Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Biochemistry ; 60(37): 2824-2835, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34472839

RESUMEN

Studying the interactions between a protease and its protein substrates at a molecular level is crucial for identifying the factors facilitating selection of particular proteolytic substrates and not others. These selection criteria include both the sequence and the local context of the substrate cleavage site where the active site of the protease initially binds and then performs proteolytic cleavage. Caspase-9, an initiator of the intrinsic apoptotic pathway, mediates activation of executioner procaspase-3 by cleavage of the intersubunit linker (ISL) at site 172IETD↓S. Although procaspase-6, another executioner, possesses two ISL cleavage sites (site 1, 176DVVD↓N; site 2, 190TEVD↓A), neither is directly cut by caspase-9. Thus, caspase-9 directly activates procaspase-3 but not procaspase-6. To elucidate this selectivity of caspase-9, we engineered constructs of procaspase-3 (e.g., swapping the ISL site, 172IETD↓S, with DVVDN and TEVDA) and procaspase-6 (e.g., swapping site 1, 176DVVD↓N, and site 2, 190TEVD↓A, with IETDS). Using the substrate digestion data of these constructs, we show here that the P4-P1' sequence of procaspase-6 ISL site 1 (DVVDN) can be accessed but not cleaved by caspase-9. We also found that caspase-9 can recognize the P4-P1' sequence of procaspase-6 ISL site 2 (TEVDA); however, the local context of this cleavage site is the critical factor that prevents proteolytic cleavage. Overall, our data have demonstrated that both the sequence and the local context of the ISL cleavage sites play a vital role in preventing the activation of procaspase-6 directly by caspase-9.


Asunto(s)
Caspasa 3/química , Caspasa 6/química , Caspasa 9/metabolismo , Secuencia de Aminoácidos/genética , Apoptosis/fisiología , Caspasa 3/metabolismo , Caspasa 6/metabolismo , Caspasa 8/metabolismo , Caspasa 9/fisiología , Caspasas/metabolismo , Activación Enzimática , Humanos , Transducción de Señal/genética
2.
J Biol Chem ; 294(1): 71-88, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30420425

RESUMEN

Caspases are cysteine-aspartic proteases involved in the regulation of programmed cell death (apoptosis) and a number of other biological processes. Despite overall similarities in structure and active-site composition, caspases show striking selectivity for particular protein substrates. Exosites are emerging as one of the mechanisms by which caspases can recruit, engage, and orient these substrates for proper hydrolysis. Following computational analyses and database searches for candidate exosites, we utilized site-directed mutagenesis to identify a new exosite in caspase-6 at the hinge between the disordered N-terminal domain (NTD), residues 23-45, and core of the caspase-6 structure. We observed that substitutions of the tri-arginine patch Arg-42-Arg-44 or the R44K cancer-associated mutation in caspase-6 markedly alter its rates of protein substrate hydrolysis. Notably, turnover of protein substrates but not of short peptide substrates was affected by these exosite alterations, underscoring the importance of this region for protein substrate recruitment. Hydrogen-deuterium exchange MS-mediated interrogation of the intrinsic dynamics of these enzymes suggested the presence of a substrate-binding platform encompassed by the NTD and the 240's region (containing residues 236-246), which serves as a general exosite for caspase-6-specific substrate recruitment. In summary, we have identified an exosite on caspase-6 that is critical for protein substrate recognition and turnover and therefore highly relevant for diseases such as cancer in which caspase-6-mediated apoptosis is often disrupted, and in neurodegeneration in which caspase-6 plays a central role.


Asunto(s)
Caspasa 6/química , Mutación Missense , Proteínas de Neoplasias/química , Neoplasias/enzimología , Enfermedades Neurodegenerativas/enzimología , Sustitución de Aminoácidos , Arginina/química , Arginina/genética , Arginina/metabolismo , Caspasa 6/genética , Caspasa 6/metabolismo , Humanos , Hidrólisis , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Dominios Proteicos
3.
Proc Natl Acad Sci U S A ; 114(38): E7977-E7986, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28864531

RESUMEN

Caspase-6 is critical to the neurodegenerative pathways of Alzheimer's, Huntington's, and Parkinson's diseases and has been identified as a potential molecular target for treatment of neurodegeneration. Thus, understanding the global and regional changes in dynamics and conformation provides insights into the unique properties of caspase-6 that may contribute to achieving control of its function. In this work, hydrogen/deuterium exchange MS (H/DX-MS) was used to map the local changes in the conformational flexibility of procaspase-6 at the discrete states that reflect the series of cleavage events that ultimately lead to the fully active, substrate-bound state. Intramolecular self-cleavage at Asp-193 evoked higher solvent exposure in the regions of the substrate-binding loops L1, L3, and L4 and in the 130s region, the intersubunit linker region, the 26-32 region as well as in the stabilized loop 2. Additional removal of the linker allowed caspase-6 to gain more flexibility in the 130s region and in the L2 region converting caspase-6 to a competent substrate-binding state. The prodomain region was found to be intrinsically disordered independent of the activation state of caspase-6; however, its complete removal resulted in the protection of the adjacent 26-32 region, suggesting that this region may play a regulatory role. The molecular details of caspase-6 dynamics in solution provide a comprehensive scaffold for strategic design of therapeutic approaches for neurodegenerative disorders.


Asunto(s)
Caspasa 6/química , Simulación de Dinámica Molecular , Proteolisis , Caspasa 6/metabolismo , Medición de Intercambio de Deuterio , Humanos , Dominios Proteicos , Estructura Secundaria de Proteína
4.
Biochemistry ; 58(52): 5320-5328, 2019 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-31095371

RESUMEN

Acyl phosphates of ATP (ATPAc) and related nucleotides have proven to be useful for the interrogation of known nucleotide binding sites via specific acylation of conserved lysines (K). In addition, occasional K acylations are identified in proteins without such known sites. Here we present a robust and specific acylation of procaspase-6 by ATPAc at K133 in Jurkat cell lysates. The K133 acylation is dependent on π-π stacking interactions between the adenine moiety of ATPAc and a conserved Y198-Y198 site formed at the homodimeric interface of procaspase-6. Significantly, the Y198A mutation in procaspase-6 abolishes K133 acylation but has no effect on the proteolytic activity of the mature, active caspase-6 Y198A variant. Additional in vitro studies show that ATP can inhibit the autoproteolytic activation of procaspase-6. These observations suggest that ATP, and possibly other nucleotides, may serve as the endogenous ligands for the allosteric site at the procaspase-6 dimer interface, a site that has persisted in its "orphan" status for more than a decade.


Asunto(s)
Adenosina Trifosfato/metabolismo , Caspasa 6/química , Caspasa 6/metabolismo , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Proteómica , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Células Jurkat , Modelos Moleculares , Conformación Proteica
5.
J Biol Chem ; 292(12): 4885-4897, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28154009

RESUMEN

Caspases are cysteine aspartate proteases that are major players in key cellular processes, including apoptosis and inflammation. Specifically, caspase-6 has also been implicated in playing a unique and critical role in neurodegeneration; however, structural similarities between caspase-6 and other caspase active sites have hampered precise targeting of caspase-6. All caspases can exist in a canonical conformation, in which the substrate binds atop a ß-strand platform in the 130's region. This caspase-6 region can also adopt a helical conformation that has not been seen in any other caspases. Understanding the dynamics and interconversion between the helical and strand conformations in caspase-6 is critical to fully assess its unique function and regulation. Here, hydrogen/deuterium exchange mass spectrometry indicated that caspase-6 is inherently and dramatically more conformationally dynamic than closely related caspase-7. In contrast to caspase-7, which rests constitutively in the strand conformation before and after substrate binding, the hydrogen/deuterium exchange data in the L2' and 130's regions suggested that before substrate binding, caspase-6 exists in a dynamic equilibrium between the helix and strand conformations. Caspase-6 transitions exclusively to the canonical strand conformation only upon substrate binding. Glu-135, which showed noticeably different calculated pK a values in the helix and strand conformations, appears to play a key role in the interconversion between the helix and strand conformations. Because caspase-6 has roles in several neurodegenerative diseases, exploiting the unique structural features and conformational changes identified here may provide new avenues for regulating specific caspase-6 functions for therapeutic purposes.


Asunto(s)
Caspasa 6/metabolismo , Caspasa 6/química , Caspasa 7/química , Caspasa 7/metabolismo , Estabilidad de Enzimas , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Conformación Proteica en Hélice alfa , Protones
6.
Annu Rev Pharmacol Toxicol ; 55: 553-72, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25340928

RESUMEN

Caspases, a family of cysteine proteases, are major mediators of apoptosis and inflammation. Caspase-6 is classified as an apoptotic effector, and it mediates nuclear shrinkage during apoptosis, but it possesses unique activation and regulation mechanisms that differ from those of other effector caspases. Furthermore, increasing evidence has shown that caspase-6 is highly involved in axon degeneration and neurodegenerative diseases, such as Huntington's disease and Alzheimer's disease. Cleavage at the caspase-6 site in mutated huntingtin protein is a prerequisite for the development of the characteristic behavioral and neuropathological features of Huntington's disease. Active caspase-6 is present in early stages of Alzheimer's disease, and caspase-6 activity is associated with the disease's pathological lesions. In this review, we discuss the evidence relevant to the role of caspase-6 in neurodegenerative diseases and summarize its activation and regulation mechanisms. In doing so, we provide new insight about potential therapeutic approaches that incorporate the modulation of caspase-6 function for the treatment of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Encéfalo/enzimología , Caspasa 6/metabolismo , Enfermedad de Huntington/enzimología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Secuencia de Aminoácidos , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Caspasa 6/química , Inhibidores de Caspasas/uso terapéutico , Diseño de Fármacos , Activación Enzimática , Humanos , Proteína Huntingtina , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/patología , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/metabolismo , Conformación Proteica , Transducción de Señal , Relación Estructura-Actividad , Especificidad por Sustrato
7.
Biochemistry ; 56(34): 4568-4577, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28726391

RESUMEN

Unregulated, particularly suppressed programmed cell death is one of the distinguishing features of many cancer cells. The cysteine protease caspase-6, one of the executioners of apoptotic cell death, plays a crucial role in regulation of apoptosis. Several somatic mutations in the CASP6 gene in tumor tissues have been reported. This work explores the effect of CASP6 tumor-associated mutations on the catalytic efficiency and structure of caspase-6. In general, these mutations showed decreased overall rates of catalytic turnover. Mutations within 8 Å of the substrate-binding pocket of caspase-6 were found to be the most catalytically deactivating. Notably, the R259H substitution decreased activity by 457-fold. This substitution disrupts the cation-π stacking interaction between Arg-259 and Trp-227, which is indispensable for proper assembly of the substrate-binding loops in caspase-6. Sequence conservation analysis at the homologous position across the caspase family suggests a role for this cation-π stacking in the catalytic function of caspases generally. These data suggest that caspase-6 deactivating mutations may contribute to multifactorial carcinogenic transformations.


Asunto(s)
Caspasa 6/química , Mutación Missense , Proteínas de Neoplasias/química , Neoplasias/enzimología , Sustitución de Aminoácidos , Caspasa 6/genética , Caspasa 6/metabolismo , Dominio Catalítico , Humanos , Proteínas de Neoplasias/metabolismo , Neoplasias/genética
8.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 1): 58-67, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24419379

RESUMEN

Caspase 6 (CASP6) is a neuron degeneration-related protease and is widely considered to be a potential drug-design target against neurodegenerative diseases such as Huntington's disease and Alzheimer's disease. The N-terminal pro-peptide of CASP6, also referred to as the pro-domain, contains 23 residues and its functional role remains elusive. In this study, the crystal structure of a full-length CASP6 zymogen mutant, proCASP6H121A, was solved. Although the pro-domain was flexible in the crystal, without visible electron density, structural analyses combined with biochemical assays revealed that the pro-domain inhibited CASP6 auto-activation by inhibiting intramolecular cleavage at the intersubunit cleavage site TEVD(193) and also by preventing this site from intermolecular cleavage at low protein concentration through a so-called `suicide-protection' mechanism. Further experiments showed that the length of the pro-domain and the side chain of Asn18 played critical roles in suicide protection. These results disclosed a new inhibitory mechanism of CASP6 and shed light on the pathogenesis and therapeutically relevant study of CASP6-related neurodegenerative diseases.


Asunto(s)
Caspasa 6/química , Caspasa 6/genética , Caspasa 6/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Activación Enzimática , Humanos , Modelos Moleculares , Mutación , Enfermedades Neurodegenerativas/enzimología , Estructura Terciaria de Proteína
9.
J Biol Chem ; 287(43): 36000-11, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22891250

RESUMEN

Zinc and caspase-6 have independently been implicated in several neurodegenerative disorders. Depletion of zinc intracellularly leads to apoptosis by an unknown mechanism. Zinc inhibits cysteine proteases, including the apoptotic caspases, leading to the hypothesis that zinc-mediated inhibition of caspase-6 might contribute to its regulation in a neurodegenerative context. Using inductively coupled plasma optical emission spectroscopy, we observed that caspase-6 binds one zinc per monomer, under the same conditions where the zinc leads to complete loss of enzymatic activity. To understand the molecular details of zinc binding and inhibition, we performed an anomalous diffraction experiment above the zinc edge. The anomalous difference maps showed strong 5σ peaks, indicating the presence of one zinc/monomer bound at an exosite distal from the active site. Zinc was not observed bound to the active site. The zinc in the exosite was liganded by Lys-36, Glu-244, and His-287 with a water molecule serving as the fourth ligand, forming a distorted tetrahedral ligation sphere. This exosite appears to be unique to caspase-6, as the residues involved in zinc binding were not conserved across the caspase family. Our data suggest that binding of zinc at the exosite is the primary route of inhibition, potentially locking caspase-6 into the inactive helical conformation.


Asunto(s)
Caspasa 6/química , Zinc/química , Regulación Alostérica/fisiología , Sitios de Unión , Caspasa 6/genética , Caspasa 6/metabolismo , Humanos , Mapeo Peptídico , Unión Proteica , Estructura Secundaria de Proteína , Zinc/metabolismo
10.
J Biol Chem ; 287(19): 15371-9, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22433863

RESUMEN

The apoptotic effector caspase-6 (CASP6) has been clearly identified as a drug target due to its strong association with neurodegeneration and axonal pruning events as well as its crucial roles in Huntington disease and Alzheimer disease. CASP6 activity is suppressed by ARK5-mediated phosphorylation at Ser(257) with an unclear mechanism. In this work, we solved crystal structures of ΔproCASP6S257E and p20/p10S257E, which mimicked the phosphorylated CASP6 zymogen and activated CASP6, respectively. The structural investigation combined with extensive biochemical assay and molecular dynamics simulation studies revealed that phosphorylation on Ser(257) inhibited self-activation of CASP6 zymogen by "locking" the enzyme in the TEVD(193)-bound "inhibited state." The structural and biochemical results also showed that phosphorylation on Ser(257) inhibited the CASP6 activity by steric hindrance. These results disclosed the inhibition mechanism of CASP6 phosphorylation and laid the foundation for a new strategy of rational CASP6 drug design.


Asunto(s)
Caspasa 6/química , Simulación de Dinámica Molecular , Estructura Terciaria de Proteína , Serina/química , Sustitución de Aminoácidos , Caspasa 6/genética , Caspasa 6/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Activación Enzimática , Humanos , Modelos Moleculares , Mutación , Fosforilación , Serina/genética , Serina/metabolismo
11.
EMBO Rep ; 11(11): 841-7, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20890311

RESUMEN

Dimeric effectors caspase 3 and caspase 7 are activated by initiator caspase processing. In this study, we report the crystal structures of effector caspase 6 (CASP6) zymogen and N-Acetyl-Val-Glu-Ile-Asp-al-inhibited CASP6. Both of these forms of CASP6 have a dimeric structure, and in CASP6 zymogen the intersubunit cleavage site (190)TEVD(193) is well structured and inserts into the active site. This positions residue Asp 193 to be easily attacked by the catalytic residue Cys 163. We demonstrate biochemically that intramolecular cleavage at Asp 193 is a prerequisite for CASP6 self-activation and that this activation mechanism is dependent on the length of the L2 loop. Our results indicate that CASP6 can be activated and regulated through intramolecular self-cleavage.


Asunto(s)
Caspasa 6/química , Caspasa 6/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Activación Enzimática , Humanos , Datos de Secuencia Molecular , Estructura Secundaria de Proteína
12.
Biochemistry ; 50(16): 3282-7, 2011 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-21381717

RESUMEN

Caspase-6 is an apoptotic protease that also plays important roles in neurodegenerative disorders, including Huntington's and Alzheimer's diseases. Caspase-6 is the only caspase known to form a latent state in which two extended helices block access to the active site. These helices must convert to strands for binding substrate. We probed the interconverting region and found that the absence of helix-breaking residues is more critical than a helix-bridging, hydrogen-bond network for formation of the extended conformation. In addition, our results suggest that caspase-6 must undergo a transition through a low-stability intermediate to bind the active-site ligand. Mature caspase-6 is capable of adopting a latent state not observed in any other caspase. The absence of any helix-breaking residues allows caspase-6 to adopt the extended helical conformation. When we introduced helix-breaking residues similar to those seen in caspase-3 or -7, the structure and stability of the latent state were compromised.


Asunto(s)
Caspasa 6/química , Estructura Secundaria de Proteína , Apoenzimas/química , Dominio Catalítico , Estabilidad de Enzimas , Cinética , Conformación Proteica
13.
Biochemistry ; 50(42): 9046-55, 2011 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-21936563

RESUMEN

Telomerase is a ribonucleoprotein complex that is essential for persistent cellular proliferation. The catalytic subunit of human telomerase, hTERT, functions as a reverse transcriptase and promotes vitality by maintaining telomeric DNA length. hTERT is tightly regulated with complex but poorly understood positive and negative regulation at several levels including transcription, protein-protein interactions, and post-translation modifications. Because evidence implicates hTERT as an apoptosis inhibitor and because telomerase activity tends to decrease during apoptosis, we hypothesized that hTERT is a caspase substrate leading to down regulation during apoptosis. Caspases are proteases that initiate and execute apoptosis by cleaving target proteins. Indeed, we found that caspases-6 and -7 cleave hTERT during apoptosis in cultured cells. Caspase-6 cleaves at residues D129 and D637, and caspase-7 cleaves at E286 and D628. Three of the caspase cleavage sites are unique motifs. All four caspase motifs appear conserved in TERTs from Old World monkeys and apes, and the caspase-6 sites appear conserved in all primates. The caspase site that cleaves at D129 appears conserved in amniotes. hTERT fragments generated by cleavage were remarkably persistent, lasting hours after caspase activation. These results reveal a new biologically relevant mechanism for telomerase down regulation through caspase-mediated cleavage of hTERT and expand the list of known caspase motifs.


Asunto(s)
Caspasa 6/química , Caspasa 7/química , Dominio Catalítico , Telomerasa/química , Secuencia de Aminoácidos , Animales , Apoptosis/genética , Ácido Aspártico/genética , Caspasa 6/deficiencia , Caspasa 6/genética , Caspasa 7/deficiencia , Caspasa 7/genética , Regulación hacia Abajo/genética , Ácido Glutámico/genética , Células HEK293 , Humanos , Células Jurkat , Células K562 , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conejos , Transducción de Señal/genética , Especificidad por Sustrato/genética , Telomerasa/antagonistas & inhibidores , Telomerasa/biosíntesis
14.
Bioorg Med Chem Lett ; 21(18): 5244-7, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21820899

RESUMEN

Caspase-6 is a cysteine protease implicated in neuronal survival and apoptosis. Deregulation of caspase-6 activity was linked to several neurodegenerative disorders including Alzheimer's and Huntington's Diseases. Several recent studies on the structure of caspase-6 feature the caspase-6 zymogen, mature apo-caspase-6 as well as the Ac-VEID-CHO peptide complex. All structures share the same typical dimeric caspase conformation. However, mature apo-caspase-6 crystallized at low pH revealed a novel, non-canonical inactive caspase conformation speculated to represent a latent state of the enzyme suitable for the design of allosteric inhibitors. In this treatise we present the structure of caspase-6 in the non-canonical inactive enzyme conformation bound to the irreversible inhibitor Z-VAD-FMK. The complex features a unique peptide binding mode not observed previously.


Asunto(s)
Clorometilcetonas de Aminoácidos/farmacología , Inhibidores de Caspasas , Inhibidores de Cisteína Proteinasa/farmacología , Clorometilcetonas de Aminoácidos/química , Sitios de Unión/efectos de los fármacos , Caspasa 6/química , Caspasa 6/metabolismo , Inhibidores de Cisteína Proteinasa/química , Humanos , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
15.
Sci Rep ; 11(1): 12695, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135352

RESUMEN

Caspase-6 (Casp6) is implicated in Alzheimer disease (AD) cognitive impairment and pathology. Hippocampal atrophy is associated with cognitive impairment in AD. Here, a rare functional exonic missense CASP6 single nucleotide polymorphism (SNP), causing the substitution of asparagine with threonine at amino acid 73 in Casp6 (Casp6N73T), was associated with hippocampal subfield CA1 volume preservation. Compared to wild type Casp6 (Casp6WT), recombinant Casp6N73T altered Casp6 proteolysis of natural substrates Lamin A/C and α-Tubulin, but did not alter cleavage of the Ac-VEID-AFC Casp6 peptide substrate. Casp6N73T-transfected HEK293T cells showed elevated Casp6 mRNA levels similar to Casp6WT-transfected cells, but, in contrast to Casp6WT, did not accumulate active Casp6 subunits nor show increased Casp6 enzymatic activity. Electrophysiological and morphological assessments showed that Casp6N73T recombinant protein caused less neurofunctional damage and neurodegeneration in hippocampal CA1 pyramidal neurons than Casp6WT. Lastly, CASP6 mRNA levels were increased in several AD brain regions confirming the implication of Casp6 in AD. These studies suggest that the rare Casp6N73T variant may protect against hippocampal atrophy due to its altered catalysis of natural protein substrates and intracellular instability thus leading to less Casp6-mediated damage to neuronal structure and function.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Región CA1 Hipocampal/patología , Caspasa 6/genética , Caspasa 6/metabolismo , Polimorfismo de Nucleótido Simple , Transmisión Sináptica , Enfermedad de Alzheimer/enzimología , Sustitución de Aminoácidos , Encéfalo/enzimología , Encéfalo/patología , Caspasa 1/genética , Caspasa 1/metabolismo , Caspasa 6/química , Precursores Enzimáticos/metabolismo , Células HEK293 , Hipocampo , Humanos , Lamina Tipo A/metabolismo , Mutación Missense , Degeneración Nerviosa , Células Piramidales/citología , Células Piramidales/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/metabolismo , Tubulina (Proteína)/metabolismo
16.
Mol Immunol ; 132: 8-20, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33524772

RESUMEN

The cysteine-containing aspartate specific proteinase (caspase) family plays important roles in apoptosis and the maintenance of homeostasis in lampreys. We conducted genomic and functional comparisons of six distinct lamprey caspase groups with human counterparts to determine how these expanded molecules evolved to adapt to the changing caspase-mediated signaling pathways. Our results showed that lineage-specific duplication and rearrangement were responsible for expanding lamprey caspases 3 and 7, whereas caspases 1, 6, 8, and 9 maintained a relatively stable genome and protein structure. Lamprey caspase family molecules displayed various expression patterns and were involved in the innate immune response. Caspase 1 and 7 functioned as a pattern recognition receptor with a broad-spectrum of microbial recognition and bactericidal effect. Additionally, caspases 1 and 7 may induce cell apoptosis in a time- and dose-dependent manner; however, apoptosis was inhibited by caspase inhibitors. Thus, these molecules may reflect the original state of the vertebrates caspase family. Our phylogenetic and functional data provide insights into the evolutionary history of caspases and illustrate their functional characteristics in primitive vertebrates.


Asunto(s)
Apoptosis/genética , Caspasas/genética , Inmunidad Innata , Lampreas/genética , Transducción de Señal/inmunología , Animales , Apoptosis/efectos de los fármacos , Caspasa 1/química , Caspasa 1/genética , Caspasa 1/aislamiento & purificación , Caspasa 1/metabolismo , Caspasa 3/química , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 6/química , Caspasa 6/genética , Caspasa 6/metabolismo , Caspasa 7/química , Caspasa 7/genética , Caspasa 7/aislamiento & purificación , Caspasa 7/metabolismo , Caspasa 8/química , Caspasa 8/genética , Caspasa 8/metabolismo , Caspasa 9/química , Caspasa 9/genética , Caspasa 9/metabolismo , Inhibidores de Caspasas/farmacología , Caspasas/química , Caspasas/aislamiento & purificación , Caspasas/metabolismo , Evolución Molecular , Duplicación de Gen , Reordenamiento Génico , Genoma , Genómica , Células HeLa , Humanos , Inmunidad Innata/genética , Lampreas/crecimiento & desarrollo , Lampreas/inmunología , Lampreas/metabolismo , Filogenia , Proteínas Recombinantes , Alineación de Secuencia , Transducción de Señal/genética , Staphylococcus aureus/efectos de los fármacos , Regulación hacia Arriba , Vibrio/efectos de los fármacos
17.
Biochem J ; 423(3): 429-39, 2009 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-19694615

RESUMEN

Neurodegenerative diseases pose one of the most pressing unmet medical needs today. It has long been recognized that caspase-6 may play a role in several neurodegenerative diseases for which there are currently no disease-modifying therapies. Thus it is a potential target for neurodegenerative drug development. In the present study we report on the biochemistry and structure of caspase-6. As an effector caspase, caspase-6 is a constitutive dimer independent of the maturation state of the enzyme. The ligand-free structure shows caspase-6 in a partially mature but latent conformation. The cleaved inter-domain linker remains partially inserted in the central groove of the dimer, as observed in other caspases. However, in contrast with the structures of other caspases, not only is the catalytic machinery misaligned, but several structural elements required for substrate recognition are missing. Most importantly, residues forming a short anti-parallel beta-sheet abutting the substrate in other caspase structures are part of an elongation of the central alpha-helix. Despite the dramatic structural changes that are required to adopt a canonical catalytically competent conformation, the pre-steady-state kinetics exhibit no lag phase in substrate turnover. This suggests that the observed conformation does not play a regulatory role in caspase-6 activity. However, targeting the latent conformation in search for specific and bio-available caspase-6 inhibitors might offer an alternative to active-site-directed approaches.


Asunto(s)
Axones/enzimología , Caspasa 6/química , Enfermedades Neurodegenerativas/enzimología , Multimerización de Proteína , Humanos , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Relación Estructura-Actividad
18.
Cell Biochem Biophys ; 78(3): 291-299, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32592127

RESUMEN

The predominance of Alzheimer's disease (AD) among the aged remains a global challenge. As such, the search for alternative and effective therapeutic options continuous unabated. Among the therapeutic targets explored over the years toward impeding the progression of AD is caspase-6 (Casp6), although selectively targeting Casp6 remains a challenge due to high homology with other members of the caspase family. Methyl 3-[(2,3-dihydro-1-benzofuran-2-yl formamido) methyl]-5-(furan-2-amido) benzoate (C13), a novel allosteric inhibitor, is reportedly shown to exhibit selective inhibition against mutant human Casp6 variants (E35K). However, structural and atomistic insights accounting for the reported inhibitory prowess of C13 remains unresolved. In this study, we seek to unravel the mechanistic selectivity of C13 coupled with the complementary effects of E35K single-nucleotide polymorphism (SNP) relative to Casp6 inhibition. Analyses of binding dynamics revealed that the variant Lysine-35 mediated consistent high-affinity interactions with C13 at the allosteric site, possibly forming the molecular basis of the selectivity of C13 as well as its high binding free energy as estimated. Analysis of residue interaction network around Glu35 and Lys35 revealed prominent residue network distortions in the mutant Casp6 conformation evidenced by a decrease in node degree, reduced number of edges and an increase short in path length relative to a more compact conformation in the wild system. The relatively higher binding free energy of C13 coupled with the stronger intermolecular interactions elicited in the mutant conformation further suggests that the mutation E35K probably favours the inhibitory activity of C13. Further analysis of atomistic changes showed increased C-α atom deviations consistent with structural disorientations in the mutant Casp6. Structural Insights provided could open up a novel paradigm of structure-based design of selective allosteric inhibition of Casp6 towards the treatment of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Caspasa 6/genética , Inhibidores de Caspasas/farmacología , Mutación , Polimorfismo de Nucleótido Simple , Sitio Alostérico , Caspasa 6/química , Diseño de Fármacos , Humanos , Imagenología Tridimensional , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica
19.
Proteins ; 75(3): 638-47, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19004001

RESUMEN

Knowing the quality of a protein structure model is important for its appropriate usage. We developed a model evaluation method to assess the absolute quality of a single protein model using only structural features with support vector machine regression. The method assigns an absolute quantitative score (i.e. GDT-TS) to a model by comparing its secondary structure, relative solvent accessibility, contact map, and beta sheet structure with their counterparts predicted from its primary sequence. We trained and tested the method on the CASP6 dataset using cross-validation. The correlation between predicted and true scores is 0.82. On the independent CASP7 dataset, the correlation averaged over 95 protein targets is 0.76; the average correlation for template-based and ab initio targets is 0.82 and 0.50, respectively. Furthermore, the predicted absolute quality scores can be used to rank models effectively. The average difference (or loss) between the scores of the top-ranked models and the best models is 5.70 on the CASP7 targets. This method performs favorably when compared with the other methods used on the same dataset. Moreover, the predicted absolute quality scores are comparable across models for different proteins. These features make the method a valuable tool for model quality assurance and ranking.


Asunto(s)
Algoritmos , Modelos Moleculares , Estructura Secundaria de Proteína , Proteínas/química , Caspasa 6/química , Caspasa 7/química , Biología Computacional/métodos , Humanos , Reproducibilidad de los Resultados
20.
Sci Rep ; 9(1): 5504, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30940883

RESUMEN

Caspase-6 is a cysteine protease that plays essential roles in programmed cell death, axonal degeneration, and development. The excess neuronal activity of Caspase-6 is associated with Alzheimer disease neuropathology and age-dependent cognitive impairment. Caspase-6 inhibition is a promising strategy to stop early stage neurodegenerative events, yet finding potent and selective Caspase-6 inhibitors has been a challenging task due to the overlapping structural and functional similarities between caspase family members. Here, we investigated how four rare non-synonymous missense single-nucleotide polymorphisms (SNPs), resulting in amino acid substitutions outside human Caspase-6 active site, affect enzyme structure and catalytic efficiency. Three investigated SNPs were found to align with a putative allosteric pocket with low sequence conservation among human caspases. Virtual screening of 57,700 compounds against the putative Caspase-6 allosteric pocket, followed by in vitro testing of the best virtual hits in recombinant human Caspase-6 activity assays identified novel allosteric Caspase-6 inhibitors with IC50 and Ki values ranging from ~2 to 13 µM. This report may pave the way towards the development and optimisation of novel small molecule allosteric Caspase-6 inhibitors and illustrates that functional characterisation of rare natural variants holds promise for the identification of allosteric sites on other therapeutic targets in drug discovery.


Asunto(s)
Caspasa 6/química , Caspasa 6/metabolismo , Inhibidores de Caspasas/farmacología , Mutación Missense , Bibliotecas de Moléculas Pequeñas/farmacología , Regulación Alostérica/efectos de los fármacos , Sustitución de Aminoácidos , Caspasa 6/genética , Inhibidores de Caspasas/química , Dominio Catalítico , Simulación por Computador , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Polimorfismo de Nucleótido Simple , Unión Proteica , Conformación Proteica , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda