Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 967
Filtrar
1.
PLoS Genet ; 19(3): e1010678, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36972302

RESUMEN

Cross-resistance to insecticides in multiple resistant malaria vectors is hampering resistance management. Understanding its underlying molecular basis is critical to implementation of suitable insecticide-based interventions. Here, we established that the tandemly duplicated cytochrome P450s, CYP6P9a/b are driving carbamate and pyrethroid cross-resistance in Southern African populations of the major malaria vector Anopheles funestus. Transcriptome sequencing revealed that cytochrome P450s are the most over-expressed genes in bendiocarb and permethrin-resistant An. funestus. The CYP6P9a and CYP6P9b genes are overexpressed in resistant An. funestus from Southern Africa (Malawi) versus susceptible An. funestus (Fold change (FC) is 53.4 and 17 respectively), while the CYP6P4a and CYP6P4b genes are overexpressed in resistant An. funestus in Ghana, West Africa, (FC is 41.1 and 17.2 respectively). Other up-regulated genes in resistant An. funestus include several additional cytochrome P450s (e.g. CYP9J5, CYP6P2, CYP6P5), glutathione-S transferases, ATP-binding cassette transporters, digestive enzymes, microRNA and transcription factors (FC<7). Targeted enrichment sequencing strongly linked a known major pyrethroid resistance locus (rp1) to carbamate resistance centering around CYP6P9a/b. In bendiocarb resistant An. funestus, this locus exhibits a reduced nucleotide diversity, significant p-values when comparing allele frequencies, and the most non-synonymous substitutions. Recombinant enzyme metabolism assays showed that both CYP6P9a/b metabolize carbamates. Transgenic expression of CYP6P9a/b in Drosophila melanogaster revealed that flies expressing both genes were significantly more resistant to carbamates than controls. Furthermore, a strong correlation was observed between carbamate resistance and CYP6P9a genotypes with homozygote resistant An. funestus (CYP6P9a and the 6.5kb enhancer structural variant) exhibiting a greater ability to withstand bendiocarb/propoxur exposure than homozygote CYP6P9a_susceptible (e.g Odds ratio = 20.8, P<0.0001 for bendiocarb) and heterozygotes (OR = 9.7, P<0.0001). Double homozygote resistant genotype (RR/RR) were even more able to survive than any other genotype combination showing an additive effect. This study highlights the risk that pyrethroid resistance escalation poses to the efficacy of other classes of insecticides. Available metabolic resistance DNA-based diagnostic assays should be used by control programs to monitor cross-resistance between insecticides before implementing new interventions.


Asunto(s)
Anopheles , Insecticidas , Malaria , Piretrinas , Animales , Insecticidas/farmacología , Carbamatos/metabolismo , Piretrinas/metabolismo , Anopheles/genética , Drosophila melanogaster , Resistencia a los Insecticidas/genética , Mosquitos Vectores/genética , Citocromos/metabolismo , Ghana
2.
Anal Chem ; 96(24): 9885-9893, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38848670

RESUMEN

Glutathione (GSH) redox control and arginine metabolism are critical in regulating the physiological response to injury and oxidative stress. Quantification assessment of the GSH/arginine redox metabolism supports monitoring metabolic pathway shifts during pathological processes and their linkages to redox regulation. However, assessing the redox status of organisms with complex matrices is challenging, and single redox molecule analysis may not be accurate for interrogating the redox status in cells and in vivo. Herein, guided by a paired derivatization strategy, we present a new ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS)-based approach for the functional assessment of biological redox status. Two structurally analogous probes, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) and newly synthesized 2-methyl-6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (MeAQC), were set for paired derivatization. The developed approach was successfully applied to LPS-stimulated RAW 264.7 cells and HDM-induced asthma mice to obtain quantitative information on GSH/arginine redox metabolism. The results suggest that the redox status was remarkably altered upon LPS and HDM stimulation. We expect that this approach will be of good use in a clinical biomarker assay and potential drug screening associated with redox metabolism, oxidative damage, and redox signaling.


Asunto(s)
Arginina , Glutatión , Oxidación-Reducción , Espectrometría de Masas en Tándem , Animales , Arginina/metabolismo , Arginina/análisis , Arginina/química , Glutatión/metabolismo , Glutatión/análisis , Ratones , Espectrometría de Masas en Tándem/métodos , Células RAW 264.7 , Carbamatos/metabolismo , Carbamatos/química , Cromatografía Líquida de Alta Presión , Lipopolisacáridos/farmacología , Aminoquinolinas/química
3.
J Chem Inf Model ; 64(13): 5140-5150, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973304

RESUMEN

Beta-N-methylamino-l-alanine (BMAA) is a potential neurotoxic nonprotein amino acid, which can reach the human body through the food chain. When BMAA interacts with bicarbonate in the human body, carbamate adducts are produced, which share a high structural similarity with the neurotransmitter glutamate. It is believed that BMAA and its l-carbamate adducts bind in the glutamate binding site of ionotropic glutamate receptor 2 (GluR2). Chronic exposure to BMAA and its adducts could cause neurological illness such as neurodegenerative diseases. However, the mechanism of BMAA action and its carbamate adducts bound to GluR2 has not yet been elucidated. Here, we investigate the binding modes and the affinity of BMAA and its carbamate adducts to GluR2 in comparison to the natural agonist, glutamate, to understand whether these can act as GluR2 modulators. Initially, we perform molecular dynamics simulations of BMAA and its carbamate adducts bound to GluR2 to examine the stability of the ligands in the S1/S2 ligand-binding core of the receptor. In addition, we utilize alchemical free energy calculations to compute the difference in the free energy of binding of the beta-carbamate adduct of BMAA to GluR2 compared to that of glutamate. Our findings indicate that carbamate adducts of BMAA and glutamate remain stable in the binding site of the GluR2 compared to BMAA. Additionally, alchemical free energy results reveal that glutamate and the beta-carbamate adduct of BMAA have comparable binding affinity to the GluR2. These results provide a rationale that BMAA carbamate adducts may be, in fact, the modulators of GluR2 and not BMAA itself.


Asunto(s)
Aminoácidos Diaminos , Carbamatos , Toxinas de Cianobacterias , Receptores AMPA , Receptores AMPA/metabolismo , Receptores AMPA/química , Aminoácidos Diaminos/química , Aminoácidos Diaminos/metabolismo , Carbamatos/química , Carbamatos/metabolismo , Simulación de Dinámica Molecular , Humanos , Sitios de Unión , Unión Proteica , Ácido Glutámico/metabolismo , Ácido Glutámico/química , Ligandos
4.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34857636

RESUMEN

Nitrogen-fixing organisms perform dinitrogen reduction to ammonia at an Fe-M (M = Mo, Fe, or V) cofactor (FeMco) of nitrogenase. FeMco displays eight metal centers bridged by sulfides and a carbide having the MFe7S8C cluster composition. The role of the carbide ligand, a unique motif in protein active sites, remains poorly understood. Toward addressing how the carbon bridge affects the physical and chemical properties of the cluster, we isolated synthetic models of subsite MFe3S3C displaying sulfides and a chelating carbyne ligand. We developed synthetic protocols for structurally related clusters, [Tp*M'Fe3S3X]n-, where M' = Mo or W, the bridging ligand X = CR, N, NR, S, and Tp* = Tris(3,5-dimethyl-1-pyrazolyl)hydroborate, to study the effects of the identity of the heterometal and the bridging X group on structure and electrochemistry. While the nature of M' results in minor changes, the chelating, µ3-bridging carbyne has a large impact on reduction potentials, being up to 1 V more reducing compared to nonchelating N and S analogs.


Asunto(s)
Hierro/metabolismo , Molibdeno/metabolismo , Molibdoferredoxina/química , Carbamatos/química , Carbamatos/metabolismo , Carbono/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Hierro/química , Ligandos , Modelos Moleculares , Estructura Molecular , Molibdeno/química , Molibdoferredoxina/metabolismo , Nitrógeno/metabolismo , Fijación del Nitrógeno/fisiología , Nitrogenasa/metabolismo , Oxidación-Reducción , Sulfuros/química , Sulfuros/metabolismo , Azufre/metabolismo
5.
Ecotoxicol Environ Saf ; 269: 115824, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38096595

RESUMEN

Eisenia fetida is recognised as advantageous model species in ecotoxicological and regeneration investigations. The intensive utilization of carbamate pesticides (CARs) imposes heavy residue burdens and grave hazards on edaphic environments as well as soil fauna therein. However, precise mechanisms whereby the specific CAR exerted toxic effects on earthworms remain largely elusive, notably from regenerative perspective. Herein, acute responses and regenerative toxicity of two carbamates (metolcarb, MEB and fenoxycarb, FEB) against E. fetida were dissected using biochemical, histological as well as molecular approaches following OECD guidelines at the cellular, tissue and organismal level. The acute toxicity data implied that MEB/FEB were very toxic/medium to extremely toxic, respectively in filter paper contact test and low to medium toxic/low toxic, respectively in artificial soil test. Chronic exposure to MEB and FEB at sublethal concentrations significantly mitigated the soluble protein content, protein abundance while enhanced the protein carbonylation level. Moreover, severely retarded posterior renewal of amputated earthworms was noticed in MEB and FEB treatments relative to the control group, with pronouncedly compromised morphology, dwindling segments and elevated cell apoptosis of blastema tissues, which were mediated by the rising Sox2 and decreasing TCTP levels. Taken together, these findings not only presented baseline toxicity cues for MEB and FEB exposure against earthworms, but also yielded mechanistic insights into regenerative toxicity upon CAR exposure, further contributing to the environmental risk assessment and benchmark formulation of agrochemical pollution in terrestrial ecosystem.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Carbamatos/metabolismo , Ecosistema , Contaminantes del Suelo/análisis , Suelo/química
6.
Drug Metab Dispos ; 51(10): 1362-1371, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37429730

RESUMEN

We investigated the effect of variability and instability in aldehyde oxidase (AO) content and activity on the scaling of in vitro metabolism data. AO content and activity in human liver cytosol (HLC) and five recombinant human AO preparations (rAO) were determined using targeted proteomics and carbazeran oxidation assay, respectively. AO content was highly variable as indicated by the relative expression factor (REF; i.e., HLC to rAO content) ranging from 0.001 to 1.7 across different in vitro systems. The activity of AO in HLC degrades at a 10-fold higher rate in the presence of the substrate as compared with the activity performed after preincubation without substrate. To scale the metabolic activity from rAO to HLC, a protein-normalized activity factor (pnAF) was proposed wherein the activity was corrected by AO content, which revealed up to sixfold higher AO activity in HLC versus rAO systems. A similar value of pnAF was observed for another substrate, ripasudil. Physiologically based pharmacokinetic (PBPK) modeling revealed a significant additional clearance (CL; 66%), which allowed for the successful prediction of in vivo CL of four other substrates, i.e., O-benzyl guanine, BIBX1382, zaleplon, and zoniporide. For carbazeran, the metabolite identification study showed that the direct glucuronidation may be contributing to around 12% elimination. Taken together, this study identified differential protein content, instability of in vitro activity, role of additional AO clearance, and unaccounted metabolic pathways as plausible reasons for the underprediction of AO-mediated drug metabolism. Consideration of these factors and integration of REF and pnAF in PBPK models will allow better prediction of AO metabolism. SIGNIFICANCE STATEMENT: This study elucidated the plausible reasons for the underprediction of aldehyde oxidase (AO)-mediated drug metabolism and provided recommendations to address them. It demonstrated that integrating protein content and activity differences and accounting for the loss of AO activity, as well as consideration of extrahepatic clearance and additional pathways, would improve the in vitro to in vivo extrapolation of AO-mediated drug metabolism using physiologically based pharmacokinetic modeling.


Asunto(s)
Aldehído Oxidasa , Carbamatos , Humanos , Aldehído Oxidasa/metabolismo , Carbamatos/metabolismo , Cinética , Tasa de Depuración Metabólica , Hígado/metabolismo
7.
Fish Shellfish Immunol ; 142: 109130, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37777099

RESUMEN

The mitfa gene is a well-known transcription factor associated with microphthalmia and is essential for early melanophore development. However, little is known about how mitfa affects the immune system. Here, we generated a novel mitfa knock-out zebrafish line using the CRISPR/Cas9 system. The mitfa-/- zebrafish exhibited reduced melanin levels compared to the nacre mutant. We investigated the impact on the immune system after exposure to Edwardsiella tarda and bifenazate in zebrafish larvae, and observed that the macrophage numbers were reduced in both treated groups. Remarkably, the expression levels of immune-related genes exhibited significant increases after bacterial challenge or bifenazate exposure in the mitfa-/- zebrafish, except for tlr4 and rela. Furthermore, we conducted xenograft experiments using mouse B16 melanoma cells. Notably, the cancer cells didn't show a high cell migration ratio, implying that the immune system was highly activated after the loss of mifta. Taken together, our findings suggest that mitfa-/- zebrafish serve as a valuable model for investigating the relationship between the immune system and melanocytes, providing new insights into the role of mitfa in immune responses.


Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Animales , Ratones , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Carbamatos/metabolismo
8.
Ecotoxicol Environ Saf ; 268: 115684, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37976935

RESUMEN

The extensive use of carbamate pesticides has led to a range of environmental and health problems, such as surface and groundwater contamination, and endocrine disorders in organisms. In this study, we focused on examining the effects of toxic exposure to the carbamate pesticide methomyl on the hatching, morphology, immunity and developmental gene expression levels in zebrafish embryos. Four concentrations of methomyl (0, 2, 20, and 200 µg/L) were administered to zebrafish embryos for a period of 96 h. The study found that exposure to methomyl accelerated the hatching process of zebrafish embryos, with the strongest effect recorded at the concentration of 2 µg/L. Methomyl exposure also trigged significantly reductions in heart rate and caused abnormalities in larvae morphology, and it also stimulated the synthesis and release of several inflammatory factors such as IL-1ß, IL-6, TNF-α and INF-α, lowered the IgM contents, ultimately enhancing inflammatory response and interfering with immune function. All of these showed the significant effects on exposure time, concentration and their interaction (Time × Concentration). Furthermore, the body length of zebrafish exposed to methomyl for 96 h was significantly shorter, particularly at higher concentrations (200 µg/L). Methomyl also affected the expression levels of genes associated with development (down-regulated igf1, bmp2b, vasa, dazl and piwi genes), demonstrating strong developmental toxicity and disruption of the endocrine system, with the most observed at the concentration of 200 µg/L and 96 h exposure to methomyl. The results of this study provide valuable reference information on the potential damage of methomyl concentrations in the environment on fish embryo development, while also supplementing present research on the immunotoxicity of methomyl.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Animales , Pez Cebra/metabolismo , Metomil/metabolismo , Metomil/farmacología , Embrión no Mamífero , Sistema Endocrino , Plaguicidas/metabolismo , Carbamatos/metabolismo , Larva , Contaminantes Químicos del Agua/metabolismo
9.
J Am Chem Soc ; 144(7): 3279-3284, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35138833

RESUMEN

To develop tools to investigate the biological functions of butyrylcholinesterase (BChE) and the mechanisms by which BChE affects Alzheimer's disease (AD), we synthesized several selective, nanomolar active, pseudoirreversible photoswitchable BChE inhibitors. The compounds were able to specifically influence different kinetic parameters of the inhibition process by light. For one compound, a 10-fold difference in the IC50-values (44.6 nM cis, 424 nM trans) in vitro was translated to an "all or nothing" response with complete recovery in a murine cognition-deficit AD model at dosages as low as 0.3 mg/kg.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/uso terapéutico , Cognición/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Nootrópicos/uso terapéutico , Enfermedad de Alzheimer/inducido químicamente , Péptidos beta-Amiloides , Animales , Compuestos Azo/síntesis química , Compuestos Azo/metabolismo , Compuestos Azo/efectos de la radiación , Compuestos Azo/uso terapéutico , Carbamatos/síntesis química , Carbamatos/metabolismo , Carbamatos/efectos de la radiación , Carbamatos/uso terapéutico , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/metabolismo , Inhibidores de la Colinesterasa/efectos de la radiación , Cinética , Ratones , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/efectos de la radiación , Nootrópicos/síntesis química , Nootrópicos/metabolismo , Nootrópicos/efectos de la radiación , Fragmentos de Péptidos , Unión Proteica , Estereoisomerismo
10.
Environ Microbiol ; 24(10): 4803-4817, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35880585

RESUMEN

Strains Rhodococcus qingshengii djl-6 and Rhodococcus jialingiae djl-6-2 both harbour the typical carbendazim degradation pathway with the hydrolysis of carbendazim to 2-aminobenzimidazole (2-AB) as the initial step. However, the enzymes involved in this process are still unknown. In this study, the previous reported carbendazim hydrolase MheI was found in strain djl-6, but not in strain djl-6-2, then another carbendazim hydrolase CbmA was obtained by a four-step purification strategy from strain djl-6-2. CbmA was classified as a member of the amidase signature superfamily with conserved catalytic site residues Ser157, Ser181, and Lys82, while MheI was classified as a member of the Abhydrolase superfamily with conserved catalytic site residues Ser77 and His224. The catalytic efficiency (kcat /Km ) of MheI (24.0-27.9 µM-1  min-1 ) was 200 times more than that of CbmA (0.032-0.21 µM-1  min-1 ). The mheI gene (plasmid encoded) was highly conserved (>99% identity) in the strains from different bacterial genera and its plasmid encoded flanked by mobile genetic elements. The cmbA gene was highly conserved only in strains of the genus Rhodococcus and it was chromosomally encoded. Overall, the function, diversity, and distribution of carbendazim hydrolases MheI and CbmA will provide insights into the microbial degradation of carbendazim.


Asunto(s)
Hidrolasas , Rhodococcus , Amidohidrolasas/metabolismo , Bencimidazoles , Carbamatos/metabolismo , Hidrolasas/genética , Hidrolasas/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo
11.
Org Biomol Chem ; 21(1): 132-139, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36453203

RESUMEN

Aryl-urea substituted fatty acids are protonophores and mitochondrial uncouplers that utilise a urea-based synthetic anion transport moiety to carry out the protonophoric cycle. Herein we show that replacement of the urea group with carbamate, a functional group not previously reported to possess anion transport activity, produces analogues that retain the activity of their urea counterparts. Thus, the aryl-carbamate substituted fatty acids uncouple oxidative phosphorylation and inhibit ATP production by collapsing the mitochondrial proton gradient. Proton transport proceeds via self-assembly of the deprotonated aryl-carbamates into membrane permeable dimeric species, formed by intermolecular binding of the carboxylate group to the carbamate moiety. These results highlight the anion transport capacity of the carbamate functional group.


Asunto(s)
Ácidos Grasos , Protones , Ácidos Grasos/metabolismo , Carbamatos/farmacología , Carbamatos/metabolismo , Mitocondrias/metabolismo , Fosforilación Oxidativa
12.
Appl Microbiol Biotechnol ; 106(18): 5973-5986, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36063179

RESUMEN

Carbamate pesticides are widely used in the environment, and compared with other pesticides in nature, they are easier to decompose and have less durability. However, due to the improper use of carbamate pesticides, some nontarget organisms still may be harmed. To this end, it is necessary to investigate effective removal or elimination methods for carbamate pesticides. Current effective elimination methods could be divided into four categories: physical removal, chemical reaction, biological degradation, and enzymatic degradation. Physical removal primarily includes elution, adsorption, and supercritical fluid extraction. The chemical reaction includes Fenton oxidation, photo-radiation, and net electron reduction. Biological degradation is an environmental-friendly manner, which achieves degradation by the metabolism of microorganisms. Enzymatic degradation is more promising due to its high substrate specificity and catalytic efficacy. All in all, this review primarily summarizes the property of carbamate pesticides and the traditional degradation methods as well as the promising biological elimination. KEY POINTS: • The occurrence and toxicity of carbamate pesticides were shown. • Biological degradation strains against carbamate pesticides were presented. • Promising enzymes responsible for the degradation of carbamates were discussed.


Asunto(s)
Plaguicidas , Adsorción , Carbamatos/química , Carbamatos/metabolismo , Catálisis , Plaguicidas/metabolismo
13.
Ecotoxicol Environ Saf ; 242: 113870, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35816841

RESUMEN

Isoprocarb is a widely used carbamate insecticide in agriculture and aquaculture. Overuse of isoprocarb always leaves toxic residues in soil and water, however, the potential ecotoxicity of isoprocarb to organisms is still confusing. In this study, zebrafish embryo was used as a model to evaluate the toxicity of isoprocarb. Zebrafish embryos (96 hpf) were separately exposed at different concentrations of isoprocarb. The mortality rate, hatchability rate, average heart beat of the zebrafish embryo were separately calculated. Our results suggested that exposure to isoprocarb induced developmental toxicity in zebrafish embryos. HE staining showed that exposure to isoprocarb caused developmental defect in the hindbrain of zebrafish embryos. As expected, the behavioral analysis also showed that the motor ability of zebrafish embryos were significantly inhibited following exposure to isoprocarb. In terms of mechanism, The expressions of genes involved in neurodevelopment signaling pathways, such as foxo3a, gfap, syn2a, elavl3 and sox19b, were inhibited in zebrafish embryos after exposure to isoprocarb. The acetylcholinesterase (AChE) activity was also reduced in isoprocarb-treated zebrafish embryos. Moreover, oxidative stress was induced by increasing the reactive oxygen species (ROS) level and decreasing the activity of antioxidant enzyme (SOD) after exposure to isoprocarb. Expectedly, acridine orange (AO) staining and the detection of some apoptosis-related genes revealed that oxidative stress resulted in apoptosis. In short, the expressions of genes associated with the neurodevelopmental signaling pathway are inhibited, and oxidative stress is also induced in zebrafish embryos after exposure to isoprocarb, which may be the molecular basics of isoprocarb-induced neurotoxicity in zebrafish embryos.


Asunto(s)
Síndromes de Neurotoxicidad , Contaminantes Químicos del Agua , Acetilcolinesterasa/metabolismo , Animales , Apoptosis/genética , Carbamatos/metabolismo , Embrión no Mamífero/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Estrés Oxidativo , Factores de Transcripción SOX/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
14.
Bioorg Med Chem Lett ; 49: 128316, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34391893

RESUMEN

A series of naringenin derivatives were designed and synthesized as multifunctional anti-Alzheimer's disease (AD) agents. The results showed that these derivatives displayed moderate-to-good acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities at the micromolar range (IC50, 12.91 ~ 62.52 µM for AChE and 0.094 ~ 13.72 µM for BuChE). Specifically, compound 1 showed the highest inhibitory activity against BuChE with the IC50 value of (0.094 ± 0.0054) µM. A Lineweaver-Burk plot and molecular docking studies demonstrated that 1 targeted both the catalytically active site (CAS) and the peripheral anion site (PAS) of BuChE. Besides, all derivatives showed excellent hydroxyl free radicals (·OH) scavenging ability than vitamin C and cyclic voltammetry results displayed that 1 could effectively scavenge superoxide anion radical (·O2-). In addition, compound 1 displayed good metal chelating properties and had anti-Aß aggregation activities. Therefore, compound 1 might be the potential anti-AD agent for further developments.


Asunto(s)
Carbamatos/farmacología , Quelantes/farmacología , Inhibidores de la Colinesterasa/farmacología , Flavanonas/farmacología , Depuradores de Radicales Libres/farmacología , Acetilcolinesterasa/química , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Animales , Butirilcolinesterasa/química , Butirilcolinesterasa/metabolismo , Carbamatos/síntesis química , Carbamatos/metabolismo , Quelantes/síntesis química , Quelantes/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/metabolismo , Diseño de Fármacos , Electrophorus , Flavanonas/síntesis química , Flavanonas/metabolismo , Depuradores de Radicales Libres/síntesis química , Depuradores de Radicales Libres/metabolismo , Caballos , Cinética , Simulación del Acoplamiento Molecular , Estructura Molecular , Fragmentos de Péptidos/metabolismo , Unión Proteica , Multimerización de Proteína/efectos de los fármacos , Relación Estructura-Actividad
15.
Molecules ; 26(9)2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34063139

RESUMEN

The concurrent use of oral encorafenib (Braftovi, ENF) and binimetinib (Mektovi, BNB) is a combination anticancer therapy approved by the United States Food and Drug Administration (USFDA) for patients with BRAFV600E/V600K mutations suffering from metastatic or unresectable melanoma. Metabolism is considered one of the main pathways of drug elimination from the body (responsible for elimination of about 75% of known drugs), it is important to understand and study drug metabolic stability. Metabolically unstable compounds are not good as they required repetitive dosages during therapy, while very stable drugs may result in increasing the risk of adverse drug reactions. Metabolic stability of compounds could be examined using in vitro or in silico experiments. First, in silico metabolic vulnerability for ENF and BNB was investigated using the StarDrop WhichP450 module to confirm the lability of the drugs under study to liver metabolism. Second, we established an LC-MS/MS method for the simultaneous quantification of ENF and BNB applied to metabolic stability assessment. Third, in silico toxicity assessment of ENF and BNB was performed using the StarDrop DEREK module. Chromatographic separation of ENF, BNB, and avitinib (an internal standard) was achieved using an isocratic mobile phase on a Hypersil BDS C18 column. The linear range for ENF and BNB in the human liver microsome (HLM) matrix was 5-500 ng/mL (R2 ≥ 0.999). The metabolic stabilities were calculated using intrinsic clearance and in vitro half-life. Furthermore, ENF and BNB did not significantly influence each other's metabolic stability or metabolic disposition when used concurrently. These results indicate that ENF and BNB will slowly bioaccumulate after multiple doses.


Asunto(s)
Antineoplásicos/análisis , Bencimidazoles/análisis , Bencimidazoles/metabolismo , Carbamatos/análisis , Carbamatos/metabolismo , Aprobación de Drogas , Sulfonamidas/análisis , Sulfonamidas/metabolismo , Espectrometría de Masas en Tándem , Bencimidazoles/química , Calibración , Carbamatos/química , Cromatografía Liquida , Simulación por Computador , Estabilidad de Medicamentos , Humanos , Microsomas Hepáticos/metabolismo , Control de Calidad , Reproducibilidad de los Resultados , Sulfonamidas/química , Estados Unidos , United States Food and Drug Administration
16.
J Sci Food Agric ; 101(13): 5498-5507, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33682088

RESUMEN

BACKGROUND: Thiophanate-methyl and its metabolite carbendazim are broad-spectrum fungicides used on many crops. The residues of these chemicals could result in potential environmental and human health problems. Therefore, investigations of the dissipation and residue behaviors of thiophanate-methyl and its metabolite carbendazim on cowpeas and associated dietary risk assessments are essential for the safety of agricultural products. RESULTS: A simple analytical approach using liquid chromatography with tandem mass spectrometry was developed and validated for the determination of thiophanate-methyl and carbendazim concentrations in cowpeas. Good linearity (R2 > 0.998) was obtained, and the recoveries and relative standard deviations were 80.0-104.7% and 1.4-5.2%, respectively. The dissipation rates of thiophanate-methyl, carbendazim and total carbendazim were high (half-lives of 1.61-2.46 days) and varied in the field cowpea samples because of the different weather conditions and planting patterns. Based on the definition of thiophanate-methyl, the terminal residues of total carbendazim in cowpea samples were below the maximum residue limits set by Japan for other legumes. The acute and chronic risk quotients of three analytes were 0.0-27.6% in cowpea samples gathered from all terminal residue treatments, which were below 100%. CONCLUSION: An optimized approach for detecting thiophanate-methyl and carbendazim in cowpeas was applied for the investigation of field-trial samples. The potential acute and chronic dietary risks of thiophanate-methyl, carbendazim and total carbendazim to the health of Chinese consumers were low. These results could guide the safe and proper use of thiophanate-methyl in cowpeas and offer data for the dietary risk assessment of thiophanate-methyl in cowpeas. © 2021 Society of Chemical Industry.


Asunto(s)
Bencimidazoles/análisis , Carbamatos/análisis , Contaminación de Alimentos/análisis , Fungicidas Industriales/química , Residuos de Plaguicidas/química , Tiofanato/química , Vigna/química , Bencimidazoles/metabolismo , Carbamatos/metabolismo , China , Fungicidas Industriales/metabolismo , Cinética , Residuos de Plaguicidas/metabolismo , Semillas/química , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Tiofanato/metabolismo , Vigna/crecimiento & desarrollo , Vigna/metabolismo
17.
Phys Chem Chem Phys ; 22(8): 4464-4480, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32057044

RESUMEN

Infection by human immunodeficiency virus type 1 (HIV-1) not only destroys the immune system bringing about acquired immune deficiency syndrome (AIDS), but also induces serious neurological diseases including behavioral abnormalities, motor dysfunction, toxoplasmosis, and HIV-1 associated dementia. The emergence of HIV-1 multidrug-resistant mutants has become a major problem in the therapy of patients with HIV-1 infection. Focusing on the wild type (WT) and G48T/L89M mutated forms of HIV-1 protease (HIV-1 PR) in complex with amprenavir (APV), indinavir (IDV), ritonavir (RTV), and nelfinavir (NFV), we have investigated the conformational dynamics and the resistance mechanism due to the G48T/L89M mutations by conducting a series of molecular dynamics (MD) simulations and free energy (MM-PBSA and solvated interaction energy (SIE)) analyses. The simulation results indicate that alterations in the side-chains of G48T/L89M mutated residues cause the inner active site to increase in volume and induce more curling of the flap tips, which provide the main contributions to weaker binding of inhibitors to the HIV-1 PR. The results of energy analysis reveal that the decrease in van der Waals interactions of inhibitors with the mutated PR relative to the wild-type (WT) PR mostly drives the drug resistance of mutations toward these four inhibitors. The energy decomposition analysis further indicates that the drug resistance of mutations can be mainly attributed to the change in van der Waals and electrostatic energy of some key residues (around Ala28/Ala28' and Ile50/Ile50'). Our work can give significant guidance to design a new generation of anti-AIDS inhibitors targeting PR in the therapy of patients with HIV-1 infection.


Asunto(s)
Proteasa del VIH/metabolismo , Simulación de Dinámica Molecular , Fármacos Anti-VIH/química , Fármacos Anti-VIH/metabolismo , Carbamatos/química , Carbamatos/metabolismo , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Furanos , Proteasa del VIH/genética , Indinavir/química , Indinavir/metabolismo , Conformación Molecular , Mutación , Nelfinavir/química , Nelfinavir/metabolismo , Unión Proteica , Ritonavir/química , Ritonavir/metabolismo , Sulfonamidas/química , Sulfonamidas/metabolismo
18.
Cell Biochem Funct ; 38(6): 810-816, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32458533

RESUMEN

For successful implantation, endometrial receptivity must be established. The high expression of CDC20 in many kinds of malignant tumours has been reported, and it is related to the occurrence and development of tumours. According to these functions, we think that CDC20 may also play important roles in the process of embryo implantation. To prove our hypothesis, we observed the distribution and expression of CDC20 in mouse and human early pregnancy. The effect of E2 and/or P4 on the expression of CDC20 in human endometrial cells was detected by Western blot. To further explore whether CDC20 is an important factor in adhesion and proliferation. The results showed that the expression of CDC20 in the uterus and menstrual cycle of early pregnant mice was spatiotemporal. E2 can promote the expression of CDC20. On the contrary, P4 and E2 + P4 inhibited the expression of CDC20. We also detected the proliferation and adhesion of human endometrial cells. We found that the inhibition of CDC20 with its inhibitor Apcin could reduce the adhesion rate and proliferation ability to RL95-2 and HEC-1A cells, respectively. Inhibiting CDC20 by Apcin could interfere the embryo implantation of mouse. It is suggested that CDC20 may play an important role in the process of embryo implantation. SIGNIFICANCE OF THE STUDY: Embryo implantation is an extremely complex and delicate process, including identification, localisation, adhesion and invasion between embryo and endometrium. Studies have shown the process of embryo implantation is very similar to that of tumour invasion. CDC20 is a cancer-promoting factor. We found CDC20 is spatially and spatially expressed in mouse and human menstrual cycles and is regulated by oestrogen and progesterone. Apcin can inhibit the adhesion of JAR cells and embryo implantation of mouse. CDC20 may provide a new way to improve the success rate of assisted reproduction.


Asunto(s)
Carbamatos/metabolismo , Proteínas Cdc20/metabolismo , Diaminas/metabolismo , Endometrio/metabolismo , Animales , Adhesión Celular , Proliferación Celular , Células Cultivadas , Implantación del Embrión/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/metabolismo , Estrógenos/farmacología , Estro/metabolismo , Femenino , Humanos , Ciclo Menstrual , Ratones , Útero/metabolismo
19.
Xenobiotica ; 50(11): 1380-1392, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32421406

RESUMEN

Pesticides are now recognised to interact with drug transporters, but only few data are available on this issue for carbamate pesticides, a widely used class of agrochemicals, to which humans are highly exposed. The present study was therefore designed to determine whether four representative carbamate pesticides, i.e. the insecticides aminocarb and carbofuran, the herbicide chlorpropham and the fungicide propamocarb, may impair activities of main drug transporters implicated in pharmacokinetics. The interactions of carbamates with solute carrier and ATP-binding cassette transporters were investigated using cultured transporter-overexpressing cells, reference substrates and spectrofluorimetry-, liquid chomatography/tandem mass spectrometry- or radioactivity-based methods. Aminocarb and carbofuran exerted no or minimal effects on transporter activities, whereas chlorpropham inhibited BCRP and OAT3 activities and propamocarb decreased those of OCT1 and OCT2, but cis-stimulated that of MATE2-K. Such alterations of transporters however required chlorpropham/propamocarb concentrations in the 5-50 µM range, likely not relevant to environmental exposure. Trans-stimulation assays and propamocarb accumulation experiments additionally suggested that propamocarb is not a substrate for OCT1, OCT2 and MATE2-K. These data indicate that some carbamate pesticides can interact in vitro with some drug transporters, but only when used at concentrations higher than those expected to occur in environmentally exposed humans.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Transporte Biológico , Carbamatos/metabolismo , Plaguicidas/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Interacciones Farmacológicas , Humanos , Insecticidas , Proteínas de Neoplasias , Proteínas de Transporte de Catión Orgánico
20.
Ecotoxicol Environ Saf ; 201: 110729, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32485491

RESUMEN

The transformation of carbosulfan (CSN) in apples was investigated during oven-drying, microwave drying, and sun-drying. CSN transformed primarily into carbofuran (COA) during these drying processes. The conversion kinetics of CSN and COA was fitted by curve regression and mainly conformed to quadratic models (R2 = 0.70-0.97). Oven-drying promoted the transformation of CSN into COA. Microwave drying resulted in the highest scavenging capacity against CSN and COA (41%-100%). Moreover, a transformation mechanism was proposed on the basis of density functional theory (DFT) calculation. The COA originated from a series of chemical reactions involving hydroxyl substitution, cleavage, and oxidation; this result was further confirmed on the basis of molecular electrostatic potential (MEP) and molecular orbital theory. Furthermore, the toxicity and stability of CSN and COA were evaluated with the T.E.S.T. program. COA was less toxic than CSN to aquatic organisms but more toxic than CSN to rats. Therefore, COA production should be avoided during drying. Microwave drying was found to be the optimum choice for drying apples.


Asunto(s)
Carbamatos/metabolismo , Desecación/métodos , Manipulación de Alimentos/métodos , Malus/química , Animales , Organismos Acuáticos/efectos de los fármacos , Carbamatos/química , Carbamatos/toxicidad , Carbofurano/química , Carbofurano/metabolismo , Carbofurano/toxicidad , Desecación/instrumentación , Manipulación de Alimentos/instrumentación , Depuradores de Radicales Libres/análisis , Ratas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda