescues reduced surface Kv4.2 levels in Fmr1 knock-out (KO) mice, suggesting that excess mGlu1/5 signal activity contributes to Kv4.2 dysregulation. As an additional mechanism, we show that FMRP is a positive regulator of Kv4.2 mRNA translation and protein expression and associates with Kv4.2 mRNA in vivo and in vitro. Our results suggest that absence of FMRP-mediated positive control of Kv4.2 mRNA translation, protein expression, and plasma membrane levels might contribute to excess neuronal excitability in Fmr1 KO mice, and thus imply a potential mechanism underlying FXS-associated epilepsy.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Biosíntesis de Proteínas/fisiología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Canales de Potasio Shal/biosíntesis , Canales de Potasio Shal/genética , Regiones no Traducidas 3'/genética , Regiones no Traducidas 5'/genética , Actinas/biosíntesis , Actinas/genética , Animales , Biotinilación , Western Blotting , Cartilla de ADN , Dendritas/metabolismo , Técnica del Anticuerpo Fluorescente , Inmunoprecipitación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Polirribosomas/genética , Polirribosomas/metabolismo , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/metabolismo , Convulsiones/fisiopatología , Sinapsis/metabolismo
9.
J Biol Chem ; 285(43): 33413-33422, 2010 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-20709747

RESUMEN

Members of the K(+) channel-interacting protein (KChIP) family bind the distal N termini of members of the Shal subfamily of voltage-gated K(+) channel (Kv4) pore-forming (α) subunits to generate rapidly activating, rapidly inactivating neuronal A-type (I(A)) and cardiac transient outward (I(to)) currents. In heterologous cells, KChIP co-expression increases cell surface expression of Kv4 α subunits and Kv4 current densities, findings interpreted to suggest that Kv4·KChIP complex formation enhances forward trafficking of channels (from the endoplasmic reticulum or the Golgi complex) to the surface membrane. The results of experiments here, however, demonstrate that KChIP2 increases cell surface Kv4.2 protein expression (∼40-fold) by an order of magnitude more than the increase in total protein (∼2-fold) or in current densities (∼3-fold), suggesting that mechanisms at the cell surface regulate the functional expression of Kv4.2 channels. Additional experiments demonstrated that KChIP2 decreases the turnover rate of cell surface Kv4.2 protein by inhibiting endocytosis and/or promoting recycling. Unexpectedly, the experiments here also revealed that Kv4.2·KChIP2 complex formation stabilizes not only (total and cell surface) Kv4.2 but also KChIP2 protein expression. This reciprocal protein stabilization and Kv4·KChIP2 complex formation are lost with deletion of the distal (10 amino acids) Kv4.2 N terminus. Taken together, these observations demonstrate that KChIP2 differentially regulates total and cell surface Kv4.2 protein expression and Kv4 current densities.


Asunto(s)
Membrana Celular/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas de Interacción con los Canales Kv/metabolismo , Complejos Multiproteicos/metabolismo , Canales de Potasio Shal/biosíntesis , Secuencia de Aminoácidos , Animales , Línea Celular , Membrana Celular/genética , Endocitosis/fisiología , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Humanos , Proteínas de Interacción con los Canales Kv/genética , Ratones , Complejos Multiproteicos/genética , Subunidades de Proteína/biosíntesis , Subunidades de Proteína/genética , Eliminación de Secuencia , Canales de Potasio Shal/genética
10.
Biochem Biophys Res Commun ; 404(2): 678-83, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21147063

RESUMEN

Normal vision depends on the correct function of retinal neurons and glia and it is impaired in the course of diabetic retinopathy. Müller cells, the main glial cells of the retina, suffer morphological and functional alterations during diabetes participating in the pathological retinal dysfunction. Recently, we showed that Müller cells express the pleiotropic protein potassium channel interacting protein 3 (KChIP3), an integral component of the voltage-gated K(+) channels K(V)4. Here, we sought to analyze the role of KChIP3 in the molecular mechanisms underlying hyperglycemia-induced phenotypic changes in the glial elements of the retina. The expression and function of KChIp3 was analyzed in vitro in rat Müller primary cultures grown under control (5.6 mM) or high glucose (25 mM) (diabetic-like) conditions. We show the up-regulation of KChIP3 expression in Müller cell cultures under high glucose conditions and demonstrate a previously unknown interaction between the K(V)4 channel and KChIP3 in Müller cells. We show evidence for the expression of a 4-AP-sensitive transient outward voltage-gated K(+) current and an alteration in the inactivation of the macroscopic outward K(+) currents expressed in high glucose-cultured Müller cells. Our data support the notion that induction of KChIP3 and functional changes of K(V)4 channels in Müller cells could exert a physiological role in the onset of diabetic retinopathy.


Asunto(s)
Glucosa/metabolismo , Hiperglucemia/metabolismo , Proteínas de Interacción con los Canales Kv/biosíntesis , Neuroglía/metabolismo , Proteínas Represoras/biosíntesis , Retina/metabolismo , Canales de Potasio Shal/biosíntesis , Animales , Células Cultivadas , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Glucosa/fisiología , Hiperglucemia/patología , Proteínas de Interacción con los Canales Kv/metabolismo , Proteínas de Interacción con los Canales Kv/fisiología , Neuroglía/efectos de los fármacos , Neuroglía/patología , Ratas , Ratas Long-Evans , Retina/efectos de los fármacos , Retina/patología , Canales de Potasio Shal/fisiología
11.
Neurochem Int ; 150: 105155, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34384853

RESUMEN

As well as their ion transportation function, the voltage-dependent potassium channels could act as the cell signal inducer in a variety of pathogenic processes. However, their roles in neurogenesis after stroke insults have not been clearly illustrated. In our preliminary study, the expressions of voltage-dependent potassium channels Kv4.2 was significantly decreased after stroke in cortex, striatum and hippocampus by real-time quantitative PCR assay. To underlie the neuroprotection of Kv4.2 in stroke rehabilitation, recombinant plasmids encoding the cDNAs of mouse Kv4.2 was constructed. Behavioral tests showed that the increased Kv4.2 could be beneficial to the recovery of the sensory, the motor functions and the cognitive deficits after stroke. Temozolomide (TMZ), an inhibitor of neurogenesis, could partially abolish the mentioned protections of Kv4.2. The immunocytochemical staining showed that Kv4.2 could promote the proliferations of neural stem cells and induce the neural stem cells to differentiate into neurons in vitro and in vivo. And Kv4.2 could up-regulate the expressions of ERK1/2, p-ERK1/2, p-STAT3, NGF, p-TrkA, and BDNF, CAMKII and the concentration of intracellular Ca2+. Namely, we concluded that Kv4.2 promoted neurogenesis through ERK1/2/STAT3, NGF/TrkA, Ca2+/CAMKII signal pathways and rescued the ischemic impairments. Kv4.2 might be a potential drug target for ischemic stroke intervention.


Asunto(s)
Isquemia Encefálica/metabolismo , Isquemia Encefálica/prevención & control , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/prevención & control , Neurogénesis/fisiología , Canales de Potasio Shal/biosíntesis , Animales , Isquemia Encefálica/genética , Línea Celular Transformada , Accidente Cerebrovascular Isquémico/genética , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Canales de Potasio Shal/análisis , Canales de Potasio Shal/genética
12.
Mol Brain ; 14(1): 62, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785038

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that causes memory loss. Most AD researches have focused on neurodegeneration mechanisms. Considering that neurodegenerative changes are not reversible, understanding early functional changes before neurodegeneration is critical to develop new strategies for early detection and treatment of AD. We found that Tg2576 mice exhibited impaired pattern separation at the early preclinical stage. Based on previous studies suggesting a critical role of dentate gyrus (DG) in pattern separation, we investigated functional changes in DG of Tg2576 mice. We found that granule cells in DG (DG-GCs) in Tg2576 mice showed increased action potential firing in response to long depolarizations and reduced 4-AP sensitive K+-currents compared to DG-GCs in wild-type (WT) mice. Among Kv4 family channels, Kv4.1 mRNA expression in DG was significantly lower in Tg2576 mice. We confirmed that Kv4.1 protein expression was reduced in Tg2576, and this reduction was restored by antioxidant treatment. Hyperexcitable DG and impaired pattern separation in Tg2576 mice were also recovered by antioxidant treatment. These results highlight the hyperexcitability of DG-GCs as a pathophysiologic mechanism underlying early cognitive deficits in AD and Kv4.1 as a new target for AD pathogenesis in relation to increased oxidative stress.


Asunto(s)
Giro Dentado/fisiopatología , Memoria/fisiología , Canales de Potasio Shal/biosíntesis , Potenciales de Acción , Enfermedad de Alzheimer , Péptidos beta-Amiloides/genética , Animales , Antioxidantes/farmacología , Condicionamiento Clásico/fisiología , Giro Dentado/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Electrochoque , Miedo , Reacción Cataléptica de Congelación , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Estrés Oxidativo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Proteínas Recombinantes/genética , Canales de Potasio Shal/genética
13.
Biomed Pharmacother ; 132: 110896, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33254430

RESUMEN

OBJECTIVE: Previous study has shown that Kv4.3, a main coding subunit generating cardiac transient-outward K+ current (Ito), can inhibit Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity. Based on these observations, we speculate that over-expression of Kv4.3 gene could reverse not only Ito reduction but also cardiac remodeling in the rat myocardial infarction (MI) model. METHODS AND RESULTS: Healthy male Sprague-Dawley (SD) rats were used to establish MI model by ligation of left anterior descending coronary artery, and adenovirus integrated with Kv4.3 gene (AD-Kv4.3) was delivered in infarct border zone by intramyocardial injection. The hearts were harvested for histological analysis (HE or Masson trichrome staining), western blot or patch clamp 4 weeks after MI. Our data showed that the application of AD-Kv4.3 could reduce myocardial infarct size and fibrosis, and its cardioprotective effects were similar with medicine therapy (combination of metoprolol and captopril). Moreover, Kv4.3 over-expression significantly improved MI-induced cardiac dysfunction and enhanced Ito density while decreasing corrected QT (QTc) intervals and cardiac electrophysiological instability. Western blot showed that Kv4.3 transfection reduced CaMKII, PLB-17 and ryanodine receptor2 (RyR2 Ser2814) phosphorylation level, at same time increased SERCA2 expression dramatically. CONCLUSION: Over-expression of Kv4.3 can not only attenuate cardiac electrophysiological instability and cardiac performance, but also reduce myocardial infarct area and cardiac fibrosis. Like traditional anti-remodeling therapy-angiotensin converting enzyme inhibitor (ACEI) combined with ß-adrenergic receptor blocker, over-expression of Kv4.3 seems to be an effective and safe therapy for both structural and electrical remodeling induced by MI via CaMKII inhibition.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Canales de Potasio Shal/biosíntesis , Remodelación Ventricular/fisiología , Animales , Antiarrítmicos/administración & dosificación , Antihipertensivos/administración & dosificación , Expresión Génica , Masculino , Infarto del Miocardio/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Canales de Potasio Shal/genética , Remodelación Ventricular/efectos de los fármacos
14.
Exp Neurol ; 334: 113437, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32822706

RESUMEN

The voltage-gated potassium channel Kv4.2 is a critical regulator of dendritic excitability in the hippocampus and is crucial for dendritic signal integration. Kv4.2 mRNA and protein expression as well as function are reduced in several genetic and pharmacologically induced rodent models of epilepsy and autism. It is not known, however, whether reduced Kv4.2 is just an epiphenomenon or a disease-contributing cause of neuronal hyperexcitability and behavioral impairments in these neurological disorders. To address this question, we used male and female mice heterozygous for a Kv.2 deletion and adult-onset manipulation of hippocampal Kv4.2 expression in male mice to assess the role of Kv4.2 in regulating neuronal network excitability, morphology and anxiety-related behaviors. We observed a reduction in dendritic spine density and reduced proportions of thin and stubby spines but no changes in anxiety, overall activity, or retention of conditioned freezing memory in Kv4.2 heterozygous mice compared with wildtype littermates. Using EEG analyses, we showed elevated theta power and increased spike frequency in Kv4.2 heterozygous mice under basal conditions. In addition, the latency to onset of kainic acid-induced seizures was significantly shortened in Kv4.2 heterozygous mice compared with wildtype littermates, which was accompanied by a significant increase in theta power. By contrast, overexpressing Kv4.2 in wildtype mice through intrahippocampal injection of Kv4.2-expressing lentivirus delayed seizure onset and reduced EEG power. These results suggest that Kv4.2 is an important regulator of neuronal network excitability and dendritic spine morphology, but not anxiety-related behaviors. In the future, manipulation of Kv4.2 expression could be used to alter seizure susceptibility in epilepsy.


Asunto(s)
Espinas Dendríticas/metabolismo , Electroencefalografía/métodos , Hipocampo/metabolismo , Convulsiones/metabolismo , Canales de Potasio Shal/biosíntesis , Animales , Femenino , Predisposición Genética a la Enfermedad , Células HEK293 , Hipocampo/citología , Humanos , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Convulsiones/genética , Convulsiones/fisiopatología , Canales de Potasio Shal/genética
15.
Biochem Biophys Res Commun ; 384(2): 180-6, 2009 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-19401188

RESUMEN

Potassium channel activity has been shown to facilitate cell proliferation in cancer cells. In the present study, the role of Kv4.1 channels in immortal and tumorigenic human mammary epithelial cells was investigated. Kv4.1 protein expression was positively correlated with tumorigenicity. Moreover, transfection with siRNAs targeting Kv4.1 mRNA suppressed proliferation of tumorigenic mammary epithelial cells. Experiments using mRNA isolated from human breast cancer tissues revealed that the level of Kv4.1 mRNA expression varied depending on the stage of the tumor. Kv4.1 protein expression increased during stages T2 and T3 compared to normal tissue. These results demonstrated that Kv4.1 plays a role in proliferation of tumorigenic human mammary epithelial cells. In addition, elevated Kv4.1 expression may be useful as a diagnostic marker for staging mammary tumors and selective blockers of Kv4.1 may serve to suppress tumor cell proliferation.


Asunto(s)
Neoplasias de la Mama/patología , Proliferación Celular , Canales de Potasio Shal/biosíntesis , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Silenciador del Gen , Humanos , ARN Interferente Pequeño/genética , Canales de Potasio Shal/antagonistas & inhibidores , Canales de Potasio Shal/genética
17.
Biol Pharm Bull ; 32(8): 1354-8, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19652373

RESUMEN

Impaired heart function is the main reason for increased mortality of diabetes mellitus. Development of drugs with cardioprotective effects against diabetic myocardiopathy would benefit patients with diabetes. In this study, we tested the cardioprotective effects of Daming capsule (DMC), a traditional Chinese formula, on heart function in streptozocin (STZ)-induced diabetic rats with high fat-diet (HFD). DMC 100 mg/kg/d markedly decreased fasting blood glucose (FBG) and total cholesterol (TC), but did not affect triglycerides (TG) in diabetic rats at 30 d. The decreased heart rate (HR) and prolonged QT and PR interval induced by diabetes mellitus were significantly reversed by DMC (p<0.05). The mechanism may involve that DMC attenuated L-type calcium channel alpha(1c) subunit increasing and Kv4.2 decreasing at both mRNA and protein level in diabetic rats. Additionally, DMC could obviously ameliorate the impaired heart function of diabetic rats by decreasing elevated left ventricular end-diastolic pressure (LVEDP) and increasing the attenuated maximum change velocity of left ventricular pressure in the isovolumic contraction or relaxation period (+/-dp/dt(max)). Transmission electron microscopy (TEM) results showed that myocardium injury was attenuated by DMC (100 mg/kg/d) in STZ-induced diabetic rats with HFD. In conclusion, DMC could recover the prolonged QT interval and PR interval and elevated diastolic and systolic function of diabetic heart. This protective effect may partially be mediated through affecting the mRNA and protein expression of Kv4.2 and alpha(1c) as well as preventing cardiomyocyte morphological remodeling.


Asunto(s)
Cardiotónicos/uso terapéutico , Diabetes Mellitus Experimental/fisiopatología , Medicamentos Herbarios Chinos/uso terapéutico , Corazón/efectos de los fármacos , Hiperlipidemias/fisiopatología , Animales , Glucemia/metabolismo , Presión Sanguínea/efectos de los fármacos , Western Blotting , Canales de Calcio Tipo L/biosíntesis , Cápsulas , Cardiotónicos/administración & dosificación , Cardiotónicos/farmacología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Corazón/fisiopatología , Pruebas de Función Cardíaca , Frecuencia Cardíaca/efectos de los fármacos , Hiperlipidemias/complicaciones , Hiperlipidemias/metabolismo , Hiperlipidemias/patología , Masculino , Microscopía Electrónica de Transmisión , Miocardio/metabolismo , Miocardio/ultraestructura , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales de Potasio Shal/biosíntesis
18.
J Neurosci ; 27(37): 9855-65, 2007 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-17855600

RESUMEN

A-type K+ channels (A-channels) are crucial in controlling neuronal excitability, and their downregulation in pain-sensing neurons may increase pain sensation. To test this hypothesis, we first characterized the expression of two A-channels, Kv3.4 and Kv4.3, in rat dorsal root ganglion (DRG) neurons. Kv3.4 was expressed mainly in the nociceptive DRG neurons, in their somata, axons, and nerve terminals innervating the dorsal horn of spinal cord. In contrast, Kv4.3 appeared selectively in the somata of a subset of nonpeptidergic nociceptive DRG neurons. Most Kv4.3(+) DRG neurons also expressed Kv3.4. In a neuropathic pain model induced by spinal nerve ligation in rats, the protein levels of Kv3.4 and Kv4.3 in the DRG neurons were greatly reduced. After Kv3.4 or Kv4.3 expression in lumbar DRG neurons was suppressed by intrathecal injections of antisense oligodeoxynucleotides, mechanical but not thermal hypersensitivity developed. Together, our data suggest that reduced expression of A-channels in pain-sensing neurons may induce mechanical hypersensitivity, a major symptom of neuropathic pain.


Asunto(s)
Neuronas Aferentes/metabolismo , Dolor/metabolismo , Canales de Potasio Shal/antagonistas & inhibidores , Canales de Potasio Shal/biosíntesis , Canales de Potasio Shaw/antagonistas & inhibidores , Canales de Potasio Shaw/biosíntesis , Animales , Regulación de la Expresión Génica/fisiología , Masculino , Dolor/genética , Dimensión del Dolor/métodos , Estimulación Física/métodos , Ratas , Ratas Sprague-Dawley , Canales de Potasio Shal/genética , Canales de Potasio Shaw/genética , Médula Espinal/metabolismo
19.
J Mol Cell Cardiol ; 45(6): 832-8, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18789946

RESUMEN

Expression of cardiac myocyte Kv4 channels (Kv4.3 for human, Kv4.2 and Kv4.3 for rodents) is downregulated with hypertrophy in vivo leading to a decrease in the transient outward current (Ito). This effect is recapitulated in vitro with rat neonatal cardiac myocytes treated with angiotensin II (Ang II), which acts via AT(1) receptors, NADPH oxidase and p38 MAP kinase to destabilize the 3' untranslated region (3'UTR) of the Kv4.3 channel messenger RNA (mRNA). Here deletion analysis and mutagenesis identify an AU-rich element (ARE) in the Kv4.3 3'UTR that is required for Ang II-induced destabilization. Overexpression of AUF1 (ARE/poly-(U)-binding/degradation factor 1), an RNA destabilizing protein, mimics and occludes the Ang II effect, while RNA interference targeted against AUF1 blocks the Ang II effect on the Kv4.3 3'UTR. Ang II upregulates AUF1 by activating AT(1) receptors, NADPH oxidase and p38 MAP kinase. Finally, pull-down assays establish that Ang II increases AUF1 binding to the ARE required for destabilization, while binding of the mRNA stabilizing protein HuR is unaffected. Hence, Ang II acts via AT(1) receptors, NADPH oxidase and p38 MAP kinase to upregulate AUF1, which in turn binds to an ARE in the Kv4.3 3'UTR to destabilize the channel mRNA.


Asunto(s)
Regiones no Traducidas 3'/metabolismo , Angiotensina II/farmacología , Ribonucleoproteína Heterogénea-Nuclear Grupo D/metabolismo , Miocitos Cardíacos/metabolismo , Estabilidad del ARN/fisiología , Canales de Potasio Shal/biosíntesis , Regiones no Traducidas 3'/genética , Animales , Secuencia de Bases/genética , Células Cultivadas , Ribonucleoproteína Nuclear Heterogénea D0 , Ribonucleoproteína Heterogénea-Nuclear Grupo D/genética , Miocitos Cardíacos/citología , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Interferencia de ARN , Estabilidad del ARN/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/agonistas , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Eliminación de Secuencia/genética , Canales de Potasio Shal/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
J Neurochem ; 106(4): 1929-40, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18513371

RESUMEN

Extracelluar signal-regulated kinase (ERK) pathway activation has been demonstrated following convulsant stimulation; however, little is known about the molecular targets of ERK in seizure models. Recently, it has been shown that ERK phosphorylates Kv4.2 channels leading to down-regulation of channel function, and substantially alters dendritic excitability. In the kainate model of status epilepticus (SE), we investigated whether ERK phosphorylates Kv4.2 and whether the changes in Kv4.2 were evident at a synaptosomal level during SE. Western blotting was performed on rat hippocampal whole cell, membrane, synaptosomal, and surface biotinylated extracts following systemic kainate using an antibody generated against the Kv4.2 ERK sites and for Kv4.2, ERK, and phospho-ERK. ERK activation was associated with an increase in Kv4.2 phosphorylation during behavioral SE. During SE, ERK activation and Kv4.2 phosphorylation were evident at the whole cell and synaptosomal levels. In addition, while whole-cell preparations revealed no alterations in total Kv4.2 levels, a decrease in synaptosomal and surface expression of Kv4.2 was evident after prolonged SE. These results demonstrate ERK pathway coupling to Kv4.2 phosphorylation. The finding of decreased Kv4.2 levels in hippocampal synaptosomes and surface membranes suggest additional mechanisms for decreasing the dendritic A-current, which could lead to altered intrinsic membrane excitability during SE.


Asunto(s)
Canales de Potasio Shal/metabolismo , Estado Epiléptico/metabolismo , Animales , Electroencefalografía/métodos , Hipocampo/metabolismo , Hipocampo/fisiología , Masculino , Fosforilación , Ratas , Ratas Sprague-Dawley , Canales de Potasio Shal/antagonistas & inhibidores , Canales de Potasio Shal/biosíntesis , Estado Epiléptico/fisiopatología , Transmisión Sináptica/fisiología , Sinaptosomas/metabolismo , Sinaptosomas/fisiología , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda