Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
PLoS Genet ; 17(2): e1009370, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33571184

RESUMEN

Hybridization of closely related plant species is frequently connected to endosperm arrest and seed failure, for reasons that remain to be identified. In this study, we investigated the molecular events accompanying seed failure in hybrids of the closely related species pair Capsella rubella and C. grandiflora. Mapping of QTL for the underlying cause of hybrid incompatibility in Capsella identified three QTL that were close to pericentromeric regions. We investigated whether there are specific changes in heterochromatin associated with interspecific hybridizations and found a strong reduction of chromatin condensation in the endosperm, connected with a strong loss of CHG and CHH methylation and random loss of a single chromosome. Consistent with reduced DNA methylation in the hybrid endosperm, we found a disproportionate deregulation of genes located close to pericentromeric regions, suggesting that reduced DNA methylation allows access of transcription factors to targets located in heterochromatic regions. Since the identified QTL were also associated with pericentromeric regions, we propose that relaxation of heterochromatin in response to interspecies hybridization exposes and activates loci leading to hybrid seed failure.


Asunto(s)
Capsella/genética , Cromatina/genética , Endospermo/genética , Hibridación Genética , Semillas/genética , Capsella/clasificación , Centrómero/genética , Cromatina/metabolismo , Aberraciones Cromosómicas , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Sitios de Carácter Cuantitativo/genética , Especificidad de la Especie
2.
PLoS Genet ; 15(2): e1007949, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30768594

RESUMEN

Allopolyploidy is generally perceived as a major source of evolutionary novelties and as an instantaneous way to create isolation barriers. However, we do not have a clear understanding of how two subgenomes evolve and interact once they have fused in an allopolyploid species nor how isolated they are from their relatives. Here, we address these questions by analyzing genomic and transcriptomic data of allotetraploid Capsella bursa-pastoris in three differentiated populations, Asia, Europe, and the Middle East. We phased the two subgenomes, one descended from the outcrossing and highly diverse Capsella grandiflora (CbpCg) and the other one from the selfing and genetically depauperate Capsella orientalis (CbpCo). For each subgenome, we assessed its relationship with the diploid relatives, temporal changes of effective population size (Ne), signatures of positive and negative selection, and gene expression patterns. In all three regions, Ne of the two subgenomes decreased gradually over time and the CbpCo subgenome accumulated more deleterious changes than CbpCg. There were signs of widespread admixture between C. bursa-pastoris and its diploid relatives. The two subgenomes were impacted differentially depending on geographic region suggesting either strong interploidy gene flow or multiple origins of C. bursa-pastoris. Selective sweeps were more common on the CbpCg subgenome in Europe and the Middle East, and on the CbpCo subgenome in Asia. In contrast, differences in expression were limited with the CbpCg subgenome slightly more expressed than CbpCo in Europe and the Middle-East. In summary, after more than 100,000 generations of co-existence, the two subgenomes of C. bursa-pastoris still retained a strong signature of parental legacy but their evolutionary trajectory strongly varied across geographic regions.


Asunto(s)
Capsella/genética , Evolución Molecular , Genoma de Planta , Tetraploidía , Asia , Capsella/clasificación , ADN de Plantas/genética , Diploidia , Europa (Continente) , Genética de Población , Hibridación Genética , Medio Oriente , Modelos Genéticos , Mutación , Filogenia , Filogeografía , Poliploidía , Especificidad de la Especie
3.
BMC Genomics ; 15: 602, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-25030755

RESUMEN

BACKGROUND: Despite having predominately deleterious fitness effects, transposable elements (TEs) are major constituents of eukaryote genomes in general and of plant genomes in particular. Although the proportion of the genome made up of TEs varies at least four-fold across plants, the relative importance of the evolutionary forces shaping variation in TE abundance and distributions across taxa remains unclear. Under several theoretical models, mating system plays an important role in governing the evolutionary dynamics of TEs. Here, we use the recently sequenced Capsella rubella reference genome and short-read whole genome sequencing of multiple individuals to quantify abundance, genome distributions, and population frequencies of TEs in three recently diverged species of differing mating system, two self-compatible species (C. rubella and C. orientalis) and their self-incompatible outcrossing relative, C. grandiflora. RESULTS: We detect different dynamics of TE evolution in our two self-compatible species; C. rubella shows a small increase in transposon copy number, while C. orientalis shows a substantial decrease relative to C. grandiflora. The direction of this change in copy number is genome wide and consistent across transposon classes. For insertions near genes, however, we detect the highest abundances in C. grandiflora. Finally, we also find differences in the population frequency distributions across the three species. CONCLUSION: Overall, our results suggest that the evolution of selfing may have different effects on TE evolution on a short and on a long timescale. Moreover, cross-species comparisons of transposon abundance are sensitive to reference genome bias, and efforts to control for this bias are key when making comparisons across species.


Asunto(s)
Evolución Biológica , Capsella/genética , Elementos Transponibles de ADN/genética , Capsella/clasificación , Dosificación de Gen , Frecuencia de los Genes , Genoma de Planta , Filogenia
4.
Mol Ecol ; 21(5): 1223-38, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22288429

RESUMEN

To elucidate the evolutionary history of the genus Capsella, we included the hitherto poorly known species C. orientalis and C. thracica into our studies together with C. grandiflora, C. rubella and C. bursa-pastoris. We sequenced the ITS and four loci of noncoding cpDNA regions (trnL - F, rps16, trnH -psbA and trnQ -rps16). Sequence data were evaluated with parsimony and Bayesian analyses. Divergence time estimates were carried out with the software package BEAST. We also performed isozyme, cytological, morphological and biogeographic studies. Capsella orientalis (self-compatible, SC; 2n = 16) forms a clade (eastern lineage) with C. bursa-pastoris (SC; 2n = 32), which is a sister clade (western lineage) to C. grandiflora (self-incompatible, SI; 2n = 16) and C. rubella (SC; 2n = 16). Capsella bursa-pastoris is an autopolyploid species of multiple origin, whereas the Bulgarian endemic C. thracica (SC; 2n = 32) is allopolyploid and emerged from interspecific hybridization between C. bursa-pastoris and C. grandiflora. The common ancestor of the two lineages was diploid and SI, and its distribution ranged from eastern Europe to central Asia, predominantly confined to steppe-like habitats. Biogeographic dynamics during the Pleistocene caused geographic and genetic subdivisions within the common ancestor giving rise to the two extant lineages.


Asunto(s)
Evolución Biológica , Capsella/clasificación , Teorema de Bayes , Capsella/genética , ADN de Cloroplastos/genética , ADN de Plantas/genética , ADN Espaciador Ribosómico/genética , Diploidia , Hibridación Genética , Isoenzimas/genética , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN
5.
Plant Cell Rep ; 31(10): 1769-77, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22648014

RESUMEN

As the crucial members of the cold-regulated (COR) gene family, KIN genes are involved in diverse abiotic stress responses in plants. In the present study, KIN genes from the widespread plant Capsella bursa-pastoris were identified and analyzed to better understand the powerful adaptation of this species. Two KIN genes were cloned and sequenced by 3' RACE. As some COR genes are homologous to LEA genes, three KIN-homologous LEA genes were also identified. We deduced the amino acid sequences of the five proteins to estimate their phylogenetic relationships, and grouped them into three subfamilies (CI, CII, and CIII). Variable 3' UTRs were found in CI, CII, and CIII genes. Using qPCR, we evaluated the transcriptional levels of the five genes in different organs and embryonic stages. Two CI genes were exclusively expressed in early embryos and flowers. The CII and CIII genes showed obvious up-regulation in young leaves after heat stress, cold stress, and ABA treatment. Two of the CI genes, however, rarely responded to those stresses in young leaves. In contrast, all five genes showed differential responses in flowers when C. bursa-pastoris plants were sprayed with ABA. Furthermore, the expression of these genes in C. bursa-pastoris was compared to that of the corresponding Arabidopsis genes, and similar gene expression profiles were found in both species. Our findings suggest that these five genes play different roles in development and the responses to abiotic stresses in C. bursa-pastoris. Key message We characterized two KIN and three KIN-homologous LEA genes, and analyzed their variable 3'UTR and organ-specific, embryo-developmental, stress-induced gene expression in Capsella bursa-pastoris.


Asunto(s)
Regiones no Traducidas 3' , Capsella/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ácido Abscísico/farmacología , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Capsella/clasificación , Capsella/efectos de los fármacos , Capsella/metabolismo , Clonación Molecular , Frío , ADN Complementario/genética , ADN Complementario/metabolismo , Calor , Filogenia , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Reacción en Cadena de la Polimerasa/métodos , Semillas/genética , Semillas/metabolismo , Estrés Fisiológico , Transcripción Genética , Transcriptoma
6.
Proc Natl Acad Sci U S A ; 106(13): 5246-51, 2009 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-19307580

RESUMEN

Flowering plants often prevent selfing through mechanisms of self-incompatibility (S.I.). The loss of S.I. has occurred many times independently, because it provides short-term advantages in situations where pollinators or mates are rare. The genus Capsella, which is closely related to Arabidopsis, contains a pair of closely related diploid species, the self-incompatible Capsella grandiflora and the self-compatible Capsella rubella. To elucidate the transition to selfing and its relationship to speciation of C. rubella, we have made use of comparative sequence information. Our analyses indicate that C. rubella separated from C. grandiflora recently ( approximately 30,000-50,000 years ago) and that breakdown of S.I. occurred at approximately the same time. Contrasting the nucleotide diversity patterns of the 2 species, we found that C. rubella has only 1 or 2 alleles at most loci, suggesting that it originated through an extreme population bottleneck. Our data are consistent with diploid speciation by a single, selfing individual, most likely living in Greece. The new species subsequently colonized the Mediterranean by Northern and Southern routes, at a time that also saw the spread of agriculture. The presence of phenotypic diversity within modern C. rubella suggests that this species will be an interesting model to understand divergence and adaptation, starting from very limited standing genetic variation.


Asunto(s)
Capsella/clasificación , Especiación Genética , Capsella/genética , Ecología , Genes de Plantas , Geografía , Grecia , Región Mediterránea , Datos de Secuencia Molecular , Filogenia
7.
Elife ; 82019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30806624

RESUMEN

Genetic drift is expected to remove polymorphism from populations over long periods of time, with the rate of polymorphism loss being accelerated when species experience strong reductions in population size. Adaptive forces that maintain genetic variation in populations, or balancing selection, might counteract this process. To understand the extent to which natural selection can drive the retention of genetic diversity, we document genomic variability after two parallel species-wide bottlenecks in the genus Capsella. We find that ancestral variation preferentially persists at immunity related loci, and that the same collection of alleles has been maintained in different lineages that have been separated for several million years. By reconstructing the evolution of the disease-related locus MLO2b, we find that divergence between ancient haplotypes can be obscured by referenced based re-sequencing methods, and that trans-specific alleles can encode substantially diverged protein sequences. Our data point to long-term balancing selection as an important factor shaping the genetics of immune systems in plants and as the predominant driver of genomic variability after a population bottleneck.


Asunto(s)
Adaptación Biológica , Capsella/genética , Capsella/inmunología , Evolución Molecular , Genes de Plantas , Selección Genética , Capsella/clasificación , Variación Genética
8.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(4): 2561-2, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26024136

RESUMEN

The whole nucleotide sequence of the chloroplast genome from Capsella rubella is determined in this study using short Illumina sequence data from public database. The circular double-stranded DNA, which consists of 154,601 base pairs (bp) in size, contains a pair of inverted repeats (IRa and IRb) of 26,462 bp each, which are separated by a small and large single-copies (SSC and LSC) of 17,855 and 83,822 bp, respectively. The overall GC content of the chloroplast genome is 36.54% and the GC contents of LSC, IRs and SSC are 34.33%, 42.38% and 29.61% separately. One hundred and twelve unique genes were annotated, including 78 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Among these, 16 are duplicated in the inverted repeat regions, 15 genes contained 1 intron, and 3 genes (rps12, clpP and ycf3) comprised of 2 introns. Two protein genes (rps19 and ycf1) span in the boundaries of LSC-IR and IR-SSC to produce two partial pseudogenes.


Asunto(s)
Capsella/genética , Genoma del Cloroplasto/genética , Composición de Base/genética , Capsella/clasificación , ADN de Cloroplastos/genética , Genes de Plantas/genética , Filogenia , ARN Ribosómico/genética , ARN de Transferencia/genética , Análisis de Secuencia de ADN
9.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(5): 3460-1, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26186303

RESUMEN

The complete chloroplast genome of Capsella grandiflora is finished in this study, which consists of 154 638 base pairs (bp) in size containing a pair of inverted repeats (IRa and IRb) of 26 462 bp each and a small and large single-copies (SSC and LSC) of 17 835 and 83 879 bp, respectively. The overall GC content is 36.54% and the GC contents of LSC, IRs, and SSC are 34.34%, 42.38%, and 29.61% separately. The gene contents and numbers are the same with other two published species in genus Capsella with 112 annotated unique genes including 78 protein-coding genes, 30 tRNA genes, and four rRNA genes. Among these, 16 are duplicated in the inverted repeat regions, 15 genes contained one intron, and three genes (rps12, clpP, and ycf3) comprising two introns. Based on the whole genome comparison, only 28 SNPs and 16 Indels (insertion and deletion) are detected between two closed relatives' chloroplast genomes.


Asunto(s)
Capsella/genética , Cloroplastos/genética , Análisis de Secuencia de ADN/métodos , Composición de Base , Capsella/clasificación , ADN Ribosómico/genética , Evolución Molecular , Duplicación de Gen , Orden Génico , Tamaño del Genoma , Filogenia , ARN de Transferencia/genética
10.
Proc Natl Acad Sci U S A ; 101(9): 3286-91, 2004 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-14970339

RESUMEN

Reproductive genes and traits evolve rapidly in many organisms, including mollusks, algae, and primates. Previously we demonstrated that a family of glycine-rich pollen surface proteins (GRPs) from Arabidopsis thaliana and Brassica oleracea had diverged substantially, making identification of homologous genes impossible despite a separation of only 20 million years. Here we address the molecular genetic mechanisms behind these changes, sequencing the eight members of the GRP cluster, along with 11 neighboring genes in four related species, Arabidopsis arenosa, Olimarabidopsis pumila, Capsella rubella, and Sisymbrium irio. We found that GRP genes change more rapidly than their neighbors; they are more repetitive and have undergone substantially more insertion/deletion events while preserving repeat amino acid composition. Genes flanking the GRP cluster had an average K(a)/K(s) approximately 0.2, indicating strong purifying selection. This ratio rose to approximately 0.5 in the first GRP exon, indicating relaxed selective constraints. The repetitive nature of the second GRP exon makes alignment difficult; even so, K(a)/K(s) within the Arabidopsis genus demonstrated an increase that correlated with exon length. We conclude that rapid GRP evolution is primarily due to duplication, deletion, and divergence of repetitive sequences. GRPs may mediate pollen recognition and hydration by female cells, and divergence of these genes could correlate with or even promote speciation. We tested cross-species interactions, showing that the ability of A. arenosa stigmas to hydrate pollen correlated with GRP divergence and identifying A. arenosa as a model for future studies of pollen recognition.


Asunto(s)
Brassicaceae/genética , Membrana Celular/genética , Polen/genética , Secuencia de Aminoácidos , Arabidopsis/clasificación , Arabidopsis/genética , Secuencia de Bases , Brassicaceae/clasificación , Capsella/clasificación , Capsella/genética , Evolución Molecular , Variación Genética , Solanum lycopersicum/clasificación , Solanum lycopersicum/genética , Datos de Secuencia Molecular , Filogenia
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda