Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Mol Cell ; 58(5): 767-79, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-25936804

RESUMEN

The PIDDosome-PIDD-RAIDD-caspase-2 complex-is a proapoptotic caspase-activation platform of elusive significance. DNA damage can initiate complex assembly via ATM phosphorylation of the PIDD death domain (DD), which enables RAIDD recruitment to PIDD. In contrast, the mechanisms limiting PIDDosome formation have remained unclear. We identify the mitotic checkpoint factor BubR1 as a direct PIDDosome inhibitor, acting in a noncanonical role independent of Mad2. Following its phosphorylation by ATM at DNA breaks, "primed" PIDD relocates to kinetochores via a direct interaction with BubR1. BubR1 binds the PIDD DD, competes with RAIDD recruitment, and negates PIDDosome-mediated apoptosis after ionizing radiation. The PIDDosome thus sequentially integrates DNA damage and mitotic checkpoint signals to decide cell fate in response to genotoxic stress. We further show that by sequestering PIDD at the kinetochore, BubR1 acts to delay PIDDosome formation until the next cycle, defining a new mechanism by which cells evade apoptosis during mitosis.


Asunto(s)
Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Caspasa 2/metabolismo , Cisteína Endopeptidasas/metabolismo , Daño del ADN , Células HCT116 , Células HeLa , Humanos , Cinetocoros/enzimología , Proteínas Mad2/metabolismo , Ratones , Fosforilación , Procesamiento Proteico-Postraduccional , Transducción de Señal
2.
Mol Cell ; 53(1): 75-87, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24316223

RESUMEN

Tumor-specific pyruvate kinase M2 (PKM2) is instrumental in both aerobic glycolysis and gene transcription. PKM2 regulates G1-S phase transition by controlling cyclin D1 expression. However, it is not known whether PKM2 directly controls cell-cycle progression. We show here that PKM2, but not PKM1, binds to the spindle checkpoint protein Bub3 during mitosis and phosphorylates Bub3 at Y207. This phosphorylation is required for Bub3-Bub1 complex recruitment to kinetochores, where it interacts with Blinkin and is essential for correct kinetochore-microtubule attachment, mitotic/spindle-assembly checkpoint, accurate chromosome segregation, cell survival and proliferation, and active EGF receptor-induced brain tumorigenesis. In addition, the level of Bub3 Y207 phosphorylation correlated with histone H3-S10 phosphorylation in human glioblastoma specimens and with glioblastoma prognosis. These findings highlight the role of PKM2 as a protein kinase controlling the fidelity of chromosome segregation, cell-cycle progression, and tumorigenesis.


Asunto(s)
Neoplasias Encefálicas/enzimología , Proteínas Portadoras/metabolismo , Segregación Cromosómica , Cromosomas Humanos/metabolismo , Glioblastoma/enzimología , Proteínas de la Membrana/metabolismo , Mitosis , Proteínas de Neoplasias/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Neoplasias Encefálicas/genética , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromosomas Humanos/genética , Glioblastoma/genética , Células HeLa , Humanos , Cinetocoros/enzimología , Proteínas de la Membrana/genética , Ratones , Ratones Desnudos , Proteínas de Neoplasias/genética , Proteínas de Unión a Poli-ADP-Ribosa , Huso Acromático/enzimología , Huso Acromático/genética , Hormonas Tiroideas/genética , Proteínas de Unión a Hormona Tiroide
3.
Nature ; 524(7566): 489-92, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26168397

RESUMEN

Cell division requires the precise coordination of chromosome segregation and cytokinesis. This coordination is achieved by the recruitment of an actomyosin regulator, Ect2, to overlapping microtubules at the centre of the elongating anaphase spindle. Ect2 then signals to the overlying cortex to promote the assembly and constriction of an actomyosin ring between segregating chromosomes. Here, by studying division in proliferating Drosophila and human cells, we demonstrate the existence of a second, parallel signalling pathway, which triggers the relaxation of the polar cell cortex at mid anaphase. This is independent of furrow formation, centrosomes and microtubules and, instead, depends on PP1 phosphatase and its regulatory subunit Sds22 (refs 2, 3). As separating chromosomes move towards the polar cortex at mid anaphase, kinetochore-localized PP1-Sds22 helps to break cortical symmetry by inducing the dephosphorylation and inactivation of ezrin/radixin/moesin proteins at cell poles. This promotes local softening of the cortex, facilitating anaphase elongation and orderly cell division. In summary, this identifies a conserved kinetochore-based phosphatase signal and substrate, which function together to link anaphase chromosome movements to cortical polarization, thereby coupling chromosome segregation to cell division.


Asunto(s)
Segregación Cromosómica , Drosophila melanogaster/citología , Cinetocoros/metabolismo , Proteína Fosfatasa 1/metabolismo , Actinas/metabolismo , Anafase , Animales , Polaridad Celular , Centrosoma/metabolismo , Cromatina/metabolismo , Proteínas del Citoesqueleto/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Humanos , Cinetocoros/enzimología , Masculino , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Microtúbulos/metabolismo , Fosforilación , Transducción de Señal
4.
Mol Microbiol ; 112(2): 569-587, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31095812

RESUMEN

Candida albicans, an ascomycete, has an ability to switch to diverse morphological forms. While C. albicans is predominatly diploid, it can tolerate aneuploidy as a survival strategy under stress. Aurora kinase B homolog Ipl1 is a critical ploidy regulator that controls microtubule dynamics and chromosome segregation in Saccharomyces cerevisiae. In this study, we show that Ipl1 in C. albicans has a longer activation loop than that of the well-studied ascomycete S. cerevisiae. Ipl1 localizes to the kinetochores during the G1/S phase and associates with the spindle during mitosis. Ipl1 regulates cell morphogenesis and is required for cell viability. Ipl1 monitors microtubule dynamics which is mediated by separation of spindle pole bodies. While Ipl1 is dispensable for maintaining structural integrity and clustering of kinetochores in C. albicans, it is required for the maintenance of bilobed distribution of clustered kinetochores along the mitotic spindle. Depletion of Ipl1 results in erroneous kinetochore-microtubule attachments leading to aneuploidy due to which the organism can survive better in the presence of fluconazole. Taking together, we suggest that Ipl1 spatiotemporally ensures bilobed kinetochore distribution to facilitate bipolar spindle assembly crucial for ploidy maintenance in C. albicans.


Asunto(s)
Aurora Quinasas/metabolismo , Candida albicans/enzimología , Candida albicans/genética , Segregación Cromosómica , Proteínas Fúngicas/metabolismo , Cinetocoros/enzimología , Aurora Quinasas/genética , Proteínas Fúngicas/genética , Mitosis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Huso Acromático/enzimología , Huso Acromático/genética
5.
Nat Chem Biol ; 12(4): 226-32, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26829474

RESUMEN

Faithful segregation of chromosomes in mammalian cells requires bi-orientation of sister chromatids, which relies on the sensing of correct attachments between spindle microtubules and kinetochores. Although the mechanisms underlying cyclin-dependent kinase 1 (CDK1) activation, which triggers mitotic entry, have been extensively studied, the regulatory mechanisms that couple CDK1-cyclin B activity to chromosome stability are not well understood. Here, we identified a signaling axis in which Aurora B activity is modulated by CDK1-cyclin B via the acetyltransferase TIP60 in human cell division. CDK1-cyclin B phosphorylates Ser90 of TIP60, which elicits TIP60-dependent acetylation of Aurora B and promotes accurate chromosome segregation in mitosis. Mechanistically, TIP60 acetylation of Aurora B at Lys215 protects Aurora B's activation loop from dephosphorylation by the phosphatase PP2A to ensure a robust, error-free metaphase-anaphase transition. These findings delineate a conserved signaling cascade that integrates protein phosphorylation and acetylation with cell cycle progression for maintenance of genomic stability.


Asunto(s)
Aurora Quinasa B/metabolismo , Segregación Cromosómica/fisiología , Histona Acetiltransferasas/metabolismo , Cinetocoros/enzimología , Mitosis/fisiología , Acetilación , Anticuerpos Monoclonales/farmacología , Aurora Quinasa B/genética , Segregación Cromosómica/genética , Inhibidores Enzimáticos/farmacología , Células HEK293 , Células HeLa , Histona Acetiltransferasas/genética , Humanos , Inmunoprecipitación , Cinetocoros/ultraestructura , Lisina Acetiltransferasa 5 , Mitosis/genética , Plásmidos , Imagen de Lapso de Tiempo
6.
Fungal Genet Biol ; 103: 1-15, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28315405

RESUMEN

Filamentous fungi have devastating negative impacts as pathogens and agents of food spoilage but also have critical ecological importance and are utilized for industrial applications. The characteristic multinucleate nature of filamentous fungi is facilitated by limiting if, when and where septation, the fungal equivalent of cytokinesis, occurs. In the model filamentous fungus Aspergillus nidulans septation does not occur immediately after mitosis and is an incomplete process resulting in the formation of a septal pore whose permeability is cell cycle regulated. How mitotic regulators, such as the Aurora kinase, contribute to the often unique biology of filamentous fungi is not well understood. The Aurora B kinase has not previously been investigated in any detail during hyphal growth. Here we demonstrate for the first time that Aurora displays cell cycle dependent locations to the region of forming septa, the septal pore and mature septa as well as the mitotic apparatus. To functionally analyze Aurora, we generated a temperature sensitive allele revealing essential mitotic and spindle assembly checkpoint functions consistent with its location to the kinetochore region and spindle midzone. Our analysis also reveals that cellular and kinetochore Aurora levels increase during a mitotic spindle assembly checkpoint arrest and we propose that this could be important for checkpoint inactivation when spindle formation is prevented. We demonstrate that Aurora accumulation at mature septa following mitotic entry does not require mitotic progression but is dependent upon a timing mechanism. Surprisingly we also find that Aurora inactivation leads to cellular swelling and lysis indicating an unexpected function for Aurora in fungal cell growth. Thus in addition to its conserved mitotic functions our data suggest that Aurora has the capacity to be an important regulator of septal biology and cell growth in filamentous fungi.


Asunto(s)
Aspergillus nidulans/genética , Aurora Quinasa B/genética , Ciclo Celular/genética , Mitosis/genética , Aspergillus nidulans/enzimología , Aspergillus nidulans/crecimiento & desarrollo , Citocinesis/genética , Cinetocoros/enzimología , Microtúbulos/enzimología , Microtúbulos/genética , Huso Acromático/enzimología
7.
Proc Natl Acad Sci U S A ; 111(38): E3996-4005, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25201961

RESUMEN

Aurora B kinase regulates the proper biorientation of sister chromatids during mitosis. Lack of Aurora B kinase function results in the inability to correct erroneous kinetochore-microtubule attachments and gives rise to aneuploidy. Interestingly, increased Aurora B activity also leads to problems with chromosome segregation, and overexpression of this kinase has been observed in various types of cancer. However, little is known about the mechanisms by which an increase in Aurora B kinase activity can impair mitotic progression and cell viability. Here, using a yeast model, we demonstrate that increased Aurora B activity as a result of the overexpression of the Aurora B and inner centromere protein homologs triggers defects in chromosome segregation by promoting the continuous disruption of chromosome-microtubule attachments even when sister chromatids are correctly bioriented. This disruption leads to a constitutive activation of the spindle-assembly checkpoint, which therefore causes a lack of cytokinesis even though spindle elongation and chromosome segregation take place. Finally, we demonstrate that this increase in Aurora B activity causes premature collapse of the mitotic spindle by promoting instability of the spindle midzone.


Asunto(s)
Aurora Quinasa B/metabolismo , Cromosomas Fúngicos/metabolismo , Cinetocoros/enzimología , Microtúbulos/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Huso Acromático/enzimología , Aurora Quinasa B/genética , Cromátides/enzimología , Cromátides/genética , Cromosomas Fúngicos/genética , Microtúbulos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Huso Acromático/genética
8.
J Cell Sci ; 127(Pt 23): 5066-78, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25315835

RESUMEN

Meiosis I (MI), the division that generates haploids, is prone to errors that lead to aneuploidy in females. Haspin is a kinase that phosphorylates histone H3 on threonine 3, thereby recruiting Aurora kinase B (AURKB) and the chromosomal passenger complex (CPC) to kinetochores to regulate mitosis. Haspin and AURKC, an AURKB homolog, are enriched in germ cells, yet their significance in regulating MI is not fully understood. Using inhibitors and overexpression approaches, we show a role for haspin during MI in mouse oocytes. Haspin-perturbed oocytes display abnormalities in chromosome morphology and alignment, improper kinetochore-microtubule attachments at metaphase I and aneuploidy at metaphase II. Unlike in mitosis, kinetochore localization remained intact, whereas the distribution of the CPC along chromosomes was absent. The meiotic defects following haspin inhibition were similar to those observed in oocytes where AURKC was inhibited, suggesting that the correction of microtubule attachments during MI requires AURKC along chromosome arms rather than at kinetochores. Our data implicate haspin as a regulator of the CPC and chromosome segregation during MI, while highlighting important differences in how chromosome segregation is regulated between MI and mitosis.


Asunto(s)
Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Profase Meiótica I , Oocitos/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Adenosina Trifosfatasas/metabolismo , Aneuploidia , Animales , Aurora Quinasa C/antagonistas & inhibidores , Aurora Quinasa C/metabolismo , Células Cultivadas , Segregación Cromosómica , Proteínas de Unión al ADN/metabolismo , Femenino , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Cinetocoros/enzimología , Profase Meiótica I/efectos de los fármacos , Ratones , Microtúbulos/enzimología , Complejos Multiproteicos/metabolismo , Oocitos/efectos de los fármacos , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Transducción de Señal , Treonina , Factores de Tiempo , Transfección
9.
Histochem Cell Biol ; 145(3): 275-86, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26678504

RESUMEN

During mitosis, the kinetochore, a multi-protein structure located on the centromeric DNA, is responsible for proper segregation of the replicated genome. More specifically, the outer kinetochore complex component Ndc80/Hec1 plays a critical role in regulating microtubule attachment to the spindle for accurate sister chromatid segregation. In addition, DNA helicases play a key contribution for precise and complete disjunction of sister chromatids held together through double-stranded DNA catenations until anaphase. In this study, we focused our attention on the nuclear-encoded DNA helicase Twinkle, which functions as an essential helicase for replication of mitochondrial DNA. It regulates the copy number of the mitochondrial genome, while maintaining its integrity, two processes essential for mitochondrial biogenesis and bioenergetic functions. Although the majority of the Twinkle protein is imported into mitochondria, a small fraction remains cytosolic with an unknown function. In this study, we report a novel expression pattern of Twinkle during chromosomal segregation at distinct mitotic phases. By immunofluorescence microscopy, we found that Twinkle protein colocalizes with the outer kinetochore protein HEC1 as early as prophase until late anaphase in neuronal-like progenitor cells. Thus, our collective results have revealed an unexpected cell cycle-regulated expression pattern of the DNA helicase Twinkle, known for its role in mtDNA replication. Therefore, its recruitment to the kinetochore suggests an evolutionary conserved function for both mitochondrial and nuclear genomic inheritance.


Asunto(s)
ADN Helicasas/análisis , Cinetocoros/enzimología , Mitosis , Neuronas/metabolismo , Células Madre/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , ADN Helicasas/metabolismo , ADN Mitocondrial/metabolismo , Cinetocoros/metabolismo , Microscopía Fluorescente , Datos de Secuencia Molecular , Neuronas/citología , Células PC12 , Ratas , Alineación de Secuencia , Células Madre/citología
10.
PLoS Biol ; 10(1): e1001250, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22291575

RESUMEN

The coordinated activities at centromeres of two key cell cycle kinases, Polo and Aurora B, are critical for ensuring that the two sister kinetochores of each chromosome are attached to microtubules from opposite spindle poles prior to chromosome segregation at anaphase. Initial attachments of chromosomes to the spindle involve random interactions between kinetochores and dynamic microtubules, and errors occur frequently during early stages of the process. The balance between microtubule binding and error correction (e.g., release of bound microtubules) requires the activities of Polo and Aurora B kinases, with Polo promoting stable attachments and Aurora B promoting detachment. Our study concerns the coordination of the activities of these two kinases in vivo. We show that INCENP, a key scaffolding subunit of the chromosomal passenger complex (CPC), which consists of Aurora B kinase, INCENP, Survivin, and Borealin/Dasra B, also interacts with Polo kinase in Drosophila cells. It was known that Aurora A/Bora activates Polo at centrosomes during late G2. However, the kinase that activates Polo on chromosomes for its critical functions at kinetochores was not known. We show here that Aurora B kinase phosphorylates Polo on its activation loop at the centromere in early mitosis. This phosphorylation requires both INCENP and Aurora B activity (but not Aurora A activity) and is critical for Polo function at kinetochores. Our results demonstrate clearly that Polo kinase is regulated differently at centrosomes and centromeres and suggest that INCENP acts as a platform for kinase crosstalk at the centromere. This crosstalk may enable Polo and Aurora B to achieve a balance wherein microtubule mis-attachments are corrected, but proper attachments are stabilized allowing proper chromosome segregation.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Cinetocoros/enzimología , Proteínas Serina-Treonina Quinasas/genética , Animales , Aurora Quinasa B , Aurora Quinasas , Técnicas de Cultivo de Célula , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Activación Enzimática , Regulación Enzimológica de la Expresión Génica , Células HeLa , Humanos , Microtúbulos/metabolismo , Mitosis/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Huso Acromático/genética , Huso Acromático/metabolismo
11.
EMBO Rep ; 13(9): 847-54, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22732840

RESUMEN

Aurora B localization to mitotic centromeres, which is required for proper chromosome alignment during mitosis, relies on Haspin-dependent histone H3 phosphorylation and on Bub1-dependent histone H2A phosphorylation--which interacts with Borealin through a Shugoshin (Sgo) intermediate. We demonstrate that Mps1 stimulates the latter recruitment axis. Mps1 activity enhances H2A-T120ph and is critical for Sgo1 recruitment to centromeres, thereby promoting Aurora B centromere recruitment in early mitosis. Importantly, chromosome biorientation defects caused by Mps1 inhibition are improved by restoring Aurora B centromere recruitment. As Mps1 kinetochore localization reciprocally depends on Aurora B, we propose that this Aurora B-Mps1 recruitment circuitry cooperates with the Aurora B-Haspin feedback loop to ensure rapid centromere accumulation of Aurora B at the onset of mitosis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Aurora Quinasa B , Aurora Quinasas , Células HeLa , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitosis , Fosforilación
13.
Dev Cell ; 12(2): 167-8, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17276330

RESUMEN

Two cell cycle surveillance systems--the DNA damage checkpoint and the spindle checkpoint--guard against genomic instability. The protein kinase Chk1 is a well-established signal transducer in the DNA damage checkpoint. In this issue of Developmental Cell, Zachos et al.(2007) present evidence to indicate that Chk1 also plays a critical role in the spindle checkpoint, suggesting an interplay between the DNA damage and spindle checkpoints.


Asunto(s)
Ciclo Celular , Proteínas Quinasas/metabolismo , Animales , Aurora Quinasas , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Pollos , Segregación Cromosómica/efectos de los fármacos , Segregación Cromosómica/genética , Humanos , Cinetocoros/efectos de los fármacos , Cinetocoros/enzimología , Paclitaxel/farmacología , Fosforilación/efectos de los fármacos , Proteínas Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/metabolismo
14.
Dev Cell ; 12(2): 247-60, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17276342

RESUMEN

The spindle checkpoint delays anaphase onset in cells with mitotic spindle defects. Here, we show that Chk1, a component of the DNA damage and replication checkpoints, protects vertebrate cells against spontaneous chromosome missegregation and is required to sustain anaphase delay when spindle function is disrupted by taxol, but not when microtubules are completely depolymerized by nocodazole. Spindle checkpoint failure in Chk1-deficient cells correlates with decreased Aurora-B kinase activity and impaired phosphorylation and kinetochore localization of BubR1. Furthermore, Chk1 phosphorylates Aurora-B and enhances its catalytic activity in vitro. We propose that Chk1 augments spindle checkpoint signaling and is required for optimal regulation of Aurora-B and BubR1 when kinetochores produce a weakened signal. In addition, Chk1-deficient cells exhibit increased resistance to taxol. These results suggest a mechanism through which Chk1 could protect against tumorigenesis through its role in spindle checkpoint signaling.


Asunto(s)
Proteínas Quinasas/metabolismo , Huso Acromático/enzimología , Animales , Aurora Quinasa B , Aurora Quinasas , Biopolímeros/metabolismo , Catálisis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Pollos , Inestabilidad Cromosómica/efectos de los fármacos , Inestabilidad Cromosómica/genética , Segregación Cromosómica/efectos de los fármacos , Segregación Cromosómica/genética , Células HCT116 , Humanos , Cinetocoros/efectos de los fármacos , Cinetocoros/enzimología , Microtúbulos/efectos de los fármacos , Microtúbulos/enzimología , Neoplasias/patología , Paclitaxel/farmacología , Fosforilación/efectos de los fármacos , Prometafase/efectos de los fármacos , Proteínas Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Huso Acromático/efectos de los fármacos
15.
J Cell Sci ; 123(Pt 6): 825-35, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20200228

RESUMEN

Recent high-resolution studies of kinetochore structure have transformed the way researchers think about this crucial macro-molecular complex, which is essential for ensuring chromosome segregation occurs faithfully during cell division. Kinetochores mediate the interaction between chromosomes and the plus-ends of dynamic spindle microtubules and control the timing of anaphase onset by regulating the spindle assembly checkpoint (SAC). There is much debate in the SAC research community as to whether mitotic cells sense only microtubule attachment at the kinetochore, or both attachment and tension, before committing to anaphase. In this Commentary, we present a brief history of the tension-versus-attachment debate, summarize recent advances in our understanding of kinetochore structure and focus on the implications of a phenomenon known as intrakinetochore stretch for SAC regulation. We also hypothesize how intrakinetochore stretch might impact SAC function by regulating both microtubule attachment stability and the localization and activity of checkpoint components at the kinetochore.


Asunto(s)
Anafase , Cinetocoros/metabolismo , Transducción de Señal , Animales , Aurora Quinasas , Fenómenos Biomecánicos , Humanos , Cinetocoros/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/metabolismo
16.
J Cell Sci ; 123(Pt 12): 2025-34, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20483956

RESUMEN

The assembly, disassembly and dynamic movement of macromolecules are integral to cell physiology. The ubiquitin-selective chaperone Cdc48 (p97 in Metazoa), an AAA-ATPase, might facilitate such processes in the cell cycle. Cdc48 in budding yeast was initially isolated from a mitotic mutant. However, its function in mitosis remained elusive. Here we show that the temperature-sensitive cdc48-3 mutant and depletion of cofactor Shp1 (p47 in Metazoa) cause cell-cycle arrest at metaphase. The arrest is due to a defect in bipolar attachment of the kinetochore that activates the spindle checkpoint. Furthermore, Cdc48-Shp1 positively regulates Glc7/protein phosphatase 1 by facilitating nuclear localization of Glc7, whereas it opposes Ipl1/Aurora B kinase activity. Thus, we propose that Cdc48-Shp1 promotes nuclear accumulation of Glc7 to counteract Ipl1 activity. Our results identify Cdc48 and Shp1 as critical components that balance the kinase and phosphatase activities at the kinetochore in order to achieve stable bipolar attachment.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromosomas Fúngicos/enzimología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfatasas/genética , Aurora Quinasas , Ciclo Celular , Proteínas de Ciclo Celular/genética , Núcleo Celular/enzimología , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromosomas Fúngicos/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Cinetocoros/enzimología , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteína que Contiene Valosina
17.
Biochem Biophys Res Commun ; 421(4): 797-800, 2012 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-22554510

RESUMEN

Survivin is a member of inhibitors of apoptosis proteins (IAPs), and also belongs to be a member of the chromosomal passenger complex (CPC) which has multiple functions including inhibition of apoptosis and regulation of cell division and SAC activity. Plk1 (polo-like kinase 1) associates with the spindle poles and also distributes to the kinetochores and is shown to involve in spindle organization, APC/C activation and cytokinesis in many models. Our recent work has shown that Survivin is a critical regulator of chromosome segregation and spindle assembly checkpoint (SAC) in meiosis. In the present study, we found that Plk1 co-localized with Survivin at metaphase I (MI) and telophase I (TI) stage after GVBD. Plk1 dispersed into the oocyte cytoplasm or accumulated near the chromosomes after the depletion of Survivin by morpholino (MO) injection. Our results showed that the localization of Plk1 to kinetochores required the involvement of Survivin.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Cinetocoros/enzimología , Meiosis , Oocitos/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Animales , Línea Celular , Técnicas de Silenciamiento del Gen , Proteínas Inhibidoras de la Apoptosis/genética , Metafase , Ratones , Morfolinos/farmacología , Oocitos/enzimología , Proteínas Represoras/genética , Huso Acromático/enzimología , Survivin , Telofase , Quinasa Tipo Polo 1
18.
J Cell Biol ; 179(2): 255-67, 2007 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-17938250

RESUMEN

The physiological role of the mitotic checkpoint protein Bub1 is unknown. To study this role, we generated a series of mutant mice with a gradient of reduced Bub1 expression using wild-type, hypomorphic, and knockout alleles. Bub1 hypomorphic mice are viable, fertile, and overtly normal despite weakened mitotic checkpoint activity and high percentages of aneuploid cells. Bub1 haploinsufficient mice, which have a milder reduction in Bub1 protein than Bub1 hypomorphic mice, also exhibit reduced checkpoint activity and increased aneuploidy, but to a lesser extent. Although cells from Bub1 hypomorphic and haploinsufficient mice have similar rates of chromosome missegregation, cell death after an aberrant separation decreases dramatically with declining Bub1 levels. Importantly, Bub1 hypomorphic mice are highly susceptible to spontaneous tumors, whereas Bub1 haploinsufficient mice are not. These findings demonstrate that loss of Bub1 below a critical threshold drives spontaneous tumorigenesis and suggest that in addition to ensuring proper chromosome segregation, Bub1 is important for mediating cell death when chromosomes missegregate.


Asunto(s)
Segregación Cromosómica , Neoplasias/patología , Proteínas Serina-Treonina Quinasas/metabolismo , 9,10-Dimetil-1,2-benzantraceno , Aneuploidia , Animales , Muerte Celular , Supervivencia Celular , Regulación hacia Abajo , Fibroblastos/citología , Fibroblastos/enzimología , Dosificación de Gen , Haploidia , Cinetocoros/enzimología , Ratones , Ratones Mutantes , Mitosis , Neoplasias/inducido químicamente , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Bazo/citología , Bazo/enzimología
19.
Nat Cell Biol ; 6(3): 232-7, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14767480

RESUMEN

For accurate segregation of chromosomes during cell division, microtubule fibres must attach sister kinetochores to opposite poles of the mitotic spindle (bi-orientation). Aurora kinases are linked to oncogenesis and have been implicated in the regulation of chromosome-microtubule attachments. Although loss of Aurora kinase activity causes an accumulation of mal-orientated chromosomes in dividing cells, it is not known how the active kinase corrects improper chromosome attachments. The use of reversible small-molecule inhibitors allows activation of protein function in living vertebrate cells with temporal control. Here we show that by removal of small-molecule inhibitors, controlled activation of Aurora kinase during mitosis can correct chromosome attachment errors by selective disassembly of kinetochore-microtubule fibres, rather than by alternative mechanisms involving initial release of microtubules from either kinetochores or spindle poles. Observation of chromosomes and microtubule dynamics with real-time high-resolution microscopy showed that mal-orientated, but not bi-orientated, chromosomes move to the spindle pole as both kinetochore-microtubule fibres shorten, followed by alignment at the metaphase plate. Our results provide direct evidence for a mechanism required for the maintenance of genome integrity during cell division.


Asunto(s)
Segregación Cromosómica/fisiología , Cromosomas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/fisiología , Animales , Aurora Quinasas , División Celular/efectos de los fármacos , División Celular/fisiología , Línea Celular , Segregación Cromosómica/efectos de los fármacos , Cromosomas/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Proteínas Fluorescentes Verdes , Cinetocoros/enzimología , Proteínas Luminiscentes , Microscopía Confocal , Microtúbulos/enzimología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirimidinas/farmacología , Huso Acromático/efectos de los fármacos , Tionas/farmacología
20.
Bioessays ; 31(2): 228-36, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19204995

RESUMEN

Kinetochores can form and be maintained on DNA sequences that are normally non-centromeric. The existence of these so-called neo-centromeres has posed the problem as to the nature of the epigenetic mechanisms that maintain the centromere. Here we highlight results that indicate that the amount of CENP-A at human centromeres is tightly regulated. It is also known that kinetochore assembly requires sister chromatid cohesion at mitosis. We therefore suggest that separation or stretching between the sister chromatids at metaphase reciprocally determines the amount of centromere assembly in the subsequent interphase. This reciprocal relationship forms the basis of a negative feedback loop that could precisely control the amount of CENP-A and faithfully maintain the presence of a kinetochore over many cell divisions. We describe how the feedback loop would work, propose how it could be tested experimentally and suggest possible components of its mechanism.


Asunto(s)
Cinetocoros/metabolismo , Animales , Aurora Quinasas , Autoantígenos/metabolismo , Proteína A Centromérica , Proteínas Cromosómicas no Histona/metabolismo , Retroalimentación Fisiológica , Humanos , Cinetocoros/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda