Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 4.641
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Small ; 20(26): e2306943, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38239086

RESUMEN

The growing consumption of drugs of abuse together with the inefficiency of the current wastewater treatment plants toward their presence has resulted in an emergent class of pollutants. Thus, the development of alternative approaches to remediate this environmental threat is urgently needed. Microrobots, combining autonomous motion with great tunability for the development of specific tasks, have turned into promising candidates to take on the challenge. Here, hybrid urchin-like hematite (α-Fe2O3) microparticles carrying magnetite (Fe3O4) nanoparticles and surface functionalization with organic ß-cyclodextrin (CD) molecules are prepared with the aim of on-the-fly encapsulation of illicit drugs into the linked CD cavities of moving microrobots. The resulting mag-CD microrobots are tested against methamphetamine (MA), proving their ability for the removal of this psychoactive substance. A dramatically enhanced capture of MA from water with active magnetically powered microrobots when compared with static passive CD-modified particles is demonstrated. This work shows the advantages of enhanced mass transfer provided by the externally controlled magnetic navigation in microrobots that together with the versatility of their design is an efficient strategy to clean polluted waters.


Asunto(s)
Ciclodextrinas , Metanfetamina , Contaminantes Químicos del Agua , Metanfetamina/química , Ciclodextrinas/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Magnetismo , Robótica , Purificación del Agua/métodos , Compuestos Férricos/química
2.
Mol Pharm ; 21(3): 1501-1514, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38363209

RESUMEN

Encapsulation of active pharmaceutical ingredients (APIs) in confined spaces has been extensively explored as it dramatically alters the molecular dynamics and physical properties of the API. Herein, we explored the effect of encapsulation on the molecular dynamics and physical stability of a guest drug, salicylic acid (SA), confined in the intermolecular spaces of γ-cyclodextrin (γ-CD) and poly(ethylene glycol) (PEG)-based polypseudorotaxane (PPRX) structure. The sublimation tendency of SA encapsulated in three polymorphic forms of the γ-CD/PEG-based PPRX complex, monoclinic columnar (MC), hexagonal columnar (HC), and tetragonal columnar (TC), was investigated. The SA sublimation rate was decreased by 3.0-6.6-fold and varied in the order of MC form > HC form > TC form complex. The 13C and 1H magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectra and 13C spin-lattice relaxation time (T1) indicated that the encapsulated SA molecules existed as the monomeric form, and its molecular mobility increased in the order of MC form > HC form > TC form complex. In the complexes, a rapid chemical exchange between two dynamic states of SA (free and bound) was suggested, with varying adsorption/desorption rates accounting for its distinct molecular mobility. This adsorption/desorption process was influenced by proton exchange at the interaction site and interaction strength of SA in the complexes, as evidenced by 1H MAS spectra and temperature dependency of the 13C carbonyl chemical shift. A positive correlation between the molecular mobility of SA and its sublimation rate was established. Moreover, the molecular mobility of γ-CD and PEG in the complexes coincided with that of SA, which can be explained by fast guest-driven dynamics. This is the first report on the stability improvement of an API through complexation in polymorphic supramolecular host structures. The relationship between the molecular dynamics and physical properties of encapsulated API will aid in the rational design of drug delivery systems.


Asunto(s)
Ciclodextrinas , Simulación de Dinámica Molecular , Poloxámero , Rotaxanos , Preparaciones Farmacéuticas , Ciclodextrinas/química , Espectroscopía de Resonancia Magnética , Ácido Salicílico/química
3.
Biomacromolecules ; 25(2): 941-954, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38241024

RESUMEN

Supramolecular assembly has attracted significant attention and has been applied to various applications. Herein, a ß-γ-CD dimer was synthesized to complex different guest molecules, including single-strand polyethylene glycol (PEG)-modified C60 (PEG-C60), photothermal conversion reagent (IR780), and dexamethasone (Dexa), according to the complexation constant-dependent specific selectivity. Spherical or cylindrical nanoparticles, monolayer or bilayer vesicles, and bilayer fusion vesicles were discovered in succession if the concentration of PEG-C60 was varied. Moreover, if near-infrared light was employed to irradiate these nanoassemblies, the thermo-induced morphological evolution, subsequent cargo release, photothermal effect, and singlet oxygen (1O2) generation were successfully achieved. The in vitro cell experiments confirmed that these nanoparticles possessed excellent biocompatibility in a normal environment and achieved superior cytotoxicity by light regulation. Such proposed strategies for the construction of multilevel structures with different morphologies can open a new window to obtain various host-guest functional materials and achieve further use for disease treatment.


Asunto(s)
Ciclodextrinas , Nanopartículas , Ciclodextrinas/química , Polímeros/química , Polietilenglicoles/química , Nanopartículas/química , Oxígeno Singlete/química
4.
Biomacromolecules ; 25(5): 3141-3152, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38687279

RESUMEN

Atherosclerosis (AS) is characterized by the accumulation of substantial low-density lipoprotein (LDL) and inflammatory response. Hemoperfusion is commonly employed for the selective removal of LDL from the body. However, conventional hemoperfusion merely focuses on LDL removal and does not address the symptom of plaque associated with AS. Based on the LDL binding properties of acrylated chondroitin sodium sulfate (CSA), acrylated beta-cyclodextrin (CD) and acrylic acid (AA), along with the anti-inflammatory property of rosiglitazone (R), the fabricated AA-CSA-CD-R microspheres could simultaneously release R and facilitate LDL removal for hemoperfusion. The AA and CSA offer electrostatic adsorption sites for LDL, while the CD provides hydrophobic adsorption sites for LDL and weak binding sites for R. According to the Sips model, the maximum static LDL adsorption capacity of AA-CSA-CD-R is determined to be 614.73 mg/g. In dynamic simulated perfusion experiments, AA-CSA-CD-R exhibits an initial cycle LDL adsorption capacity of 150.97 mg/g. The study suggests that the weakened inflammatory response favors plaque stabilization. The anti-inflammatory property of the microspheres is verified through an inflammation model, wherein the microsphere extracts are cocultured with mouse macrophages. Both qualitative analysis of iNOS\TNF-α and quantitative analysis of IL-6\TNF-α collectively demonstrate the remarkable anti-inflammatory effect of the microspheres. Therefore, the current study presents a novel blood purification treatment of eliminating pathogenic factors and introducing therapeutic factors to stabilize AS plaque.


Asunto(s)
Resinas Acrílicas , Aterosclerosis , Sulfatos de Condroitina , Lipoproteínas LDL , Rosiglitazona , Animales , Ratones , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/aislamiento & purificación , Sulfatos de Condroitina/química , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Resinas Acrílicas/química , Rosiglitazona/farmacología , Rosiglitazona/química , Adsorción , Células RAW 264.7 , Microesferas , Ciclodextrinas/química
5.
Phys Chem Chem Phys ; 26(3): 2035-2043, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38126539

RESUMEN

Model systems are widely used in biology and chemistry to gain insight into more complex systems. In the field of computational chemistry, researchers use host-guest systems, relatively simple exemplars of noncovalent binding, to train and test the computational methods used in drug discovery. Indeed, host-guest systems have been developed to support the community-wide blinded SAMPL prediction challenges for over a decade. While seeking new host-guest systems for the recent SAMPL9 binding prediction challenge, which is the focus of the present PCCP Themed Collection, we identified phenothiazine as a privileged scaffold for guests of ß cyclodextrin (ßCD) and its derivatives. Building on this observation, we used calorimetry and NMR spectroscopy to characterize the noncovalent association of native ßCD and three methylated derivatives of ßCD with five phenothiazine drugs. The strongest association observed, that of thioridazine and one of the methyl derivatives, exceeds the well-known high affinity of rimantidine with ßCD. Intriguingly, however, methylation of ßCD at the 3 position abolished detectible binding for all of the drugs studied. The dataset has a clear pattern of entropy-enthalpy compensation. The NMR data show that all of the drugs position at least one aromatic proton at the secondary face of the CD, and most also show evidence of deep penetration of the binding site. The results of this study were used in the SAMPL9 blinded binding affinity-prediction challenge, which are detailed in accompanying papers of the present Themed Collection. These data also open the phenothiazines and, potentially, chemically similar drugs, such as the tricyclic antidepressants, as relatively potent binders of ßCD, setting the stage for future SAMPL challenge datasets and for possible applications as drug reversal agents.


Asunto(s)
Ciclodextrinas , Ciclodextrinas/química , Fenotiazinas , Sitios de Unión , Termodinámica
6.
J Biochem Mol Toxicol ; 38(1): e23597, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38037252

RESUMEN

Effective drug distribution at the intended or particular location is a critical issue that researchers are now dealing. Nanosponges have significantly increased in importance in medication delivery using nanotechnology in recent years. An important step toward solving these problems has been the development of nanosponges. Recently created and proposed for use in drug delivery, nanosponge is a unique type of hyper-crosslinked polymer-based colloidal structures made up of solid nanoparticles with colloidal carriers. Nanosponges are solid porous particles that may hold pharmaceuticals and other actives in their nanocavities. They can be made into dosage forms for oral, parenteral, topical, or inhalation use. The targeted distribution of drugs in a regulated manner is greatly aided by nanosponge. The utilization of nanosponges, their benefits, their production processes, the polymers they are made of, and their characterization have all been covered in this review article.


Asunto(s)
Ciclodextrinas , Nanopartículas , Ciclodextrinas/química , Preparaciones Farmacéuticas/química , Medicamentos a Granel , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Polímeros
7.
Chirality ; 36(5): e23676, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38736271

RESUMEN

Among different substance classes, New Psychoactive Substances (NPS) comprise chiral amphetamines for stimulant and empathic effects. There is little knowledge in terms of clinical studies about possibly different effects of the two enantiomers of novel amphetamine derivatives. For this reason, there is a big demand for enantioseparation method development of this new substance class. Regarding gas chromatography, cyclodextrins proved to be effective for enantioseparation of NPS. In our attempt, an Astec® Chiraldex™ G-PN column containing 2,6-di-O-pentyl-3-propionyl-γ-cyclodextrin and a Lipodex™ D column containing heptakis-(2,6-di-O-pentyl-O-acetyl)-ß-cyclodextrin as chiral selector served as stationary phases in a Shimadzu GCMS-QP2010 SE system. Because of the special coating, maximum temperature is limited to 200 °C isothermal or 220 °C in programmed mode. To ensure detection, trifluoroacetic anhydride (TFAA) was used to increase sample volatility.1 As a result, 35 amphetamines were tested as their TFAA-derivatives. A screening method with a temperature gradient from 140 °C to 200 °C at a heating ramp of 1 °C per minute and final time of 5 min, showed baseline separation for seven and partial separations for 16 trifluoro acetylated amphetamines using the Chiraldex™ G-PN column. Six baseline and nine partial separations were observed with the Lipodex™ D column, respectively.


Asunto(s)
Anfetaminas , Estereoisomerismo , Anfetaminas/química , Anfetaminas/aislamiento & purificación , Cromatografía de Gases/métodos , Ciclodextrinas/química , Temperatura , Cromatografía de Gases y Espectrometría de Masas/métodos
8.
J Nanobiotechnology ; 22(1): 119, 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38494523

RESUMEN

BACKGROUND: Acute lung injury (ALI) is a fatal respiratory disease caused by overreactive immune reactions (e.g., SARS-CoV-2 infection), with a high mortality rate. Its treatment is often compromised by inefficient drug delivery barriers and insufficient potency of the currently used drugs. Therefore, developing a highly effective lung-targeted drug delivery strategy is a pressing clinical need. RESULTS: In this study, the micro-sized inclusion cocrystal of asiatic acid/γ-cyclodextrin (AA/γCD, with a stoichiometry molar ratio of 2:3 and a mean size of 1.8 µm) was prepared for ALI treatment. The dissolution behavior of the AA/γCD inclusion cocrystals followed a "spring-and-hover" model, which meaned that AA/γCD could dissolve from the cocrystal in an inclusion complex form, thereby promoting a significantly improved water solubility (nine times higher than free AA). This made the cyclodextrin-based inclusion cocrystals an effective solid form for enhanced drug absorption and delivery efficiency. The biodistribution experiments demonstrated AA/γCD accumulated predominantly in the lung (Cmax = 50 µg/g) after systemic administration due to the micron size-mediated passive targeting effect. The AA/γCD group showed an enhanced anti-inflammatory therapeutic effect, as evidenced by reduced levels of pro-inflammatory cytokines in the lung and bronchoalveolar lavage fluids (BALF). Histological examination confirmed that AA/γCD effectively inhibited inflammation reactions. CONCLUSION: The micro-sized inclusion cocrystals AA/γCD were successfully delivered into the lungs by pulmonary administration and had a significant therapeutic effect on ALI.


Asunto(s)
Lesión Pulmonar Aguda , Ciclodextrinas , Triterpenos Pentacíclicos , Humanos , Ciclodextrinas/química , Distribución Tisular , Sistemas de Liberación de Medicamentos , Lesión Pulmonar Aguda/tratamiento farmacológico , Solubilidad
9.
Cryobiology ; 115: 104888, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38508357

RESUMEN

The experiment evaluated the effect of adding cholesterol-loaded cyclodextrin (CLC) to Prochilodus lineatus fish (Curimata) semen on post-thaw sperm quality. Twelve adult fish were used for sperm collection after induced spermiation with carp pituitary gland. The semen was diluted and treated with CLC in concentrations of 0 (control), 0.5, 1.0, 2.0, 3.0, and 4.0 mg for 120 × 106 spermatozoa/ml, loaded in 0.5 ml straws, packaged and placed in dry vapor vessel cylinders for 24 h before being submerged in liquid nitrogen for storage. The samples were thawed in a water bath at 60 °C for 8 s, and the sperm parameters evaluated were motility, activation duration, longevity, plasma membrane integrity, and morphology. Data were tested for normal distribution and ANOVA, followed by Friedman test (P < 0.05). Spermatozoa treated with CLC displayed higher motility than the control (P < 0.05). The duration of sperm activation was longer in sperm treated with 0.5, 1.0, and 2.0 mg of CLC than in control (P < 0.05). The membrane integrity was higher in sperm treated with 0.5, 1.0, 2.0, and 3.0 mg of CLC than in control and four mg-treated samples (P < 0.05). The sperm longevity and morphology alterations did not differ between treatments (P > 0.05). Adding 0.5, 1.0, or 2.0 mg of CLC in Prochilodus lineatus semen before cryopreservation improves sperm motility and membrane integrity.


Asunto(s)
Colesterol , Criopreservación , Crioprotectores , Ciclodextrinas , Preservación de Semen , Motilidad Espermática , Espermatozoides , Animales , Masculino , Criopreservación/métodos , Criopreservación/veterinaria , Preservación de Semen/métodos , Preservación de Semen/veterinaria , Motilidad Espermática/efectos de los fármacos , Ciclodextrinas/farmacología , Ciclodextrinas/química , Espermatozoides/efectos de los fármacos , Colesterol/farmacología , Crioprotectores/farmacología , Membrana Celular/efectos de los fármacos , Characiformes , Análisis de Semen
10.
Biomed Chromatogr ; 38(7): e5876, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38600635

RESUMEN

The two-step preconcentration technique consisting of large-volume sample stacking (LVSS) and micelle to solvent stacking (MSS) in cyclodextrin-modified electrokinetic chromatography (CDEKC) was developed for the analysis of five cationic alkaloids in complex Chinese herbal prescriptions. Relevant parameters affecting separation and stacking performance were optimized separately. Under the optimal LVSS-MSS-CDEKC conditions, less analysis time and organic solvent were required, and the enhancement factors of analytes ranged from 12 to 15 compared with the normal CDEKC separation mode. Further, all validation results demonstrated good applicability and multiple alkaloids (epiberberine, dehydrocorydaline, jatrorrhizine, coptisine and berberine) in Yangxinshi tablet (YXST) have been simultaneously determined. This approach presents powerful potential for the determination of multiple components in complex preparations of Chinese medicine.


Asunto(s)
Alcaloides , Cromatografía Capilar Electrocinética Micelar , Medicamentos Herbarios Chinos , Comprimidos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Cromatografía Capilar Electrocinética Micelar/métodos , Comprimidos/química , Alcaloides/análisis , Alcaloides/química , Reproducibilidad de los Resultados , Micelas , Modelos Lineales , Ciclodextrinas/química , Límite de Detección
11.
Int J Mol Sci ; 25(8)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38674132

RESUMEN

Cyclodextrins (CDs) are cyclic oligosaccharides that contain at least six d-(+)-glucopyranose units linked by α-(1, 4) glucosidic bonds [...].


Asunto(s)
Ciclodextrinas , Ciclodextrinas/química , Humanos
12.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38673912

RESUMEN

In this work, we propose a comprehensive experimental study of the diffusion of nickel ions in combination with different cyclodextrins as carrier molecules for enhanced solubility and facilitated transport. For this, ternary mutual diffusion coefficients measured by Taylor dispersion method are reported for aqueous solutions containing nickel salts and different cyclodextrins (that is, α-CD, ß-CD, and γ-CD) at 298.15 K. A combination of Taylor dispersion and other methods, such as UV-vis spectroscopy, will be used to obtain complementary information on these systems. The determination of the physicochemical properties of these salts with CDs in aqueous solution provides information that allows us to understand solute-solvent interactions, and gives a significant contribution to understanding the mechanisms underlying diffusional transport in aqueous solutions, and, consequently, to mitigating the potential toxicity associated with these metal ions. For example, using mutual diffusion data, it is possible to estimate the number of moles of each ion transported per mole of the cyclodextrin driven by its own concentration gradient.


Asunto(s)
Ciclodextrinas , Níquel , Níquel/química , Ciclodextrinas/química , Difusión , Solubilidad , Iones/química
13.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542499

RESUMEN

Cyclodextrin-based nanosponges (CDNSs) are complex macromolecular structures composed of individual cyclodextrins (CDs) and nanochannels created between cross-linked CD units and cross-linkers. Due to their unique structural and physicochemical properties, CDNSs can possess even more beneficial pharmaceutical features than single CDs. In this comprehensive review, various aspects related to CDNSs are summarized. Particular attention was paid to overviewing structural properties, methods of synthesis, and physicochemical analysis of CDNSs using various analytical methods, such as DLS, PXRD, TGA, DSC, FT-IR, NMR, and phase solubility studies. Also, due to the significant role of CDNSs in pharmaceutical research and industry, aspects such as drug loading, drug release studies, and kinetics profile evaluation of drug-CDNS complexes were carefully reviewed. The aim of this paper is to find the relationships between the physicochemical features and to identify crucial characteristics that are influential for using CDNSs as convenient drug delivery systems.


Asunto(s)
Ciclodextrinas , Nanoestructuras , Ciclodextrinas/química , Preparaciones Farmacéuticas , Espectroscopía Infrarroja por Transformada de Fourier , Nanoestructuras/química , Sistemas de Liberación de Medicamentos/métodos , Solubilidad
14.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338811

RESUMEN

Commercial cyclodextrins (CDs) are commonly used to form inclusion complexes (ICs) with different molecules in order to enhance their water solubility, stability, and bioavailability. Nowadays, there is strong, convincing evidence of the anticancer effect of selenium (Se)-containing compounds. However, pharmaceutical limitations, such as an unpleasant taste or poor aqueous solubility, impede their further evaluation and clinical use. In this work, we study the enhancement of solubility with CD complexes for a set of different nonsteroidal anti-inflammatory drug (NSAID) derivatives with Se as selenoester or diacyl diselenide chemical forms, with demonstrated antitumoral activity. The CD complexes were analyzed via nuclear magnetic resonance (NMR) spectroscopic techniques. In order to obtain additional data that could help explain the experimental results obtained, 3D models of the theoretical CD-compound complexes were constructed using molecular modeling techniques. Among all the compounds, I.3e and II.5 showed a remarkable increase in their water solubility, which could be ascribed to the formation of the most stable interactions with the CDs used, in agreement with the in silico studies performed. Thus, the preliminary results obtained in this work led us to confirm the selection of ß and γ-CD as the most suitable for overcoming the pharmaceutical drawbacks of these Se derivatives.


Asunto(s)
Ciclodextrinas , Selenio , Ciclodextrinas/farmacología , Ciclodextrinas/química , Solubilidad , Agua/química , Preparaciones Farmacéuticas , Antiinflamatorios no Esteroideos/farmacología
15.
J Environ Manage ; 351: 119830, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141340

RESUMEN

Cyclodextrin (CD) and its derivatives are receiving attention as a new-generation adsorbent for water pollution treatment due to their external hydrophilic and internal hydrophobic properties. Among types of CD, ß-Cyclodextrin (ßCD) has been a material of choice with a proven track record for a range of utilities in distinct domains, owing to its unique cage-like structural conformations and inclusion complex-forming ability, especially to mitigate emerging contaminants (ECs). This article outlines ßCD composites in developing approaches of their melds and composites for purposes such as membranes for removal of the ECs in aqueous setups have been explored with emphasis on recent trends. Electrospinning has bestowed an entirely different viewpoint on polymeric materials, comprising ßCD, in the framework of diverse functions across a multitude of niches. Besides, this article especially discusses ßCD polymer composite membrane-based removal of contaminants such as pharmaceutical substances, endocrine disruptors chemicals, and dyes. Finally, in this article, the challenges and future directions of ßCD-based adsorbents are discussed, which may shed light on pragmatic commercial applications of ßCD polymer composite membranes.


Asunto(s)
Celulosa , Ciclodextrinas , Disruptores Endocrinos , beta-Ciclodextrinas , Polímeros , Colorantes , beta-Ciclodextrinas/química , Ciclodextrinas/química , Preparaciones Farmacéuticas
16.
Molecules ; 29(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474609

RESUMEN

Pain and anesthesia are a problem for all physicians. Scientists from different countries are constantly searching for new anesthetic agents and methods of general anesthesia. In anesthesiology, the role and importance of local anesthesia always remain topical. In the present work, a comparative analysis of the results of pharmacological studies on models of the conduction and terminal anesthesia, as well as acute toxicity studies of the inclusion complex of 1-methyl-4-ethynyl-4-hydroxypiperidine (MEP) with ß-cyclodextrin, was carried out. A virtual screening and comparative analysis of pharmacological activity were also performed on a number of the prepared piperidine derivatives and their host-guest complexes of ß-cyclodextrin to identify the structure-activity relationship. Various programs were used to study biological activity in silico. For comparative analysis of chemical and pharmacological properties, data from previous works were used. For some piperidine derivatives, new dosage forms were prepared as beta-cyclodextrin host-guest complexes. Some compounds were recognized as promising local anesthetics. Pharmacological studies have shown that KFCD-7 is more active than reference drugs in terms of local anesthetic activity and acute toxicity but is less active than host-guest complexes, based on other piperidines. This fact is in good agreement with the predicted results of biological activity.


Asunto(s)
Ciclodextrinas , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Relación Estructura-Actividad , Anestésicos Locales , Ciclodextrinas/química
17.
Molecules ; 29(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38398627

RESUMEN

The characteristic alkaloid component of the leaves of the catnip shrub (Catha edulis) is cathinone, and its synthetic analogs form a major group of recreational drugs. Cathinone derivatives are chiral compounds. In the literature, several chiral methods using cyclodextrins (CDs) have been achieved so far for diverse sets of analogs; however, a comprehensive investigation of the stability of their CD complexes has not been performed yet. To characterize the enantioselective complex formation, a systematic experimental design was developed in which a total number of 40 neutral, positively, and negatively charged CD derivatives were screened by affinity capillary electrophoresis and compared according to their cavity size, substituent type, and location. The functional groups responsible for the favorable interactions were identified in the case of para-substituted cathinone analog mephedrone, flephedrone, and 4-methylethcathinone (4-MEC) and in the case of 3,4-methylendioxy derivative butylone and methylenedioxypyrovalerone (MDPV). The succinylated-ß-CD and subetadex exhibited the highest complex stabilities among the studied drugs. The complex stoichiometry was determined using the Job's plot method, and the complex structures were further studied using ROESY NMR measurements. The results of our enantioselective complex formation study can facilitate chiral method development and may lead to evaluate potential CD-based antidotes for cathinone analogs.


Asunto(s)
Alcaloides , Ciclodextrinas , Ciclodextrinas/química , Estereoisomerismo , Espectroscopía de Resonancia Magnética/métodos
18.
AAPS PharmSciTech ; 25(5): 134, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862663

RESUMEN

Inclusion complexes require higher concentration of Beta cyclodextrins (ßCD) resulting in increased formulation bulk, toxicity, and production costs. This systematic review offers a comprehensive analysis using Quality by design (QbD) as a tool to predict potential applications of Polyvinylpyrrolidone (PVP) as a ternary substance to address issues of inclusion complexes. We reviewed 623 documents from 2013 to 2023 and Eighteen (18) research papers were selected for statistical and meta-analysis using the QbD concept to identify the most critical factors for selecting drugs and effect of PVP on inclusion complexes. The QbD analysis revealed that Molecular weight (MW), Partition coefficient (Log P), and the auxiliary substance ratio directly affected complexation efficiency (CE), thermodynamic stability in terms of Gibbs free energy (ΔG), and percent drug release. However, Stability constant (Ks) remained unaffected by any of these parameters. The results showed that low MW (250), median Log P (6), and a ßCD: PVP ratio of 2:3 would result in higher CE, lower G, and improved drug release. PVP improves drug solubility, enhances delivery and therapeutic outcomes, and counteracts increased drug ionization due to decreased pH. In certain cases, its bulky nature and hydrogen bonding with CD molecules can form non-inclusion complexes. The findings of the study shows that there is potential molecular interaction between PVP and ß-cyclodextrins, which possibly enhances the stability of inclusion complexes for drug with low MW and log P values less than 9. The systematic review shows a comprehensive methodology based on QbD offers a replicable template for future investigations into drug formulation research.


Asunto(s)
Ciclodextrinas , Povidona , Solubilidad , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Química Farmacéutica/métodos , Ciclodextrinas/química , Liberación de Fármacos , Excipientes/química , Peso Molecular , Proyectos Piloto , Povidona/química , Termodinámica
19.
AAPS PharmSciTech ; 25(5): 117, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806874

RESUMEN

Eugenol (Eug) holds potential as a treatment for bacterial rhinosinusitis by nasal powder drug delivery. To stabilization and solidification of volatile Eug, herein, nasal inhalable γ-cyclodextrin metal-organic framework (γ-CD-MOF) was investigated as a carrier by gas-solid adsorption method. The results showed that the particle size of Eug loaded by γ-CD-MOF (Eug@γ-CD-MOF) distributed in the range of 10-150 µm well. In comparison to γ-CD and ß-CD-MOF, γ-CD-MOF has higher thermal stability to Eug. And the intermolecular interactions between Eug and the carriers were verified by characterizations and molecular docking. Based on the bionic human nasal cavity model, Eug@γ-CD-MOF had a high deposition distribution (90.07 ± 1.58%). Compared with free Eug, the retention time Eug@γ-CD-MOF in the nasal cavity was prolonged from 5 min to 60 min. In addition, the cell viability showed that Eug@γ-CD-MOF (Eug content range 3.125-200 µg/mL) was non-cytotoxic. And the encapsulation of γ-CD-MOF could not reduce the bacteriostatic effect of Eug. Therefore, the biocompatible γ-CD-MOF could be a potential and valuable carrier for nasal drug delivery to realize solidification and nasal therapeutic effects of volatile oils.


Asunto(s)
Administración Intranasal , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Eugenol , Estructuras Metalorgánicas , Polvos , Estructuras Metalorgánicas/química , Polvos/química , Humanos , Eugenol/química , Eugenol/administración & dosificación , Eugenol/farmacología , Administración Intranasal/métodos , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos/química , Tamaño de la Partícula , Supervivencia Celular/efectos de los fármacos , Simulación del Acoplamiento Molecular/métodos , gamma-Ciclodextrinas/química , Estabilidad de Medicamentos , Antibacterianos/administración & dosificación , Antibacterianos/química , Antibacterianos/farmacología , Ciclodextrinas/química , Cavidad Nasal/metabolismo
20.
J Am Chem Soc ; 145(8): 4882-4891, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36802551

RESUMEN

While α-, ß-, and γ-cyclodextrin (CD) are ubiquitous hosts employed by supramolecular chemists, δ-CD (formed from nine α-1,4-linked glucopyranose units) has received very little attention. α-, ß-, and γ-CD are the major products of the enzymatic breakdown of starch by cyclodextrin glucanotransferase (CGTase), but δ-CD forms only transiently in this reaction, as a minor component of a complex mixture of linear and cyclic glucans. In this work, we show how δ-CD can be synthesized in unprecedented yields by employing a bolaamphiphile template in an enzyme-mediated dynamic combinatorial library of cyclodextrins. NMR spectroscopy studies revealed that δ-CD can thread up to three bolaamphiphiles forming [2]-, [3]-, or [4]-pseudorotaxanes, depending on the size of the hydrophilic headgroup and the length of the alkyl chain axle. Threading of the first bolaamphiphile occurs in fast exchange on the NMR chemical shift time scale, while subsequent threading occurs in slow exchange. To extract quantitative information for 1:2 and 1:3 binding events occurring in mixed exchange regimes, we derived equations for nonlinear curve fitting that take into consideration both the chemical shift changes for species in fast exchange and the integrals for species in slow exchange to determine Ka1, Ka2, and Ka3. Template T1 could be used to direct the enzymatic synthesis of δ-CD due to the cooperative formation of a 1:2 complex─the [3]-pseudorotaxane δ-CD·T12. Importantly, T1 is recyclable. It can be readily recovered from the enzymatic reaction by precipitation and reused in subsequent syntheses enabling preparative-scale synthesis of δ-CD.


Asunto(s)
Ciclodextrinas , Ciclodextrinas/química , Glucanos , Almidón/química , Glucosiltransferasas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda