Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Biol Chem ; 298(1): 101459, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34864055

RESUMEN

Respiratory silicosis is a preventable occupational disease that develops secondary to the aspiration of crystalline silicon dioxide (silica) into the lungs, activation of the NLRP3 inflammasome, and IL-1ß production. Cathepsin Z has been associated with the development of inflammation and IL-1ß production; however, the mechanism of how cathepsin Z leads to IL-1ß production is unknown. Here, the requirement for cathepsin Z in silicosis was determined using WT mice and mice deficient in cathepsin Z. The activation of the NLRP3 inflammasome in macrophages was studied using WT and cathepsin Z-deficient bone marrow-derived murine dendritic cells and the human monocytic cell line THP-1. The cells were activated with silica, and IL-1ß release was determined using enzyme-linked immunosorbent assay or IL-1ß bioassays. The relative contribution of the active domain or integrin-binding domain of cathepsin Z was studied using recombinant cathepsin Z constructs and the α5 integrin neutralizing antibody. We report that the lysosomal cysteine protease cathepsin Z potentiates the development of inflammation associated with respiratory silicosis by augmenting NLRP3 inflammasome-derived IL-1ß expression in response to silica. The secreted cathepsin Z functions nonproteolytically via the internal integrin-binding domain to impact caspase-1 activation and the production of active IL-1ß through integrin α5 without affecting the transcription levels of NLRP3 inflammasome components. This work reveals a regulatory pathway for the NLRP3 inflammasome that occurs in an outside-in fashion and provides a link between extracellular cathepsin Z and inflammation. Furthermore, it reveals a level of NLRP3 inflammasome regulation that has previously only been found downstream of extracellular pathogens.


Asunto(s)
Catepsina Z , Inflamasomas , Animales , Catepsina Z/metabolismo , Inflamasomas/metabolismo , Inflamación/metabolismo , Integrina alfa5/metabolismo , Interleucina-1beta/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Dióxido de Silicio/farmacología , Silicosis/metabolismo
2.
Br J Dermatol ; 189(3): 302-311, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37210216

RESUMEN

BACKGROUND: The abnormal function of epidermal growth factor receptor (EGFR) has recently been shown to underlie various disorders of cornification. OBJECTIVES: To delineate the genetic basis of a novel dominant form of palmoplantar keratoderma (PPK). METHODS: Whole-exome (WES) and direct sequencing, quantitative real-time polymerase chain reaction, protein modelling, confocal immunofluorescence microscopy, immunoblotting, three-dimensional skin equivalents and an enzyme activity assay were used to delineate the genetic basis of a novel dominant form of PPK. RESULTS: WES revealed heterozygous variants (c.274T > C and c.305C > T) in CTSZ (encoding cathepsin Z) in four individuals (belonging to three unrelated families) with focal PPK. Bioinformatics and protein modelling predicted the variants to be pathogenic. Previous studies have suggested that EGFR expression may be subject to cathepsin regulation. Immunofluorescence revealed reduced cathepsin Z expression in the upper epidermal layers and concomitant increased epidermal EGFR expression in patients harbouring CTSZ variants. Accordingly, human keratinocytes transfected with constructs expressing PPK-causing variants in CTSZ displayed reduced cathepsin Z enzymatic activity, as well as increased EGFR expression. In line with the role played by EGFR in the regulation of keratinocyte proliferation, human keratinocytes transfected with the PPK-causing variants showed significantly increased proliferation that was abolished upon exposure to erlotinib, an EGFR inhibitor. Similarly, downregulation of CTSZ resulted in increased EGFR expression and increased proliferation in human keratinocytes, suggestive of a loss-of-function effect of the pathogenic variants. Finally, three-dimensional organotypic skin equivalents grown from CTSZ-downregulated cells showed increased epidermal thickness and EGFR expression as seen in patient skin; here, too, erlotinib was found to rescue the abnormal phenotype. CONCLUSIONS: Taken collectively, these observations attribute to cathepsin Z a hitherto unrecognized function in epidermal differentiation.


Asunto(s)
Catepsina Z , Queratodermia Palmoplantar , Humanos , Clorhidrato de Erlotinib , Catepsina Z/genética , Catepsina Z/metabolismo , Queratodermia Palmoplantar/genética , Queratodermia Palmoplantar/patología , Receptores ErbB/genética , Piel/patología
3.
Genes Dev ; 28(19): 2134-50, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25274726

RESUMEN

During the process of tumor progression, cancer cells can produce the requisite growth- and invasion-promoting factors and can also rely on noncancerous cells in the tumor microenvironment as an alternative, cell-extrinsic source. However, whether the cellular source influences the function of such tumor-promoting factors remains an open question. Here, we examined the roles of the cathepsin Z (CtsZ) protease, which is provided by both cancer cells and macrophages in pancreatic neuroendocrine tumors in humans and mice. We found that tumor proliferation was exclusively regulated by cancer cell-intrinsic functions of CtsZ, whereas tumor invasion required contributions from both macrophages and cancer cells. Interestingly, several of the tumor-promoting functions of CtsZ were not dependent on its described catalytic activity but instead were mediated via the Arg-Gly-Asp (RGD) motif in the enzyme prodomain, which regulated interactions with integrins and the extracellular matrix. Together, these results underscore the complexity of interactions within the tumor microenvironment and indicate that cellular source can indeed impact molecular function.


Asunto(s)
Catepsina Z/metabolismo , Matriz Extracelular/metabolismo , Macrófagos/enzimología , Neoplasias/enzimología , Neoplasias/fisiopatología , Animales , Línea Celular Tumoral , Integrinas/metabolismo , Ratones Endogámicos C57BL , Invasividad Neoplásica/fisiopatología
4.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35163706

RESUMEN

Glioblastoma (GBM) is the most common and deadly primary brain tumor in adults. Understanding GBM pathobiology and discovering novel therapeutic targets are critical to finding efficient treatments. Upregulation of the lysosomal cysteine carboxypeptidase cathepsin X has been linked to immune dysfunction and neurodegenerative diseases, but its role in cancer and particularly in GBM progression in patients is unknown. In this study, cathepsin X expression and activity were found to be upregulated in human GBM tissues compared to low-grade gliomas and nontumor brain tissues. Cathepsin X was localized in GBM cells as well as in tumor-associated macrophages and microglia. Subsequently, potent irreversible (AMS36) and reversible (Z7) selective cathepsin X inhibitors were tested in vitro. Selective cathepsin X inhibitors decreased the viability of patient-derived GBM cells as well as macrophages and microglia that were cultured in conditioned media of GBM cells. We next examined the expression pattern of neuron-specific enzyme γ-enolase, which is the target of cathepsin X. We found that there was a correlation between high proteolytic activity of cathepsin X and C-terminal cleavage of γ-enolase and that cathepsin X and γ-enolase were colocalized in GBM tissues, preferentially in GBM-associated macrophages and microglia. Taken together, our results on patient-derived material suggest that cathepsin X is involved in GBM progression and is a potential target for therapeutic approaches against GBM.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Catepsina Z/metabolismo , Glioblastoma/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Microambiente Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Catepsina Z/antagonistas & inhibidores , Catepsina Z/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Regulación hacia Arriba
5.
J Neuroinflammation ; 14(1): 103, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28486971

RESUMEN

BACKGROUND: Hypomethylation of the cathepsin Z locus has been proposed as an epigenetic risk factor for multiple sclerosis (MS). Cathepsin Z is a unique lysosomal cysteine cathepsin expressed primarily by antigen presenting cells. While cathepsin Z expression has been associated with neuroinflammatory disorders, a role for cathepsin Z in mediating neuroinflammation has not been previously established. METHODS: Experimental autoimmune encephalomyelitis (EAE) was induced in both wildtype mice and mice deficient in cathepsin Z. The effects of cathepsin Z-deficiency on the processing and presentation of the autoantigen myelin oligodendrocyte glycoprotein, and on the production of IL-1ß and IL-18 were determined in vitro from cells derived from wildtype and cathepsin Z-deficient mice. The effects of cathepsin Z-deficiency on CD4+ T cell activation, migration, and infiltration to the CNS were determined in vivo. Statistical analyses of parametric data were performed by one-way ANOVA followed by Tukey post-hoc tests, or by an unpaired Student's t test. EAE clinical scoring was analyzed using the Mann-Whitney U test. RESULTS: We showed that mice deficient in cathepsin Z have reduced neuroinflammation and dramatically lowered circulating levels of IL-1ß during EAE. Deficiency in cathepsin Z did not impact either the processing or the presentation of MOG, or MOG- specific CD4+ T cell activation and trafficking. Consistently, we found that cathepsin Z-deficiency reduced the efficiency of antigen presenting cells to secrete IL-1ß, which in turn reduced the ability of mice to generate Th17 responses-critical steps in the pathogenesis of EAE and MS. CONCLUSION: Together, these data support a novel role for cathepsin Z in the propagation of IL-1ß-driven neuroinflammation.


Asunto(s)
Catepsina Z/metabolismo , Encefalomielitis Autoinmune Experimental/complicaciones , Epilepsia/etiología , Animales , Células Presentadoras de Antígenos/metabolismo , Células Presentadoras de Antígenos/patología , Antígenos CD/metabolismo , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/patología , Catepsina Z/genética , Quimiocina CXCL9/farmacología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/cirugía , Interleucina-18/genética , Interleucina-18/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Leucocitos/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Glicoproteína Mielina-Oligodendrócito/metabolismo , Glicoproteína Mielina-Oligodendrócito/toxicidad , Fragmentos de Péptidos/toxicidad , Fagosomas/metabolismo , Médula Espinal/patología
6.
RNA Biol ; 13(1): 6-14, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26574648

RESUMEN

Most mammalian protein-coding gene promoters are divergent, yielding promoter upstream transcripts (PROMPTs) in the reverse direction from their conventionally produced mRNAs. PROMPTs are rapidly degraded by the RNA exosome rendering a general function of these molecules elusive. Yet, levels of certain PROMPTs are altered in stress conditions, like the DNA damage response (DDR), suggesting a possible regulatory role for at least a subset of these molecules. Here we manipulate PROMPT levels by either exosome depletion or UV treatment and analyze possible effects on their neighboring genes. For the CTSZ and DAP genes we find that TFIIB and TBP promoter binding decrease when PROMPTs accumulate. Moreover, DNA methylation increases concomitant with the recruitment of the DNA methyltransferase DNMT3B. Thus, although a correlation between increased PROMPT levels and decreased gene activity is generally absent, some promoters may have co-opted their divergent transcript production for regulatory purposes.


Asunto(s)
Exosomas/metabolismo , Expresión Génica , Regiones Promotoras Genéticas , ARN sin Sentido/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Catepsina Z/genética , Catepsina Z/metabolismo , Metilación de ADN , Expresión Génica/efectos de la radiación , Células HeLa , Humanos , Regiones Promotoras Genéticas/efectos de la radiación , Estabilidad del ARN , ARN sin Sentido/química , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIIB/metabolismo , Transcripción Genética
7.
J Reprod Dev ; 61(3): 229-36, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25819401

RESUMEN

Corpus luteum (CL) regression is required during the estrous cycle. During CL regression, luteal cells stop producing progesterone and are degraded by apoptosis. However, the detailed mechanism of CL regression in cattle has not been fully elucidated. The aim of this study was to evaluate autophagy, lysosome activity, and apoptosis during CL regression in cattle. The expression of autophagy-related genes (LC3α, LC3ß, Atg3, and Atg7) and the protein LC3-II was significantly higher in the late CL than in the mid CL. In addition, autophagy activity was significantly increased in the late CL. Moreover, gene expression of the autophagy inhibitor mammalian target of rapamycin (mTOR) was significantly lower in the late CL than in the mid CL. Lysosome activation and expression of cathepsin-related genes (CTSB, CTSD, and CTSZ) showed significant increases in the late CL and were associated with an increase in cathepsin B protein. In addition, mRNA expression and activity of caspase 3 (CASP3), an apoptotic enzyme, were significantly higher in the late CL than in the mid CL. These results suggest simultaneous upregulation of autophagy-related factors, lysosomal enzymes and apoptotic mediators, which are involved in regression of the bovine CL.


Asunto(s)
Apoptosis , Autofagia , Cuerpo Lúteo/fisiología , Luteólisis , Lisosomas/metabolismo , Animales , Caspasa 3/metabolismo , Catepsina B/metabolismo , Catepsina D/metabolismo , Catepsina Z/metabolismo , Bovinos , Ciclo Estral , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Inmunohistoquímica , Células Lúteas/citología , Progesterona/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Angew Chem Int Ed Engl ; 53(11): 2919-22, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24505022

RESUMEN

A multimodal activity-based probe for targeting acidic organelles was developed to measure subcellular native enzymatic activity in cells by fluorescence microscopy and mass spectrometry. A cathepsin-reactive warhead conjugated to a weakly basic amine and a clickable alkyne, for subsequent appendage of a fluorophore or biotin reporter tag, accumulated in lysosomes as observed by structured illumination microscopy (SIM) in J774 mouse macrophage cells. Analysis of in vivo labeled J774 cells by mass spectrometry showed that the probe was very selective for cathepsins B and Z, two lysosomal cysteine proteases. Analysis of starvation-induced autophagy, a catabolic pathway involving lysosomes, showed a large increase in the number of tagged proteins and an increase in cathepsin activity. The organelle-targeting of activity-based probes holds great promise for the characterization of enzyme activities in the myriad diseases linked to specific subcellular locations, particularly the lysosome.


Asunto(s)
Catepsina B/metabolismo , Catepsina Z/metabolismo , Aminas/química , Animales , Autofagia , Biotina/química , Biotina/metabolismo , Catepsina B/química , Catepsina Z/química , Línea Celular , Química Clic , Humanos , Lisosomas/metabolismo , Células MCF-7 , Espectrometría de Masas , Ratones , Microscopía Fluorescente
9.
J Biol Chem ; 287(21): 17471-17482, 2012 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-22451661

RESUMEN

In neurodegenerative diseases caused by extended polyglutamine (polyQ) sequences in proteins, aggregation-prone polyQ proteins accumulate in intraneuronal inclusions. PolyQ proteins can be degraded by lysosomes or proteasomes. Proteasomes are unable to hydrolyze polyQ repeat sequences, and during breakdown of polyQ proteins, they release polyQ repeat fragments for degradation by other cellular enzymes. This study was undertaken to identify the responsible proteases. Lysosomal extracts (unlike cytosolic enzymes) were found to rapidly hydrolyze polyQ sequences in peptides, proteins, or insoluble aggregates. Using specific inhibitors against lysosomal proteases, enzyme-deficient extracts, and pure cathepsins, we identified cathepsins L and Z as the lysosomal cysteine proteases that digest polyQ proteins and peptides. RNAi for cathepsins L and Z in different cell lines and adult mouse muscles confirmed that they are critical in degrading polyQ proteins (expanded huntingtin exon 1) but not other types of aggregation-prone proteins (e.g. mutant SOD1). Therefore, the activities of these two lysosomal cysteine proteases are important in host defense against toxic accumulation of polyQ proteins.


Asunto(s)
Catepsina L/metabolismo , Catepsina Z/metabolismo , Lisosomas/metabolismo , Péptidos/metabolismo , Animales , Catepsina L/genética , Catepsina L/inmunología , Catepsina Z/genética , Catepsina Z/inmunología , Células HEK293 , Células HeLa , Humanos , Lisosomas/genética , Lisosomas/inmunología , Ratones , Músculo Esquelético/inmunología , Músculo Esquelético/metabolismo , Células 3T3 NIH , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/inmunología , Enfermedades Neurodegenerativas/metabolismo , Péptidos/genética , Péptidos/inmunología
10.
Mol Hum Reprod ; 19(12): 838-51, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24043695

RESUMEN

Blastocyst hatching is critical for successful implantation leading to pregnancy. Its failure causes infertility. The phenomenon of blastocyst hatching in humans is poorly understood and the available information on this stems from studies of rodents such as mice and hamsters. We and others showed that hamster blastocyst hatching is characterized by firstly blastocyst deflation followed by a dissolution of the zona pellucida (zona) and accompanied by trophectodermal projections (TEPs). We also showed that embryo-derived cathepsins (Cat) proteases, specifically Cat-L, -B and -P act as zonalysins and are responsible for hatching. In this study, we show the expression and function of one of the potential regulators of embryogenesis, cyclooxygenase (COX)-2 during blastocyst development and hatching. The expression of COX-2 mRNA and protein was observed in 8-cell through hatched blastocyst stages and it was also localized to blastocyst's TEPs. Specific COX-2 inhibitors, NS-398 and CAY-10404, inhibited blastocyst hatching; percentages achieved were only 28.4 ± 5.3 and 32.3 ± 5.4%, respectively, compared with >90% with untreated embryos. Interestingly, inhibitor-treated blastocysts failed to deflate, normally observed during hatching. Supplementation of prostaglandins (PGs)-E2 or -I2 to cultured embryos reversed the inhibitors' effect on hatching and also the deflation behavior. Importantly, the levels of mRNA and protein of Cat-L, -B and -P showed a significant reduction in the inhibitor-treated embryos compared with untreated embryos, although its mechanism remains to be examined. These data provide the first evidence that COX-2 is critical for blastocyst hatching in the golden hamster.


Asunto(s)
Blastocisto/fisiología , Desarrollo Embrionario , Animales , Catepsina B/metabolismo , Catepsina B/fisiología , Catepsina L/metabolismo , Catepsina L/fisiología , Catepsina Z/metabolismo , Catepsina Z/fisiología , Cricetinae , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/fisiología , Zona Pelúcida/metabolismo , Zona Pelúcida/fisiología , Zona Pelúcida/ultraestructura
11.
Am J Pathol ; 180(4): 1485-94, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22330678

RESUMEN

Several S100 proteins are up-regulated in pancreatic ductal adenocarcinoma (PDAC), the most significant being S100P. We previously reported on S100PBP, a binding partner of S100P, that shows no homology to any described protein and whose functions are completely unknown. To determine S100PBP expression across human tissues and organs, immunohistochemistry was performed using both multiorgan- and in-house-constructed pancreatic tissue microarrays. To establish S100PBP functions, cell lines with either stably overexpressed or silenced S100PBP were generated and investigated using Affymetrix gene expression arrays and complementary functional assays. We show that S100PBP is differentially expressed in various healthy and tumor specimens, which is both cancer- and tissue-type dependent. In healthy pancreas, S100PBP is expressed in the nuclear/perinuclear region of both exocrine and endocrine compartments. In early precancerous lesions, S100PBP is translocated to the cytoplasm, whereas in PDAC and metastatic lesions, its expression is significantly diminished. The most pronounced phenotypic change after manipulation of S100PBP expression was seen in adhesion; this was significantly reduced after S100PBP up-regulation and increased after S100PBP silencing. Up-regulation or silencing of S100PBP also led to a concomitant change in the levels of the protease cathepsin Z, the silencing of which significantly reduced PDAC cell adhesion. We further demonstrate that the interaction of cathepsin Z with arginine-glycine-aspartic acid-binding integrins, specifically αvß5, mediates the changes seen in adhesion of PDAC cells.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Proteínas Portadoras/fisiología , Catepsina Z/metabolismo , Proteínas Nucleares/fisiología , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/secundario , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Adhesión Celular/fisiología , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/fisiología , Silenciador del Gen , Humanos , Integrinas/metabolismo , Metástasis Linfática , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Páncreas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Células Tumorales Cultivadas
12.
Blood ; 118(12): 3384-91, 2011 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-21795745

RESUMEN

The type 1-transmembrane protein LMAN1 (ERGIC-53) forms a complex with the soluble protein MCFD2 and cycles between the endoplasmic reticulum (ER) and the ER-Golgi intermediate compartment (ERGIC). Mutations in either LMAN1 or MCFD2 cause the combined deficiency of factor V (FV) and factor VIII (FVIII; F5F8D), suggesting an ER-to-Golgi cargo receptor function for the LMAN1-MCFD2 complex. Here we report the analysis of LMAN1-deficient mice. Levels of plasma FV and FVIII, and platelet FV, are all reduced to ∼ 50% of wild-type in Lman1(-/-) mice, compared with the 5%-30% levels typically observed in human F5F8D patients. Despite previous reports identifying cathepsin C, cathepsin Z, and α1-antitrypsin as additional potential cargoes for LMAN1, no differences were observed between wild-type and Lman1(-/-) mice in the levels of cathepsin C and cathepsin Z in liver lysates or α1-antitrypsin levels in plasma. LMAN1 deficiency had no apparent effect on COPII-coated vesicle formation in an in vitro assay. However, the ER in Lman1(-/-) hepatocytes is slightly distended, with significant accumulation of α1-antitrypsin and GRP78. An unexpected, partially penetrant, perinatal lethality was observed for Lman1(-/-) mice, dependent on the specific inbred strain genetic background, suggesting a potential role for other, as yet unidentified LMAN1-dependent cargo proteins.


Asunto(s)
Trastornos de la Coagulación Sanguínea/metabolismo , Deficiencia del Factor V/sangre , Factor VIII/metabolismo , Factor V/metabolismo , Hepatocitos/metabolismo , Lectinas de Unión a Manosa , Proteínas de la Membrana , Animales , Transporte Biológico , Trastornos de la Coagulación Sanguínea/genética , Trastornos de la Coagulación Sanguínea/patología , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Catepsina C/genética , Catepsina C/metabolismo , Catepsina Z/genética , Catepsina Z/metabolismo , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Factor V/genética , Deficiencia del Factor V/genética , Factor VIII/genética , Genotipo , Aparato de Golgi/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hepatocitos/patología , Humanos , Hígado/metabolismo , Hígado/patología , Lectinas de Unión a Manosa/deficiencia , Lectinas de Unión a Manosa/genética , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Mutación , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
13.
Proc Natl Acad Sci U S A ; 107(6): 2497-502, 2010 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-20133781

RESUMEN

The lysosomal cysteine proteases cathepsin B (Ctsb) and cathepsin Z (Ctsz, also called cathepsin X/P) have been implicated in cancer pathogenesis. Compensation of Ctsb by Ctsz in Ctsb (-/-) mice has been suggested. To further define the functional interplay of these proteases in the context of cancer, we generated Ctsz null mice, crossed them with Ctsb-deficient mice harboring a transgene for the mammary duct-specific expression of polyoma middle T oncogene (PymT), and analyzed the effects of single and combined Ctsb and Ctsz deficiencies on breast cancer progression. Single Ctsb deficiency resulted in delayed detection of first tumors and reduced tumor burden, whereas Ctsz-deficient mice had only a prolonged tumor-free period. However, only a trend toward reduced metastatic burden without statistical significance was detected in both single mutants. Strikingly, combined loss of Ctsb and Ctsz led to additive effects, resulting in significant and prominent delay of early and advanced tumor development, improved histopathologic tumor grading, as well as a 70% reduction in the number of lung metastases and an 80% reduction in the size of these metastases. We conclude that the double deficiency of Ctsb and Ctsz exerts significant synergistic anticancer effects, whereas the single deficiencies demonstrate at least partial reciprocal compensation.


Asunto(s)
Catepsina B/deficiencia , Catepsina Z/deficiencia , Glándulas Mamarias Animales/patología , Neoplasias Mamarias Animales/patología , Animales , Antígenos Transformadores de Poliomavirus/genética , Antígenos Transformadores de Poliomavirus/metabolismo , Apoptosis , Catepsina B/genética , Catepsina B/metabolismo , Catepsina Z/genética , Catepsina Z/metabolismo , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Femenino , Técnica del Anticuerpo Fluorescente , Genotipo , Humanos , Immunoblotting , Inmunohistoquímica , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Masculino , Glándulas Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/enzimología , Neoplasias Mamarias Animales/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Carga Tumoral
14.
J Biol Chem ; 286(14): 12578-89, 2011 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-21310951

RESUMEN

N-terminal proteolysis of huntingtin is thought to be an important mediator of HD pathogenesis. The formation of short N-terminal fragments of huntingtin (cp-1/cp-2, cp-A/cp-B) has been demonstrated in cells and in vivo. We previously mapped the cp-2 cleavage site by mass spectrometry to position Arg167 of huntingtin. The proteolytic enzymes generating short N-terminal fragments of huntingtin remain unknown. To search for such proteases, we conducted a genome-wide screen using an RNA-silencing approach and an assay for huntingtin proteolysis based on the detection of cp-1 and cp-2 fragments by Western blotting. The primary screen was carried out in HEK293 cells, and the secondary screen was carried out in neuronal HT22 cells, transfected in both cases with a construct encoding the N-terminal 511 amino acids of mutant huntingtin. For additional validation of the hits, we employed a complementary assay for proteolysis of huntingtin involving overexpression of individual proteases with huntingtin in two cell lines. The screen identified 11 enzymes, with two major candidates to carry out the cp-2 cleavage, bleomycin hydrolase (BLMH) and cathepsin Z, which are both cysteine proteases of a papain-like structure. Knockdown of either protease reduced cp-2 cleavage, and ameliorated mutant huntingtin induced toxicity, whereas their overexpression increased the cp-2 cleavage. Both proteases partially co-localized with Htt in the cytoplasm and within or in association with early and late endosomes, with some nuclear co-localization observed for cathepsin Z. BLMH and cathepsin Z are expressed in the brain and have been associated previously with neurodegeneration. Our findings further validate the cysteine protease family, and BLMH and cathepsin Z in particular, as potential novel targets for HD therapeutics.


Asunto(s)
Catepsina Z/química , Catepsina Z/metabolismo , Cisteína Endopeptidasas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Western Blotting , Caspasa 3/metabolismo , Catepsina Z/genética , Línea Celular , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Técnica del Anticuerpo Fluorescente , Humanos , Proteína Huntingtina , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , ARN Interferente Pequeño
15.
Biol Chem ; 393(12): 1457-62, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23152410

RESUMEN

The cysteine-type peptidase cathepsin X is highly upregulated in several cancers and presumably promotes tumor invasion through bypassing cellular senescence. Here, we present first evidence that the underlying mechanism may involve the regulation of the insulin-like growth factor (IGF) system, a well-known activator of proliferating tumor cells. Cathepsin X deficiency leads to a reduced phosphorylation of the IGF-I receptor in response to IGF-I stimulation. In addition, downstream signaling through focal adhesion kinase was also affected. Taken together, our results indicate that cathepsin X is able to assist in IGF signaling, which may be an important progress toward understanding cathepsin X-dependent tumorigenesis.


Asunto(s)
Catepsina Z/genética , Catepsinas/genética , Próstata/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Precursores de Proteínas/genética , Receptor IGF Tipo 1/metabolismo , Catepsina Z/metabolismo , Catepsinas/metabolismo , Línea Celular Tumoral , Senescencia Celular , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Masculino , Fosforilación , Próstata/citología , Próstata/patología , Neoplasias de la Próstata/patología , Precursores de Proteínas/metabolismo , Interferencia de ARN , Transducción de Señal
16.
Autophagy ; 18(10): 2333-2349, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35230915

RESUMEN

TFEB (transcription factor EB) and TFE3 (transcription factor binding to IGHM enhancer 3) orchestrate the cellular response to a variety of stressors, including nutrient deprivation, oxidative stress and pathogens. Here we describe a novel interaction of TFEB and TFE3 with the FAcilitates Chromatin Transcription (FACT) complex, a heterodimeric histone chaperone consisting of SSRP1 and SUPT16H that mediates nucleosome disassembly and assembly, thus facilitating transcription. Extracellular stimuli, such as nutrient deprivation or oxidative stress, induce nuclear translocation and activation of TFEB and TFE3, which then associate with the FACT complex to regulate stress-induced gene transcription. Depletion of FACT does not affect TFEB activation, stability, or binding to the promoter of target genes. In contrast, reduction of FACT levels by siRNA or treatment with the FACT inhibitor curaxin, severely impairs induction of numerous antioxidant and lysosomal genes, revealing a crucial role of FACT as a regulator of cellular homeostasis. Furthermore, upregulation of antioxidant genes induced by TFEB over-expression is significantly reduced by curaxin, consistent with a role of FACT as a TFEB transcriptional activator. Together, our data show that chromatin remodeling at the promoter of stress-responsive genes by FACT is important for efficient expression of TFEB and TFE3 targets, thus providing a link between environmental changes, chromatin modifications and transcriptional regulation.Abbreviations: ADNP2, ADNP homeobox 2; ATP6V0D1, ATPase H+ transporting V0 subunit d1; ATP6V1A, ATPase H+ transporting V1 subunit A; ATP6V1C1, ATPase H+ transporting V1 subunit C1; CSNK2/CK2, casein kinase 2; CLCN7, chloride voltage-gated channel 7; CTSD, cathepsin D; CTSZ, cathepsin Z; EBSS, earle's balanced salt solution; FACT complex, facilitates chromatin transcription complex; FOXO3, forkhead box O3; HEXA, hexosaminidase subunit alpha; HIF1A, hypoxia inducible factor 1 subunit alpha; HMOX1, heme oxygenase 1; LAMP1, lysosomal associated membrane protein 1; MAFF, MAF bZIP transcription factor F; MAFG, MAF bZIP transcription factor G; MCOLN1, mucolipin TRP cation channel 1; MTORC1, mechanistic target of rapamycin kinase complex 1; NaAsO2, sodium arsenite; POLR2, RNA polymerase II; PPARGC1A, PPARG coactivator 1 alpha; PYROXD1, pyridine nucleotide-disulfide oxidoreductase domain 1; RRAGC, Ras related GTP binding C; SEC13, SEC13 homolog, nuclear pore and COPII coat complex component; SLC38A9, solute carrier family 38 member 9; SSRP1, structure specific recognition protein 1; SUPT16H, SPT16 homolog, facilitates chromatin remodeling subunit; TFEB, transcription factor EB; TFE3, transcription factor binding to IGHM enhancer 3; TXNRD1, thioredoxin reductase 1; UVRAG, UV radiation resistance associated; WDR59, WD repeat domain 59.


Asunto(s)
Antioxidantes , Canales de Potencial de Receptor Transitorio , Adenosina Trifosfatasas/metabolismo , Antioxidantes/metabolismo , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Quinasa de la Caseína II/metabolismo , Catepsina D/metabolismo , Catepsina Z/genética , Catepsina Z/metabolismo , Cloruros/metabolismo , Cromatina/metabolismo , Disulfuros , Guanosina Trifosfato/metabolismo , Hemo-Oxigenasa 1/metabolismo , Hexosaminidasas/genética , Hexosaminidasas/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Factor 1 Inducible por Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Nucleosomas/metabolismo , Nucleótidos/metabolismo , PPAR gamma/genética , Piridinas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Interferente Pequeño/metabolismo , Sirolimus , Tiorredoxina Reductasa 1/genética , Tiorredoxina Reductasa 1/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo
17.
J Biol Chem ; 285(44): 33691-700, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-20736174

RESUMEN

Our previous studies have shown an association between Helicobacter pylori infection, the strong up-regulation of cathepsin X (CTSX, also called cathepsin Z/P), and the development of gastric cancer. In the present study, we analyzed primary and conventional gastric epithelial cell lines to establish an optimal in vitro mouse model system for the examination of H. pylori-induced overexpression of Ctsx in a functional way. Gastric epithelial cells were isolated from stomachs of wild-type C57BL6/N and Ctsx(-/-) mice and compared with the gastric cancer cell line CLS103. Indirect co-cultures of epithelial cells and macrophages were infected with H. pylori strain SS1 and analyzed for the expression of cathepsins, cytokines, and adhesion factors. Cellular interactions, migration capability, and adherence of H. pylori were assessed using time-lapse video microscopy and colony-forming assays. Isolated primary cells from wild-type and transgenic mice revealed qualities and expression profiles similar to those of corresponding tissue samples. Adherence of H. pylori was significantly higher in primary compared with commercially cells. Thus, induction of cathepsins, cytokines, and adhesion proteins was detected solely in primary cells and co-cultured macrophages. Microarray and migration experiments indicated that Ctsx is involved in B/T-cell proliferation/migration and adhesion of macrophages. Primary epithelial cells from stomach of Ctsx(-/-) mice represent an excellent model of H. pylori gastritis to elaborate the special functions of Ctsx in regulating the immune response to H. pylori.


Asunto(s)
Catepsina Z/metabolismo , Citocinas/metabolismo , Células Epiteliales/citología , Mucosa Gástrica/metabolismo , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Macrófagos/citología , Animales , Movimiento Celular , Técnicas de Cocultivo , Células Epiteliales/microbiología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/metabolismo , Estómago/microbiología
18.
Haematologica ; 95(9): 1452-60, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20494937

RESUMEN

BACKGROUND: Hematopoietic stem cells are retained within discrete bone marrow niches through the effects of cell adhesion molecules and chemokine gradients. However, a small proportion of hematopoietic stem cells can also be found trafficking in the peripheral blood. During induced stem cell mobilization a proteolytic microenvironment is generated, but whether proteases are also involved in physiological trafficking of hematopoietic stem cells is not known. In the present study we examined the expression, secretion and function of the cysteine protease cathepsin X by cells of the human bone marrow. DESIGN AND METHODS: Human osteoblasts, bone marrow stromal cells and hematopoietic stem and progenitor cells were analyzed for the secretion of cathepsin X by western blotting, active site labeling, immunofluorescence staining and activity assays. A possible involvement of cathepsin X in cell adhesion and CXCL-12-mediated cell migration was studied in functional assays. Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) analysis revealed the digestion mechanism of CXCL-12 by cathepsin X. RESULTS: Osteoblasts and stromal cells secrete cathepsin X, whereas hematopoietic stem and progenitor cells do not. Using a cathepsin X-selective substrate, we detected the catalytic activity of cathepsin X in cell culture supernatants of osteoblasts. Activated cathepsin X is able to reduce cellular adhesive interactions between CD34(+) hematopoietic stem and progenitor cells and adherent osteoblasts. The chemokine CXCL-12, a highly potent chemoattractant for hematopoietic stem cells secreted by osteoblasts, is readily digested by cathepsin X. CONCLUSIONS: The exo-peptidase cathepsin X has been identified as a new member of the group of CXCL-12-degrading enzymes secreted by non-hematopoietic bone marrow cells. Functional data indicate that cathepsin X can influence hematopoietic stem and progenitor cell trafficking in the bone marrow.


Asunto(s)
Catepsina Z/metabolismo , Adhesión Celular , Quimiocina CXCL12/metabolismo , Células Madre Hematopoyéticas/citología , Osteoblastos/citología , Médula Ósea , Movimiento Celular , Células Cultivadas , Células Madre Hematopoyéticas/metabolismo , Humanos , Osteoblastos/metabolismo
19.
Cell Rep ; 30(9): 3079-3091.e5, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32130908

RESUMEN

Brown adipose tissue (BAT) generates heat to maintain body temperature and suppress obesity. Agonists for nuclear receptors PPARα and PPARγ both affect brown adipocyte function, yet the interplay between these factors in BAT is uncertain. Here, we report that PPARα shares most genomic binding sites with PPARγ, and these common binding sites are more related to BAT function than PPARγ-selective sites without PPARα. Integrating PPARα and PPARγ genomic occupancy with cold-responsive BAT transcriptomes identifies a subset of 16 genes with potential relevance to BAT function. Among these, we focused on the lysosomal protease cathepsin Z (CTSZ) and showed it is necessary for mitochondrial respiration in both mouse and human brown adipocytes. Thus, CTSZ is a shared PPARα/γ target gene in BAT and a regulator of brown adipocyte thermogenic function.


Asunto(s)
Adipocitos Marrones/metabolismo , PPAR alfa/metabolismo , PPAR gamma/metabolismo , Termogénesis/genética , Tejido Adiposo Pardo/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Catepsina Z/genética , Catepsina Z/metabolismo , Frío , Genoma , Humanos , Masculino , Ratones Endogámicos C57BL , PPAR alfa/agonistas , PPAR gamma/agonistas , Unión Proteica
20.
Sci Rep ; 9(1): 9752, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31278293

RESUMEN

Osteoporosis, one of the most prevalent chronic ageing-related bone diseases, often goes undetected until the first fragility fracture occurs, causing patient suffering and cost to health/social care services. Osteoporosis arises from imbalanced activity of osteoclasts and osteoblasts. Since these cell lineages produce the protease, cathepsin Z, the aim of this study was to investigate whether altered cathepsin Z mRNA levels are associated with osteoporosis in clinical samples. Cathepsin Z mRNA in human peripheral blood mononuclear cells was significantly differentially-expressed among non-osteoporotic controls, osteopenia and osteoporosis patients (p < 0.0001) and in female osteoporosis patients over the age of 50 years (P = 0.0016). Cathepsin Z mRNA level strongly correlated with low bone mineral density (BMD) (g/cm2), lumbar spine L2-L4 and femoral neck (T-scores) (P = 0.0149, 0.0002 and 0.0139, respectively). Importantly, cathepsin Z mRNA was significantly associated with fragility fracture in osteoporosis patients (P = 0.0018). The levels of cathepsin Z mRNA were not significantly higher in patients with chronic inflammatory disorders in these two groups compared to those without (P = 0.774 and 0.666, respectively). ROC analysis showed that cathepsin Z mRNA has strong diagnostic value for osteoporosis and osteoporotic fracture. The results show for the first time that cathepsin Z could be a future diagnostic biomarker for osteoporosis including female osteoporosis patients over the age of 50 years.


Asunto(s)
Catepsina Z/genética , Osteoporosis/genética , Adulto , Anciano , Biomarcadores , Densidad Ósea/genética , Enfermedades Óseas Metabólicas/diagnóstico , Enfermedades Óseas Metabólicas/genética , Catepsina Z/metabolismo , Femenino , Fracturas Óseas/diagnóstico , Fracturas Óseas/etiología , Fracturas Óseas/metabolismo , Expresión Génica , Humanos , Inflamación/genética , Inflamación/metabolismo , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Osteoporosis/complicaciones , Osteoporosis/diagnóstico , Osteoporosis/metabolismo , Pronóstico , ARN Mensajero/genética , Curva ROC
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda