Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 11.598
Filtrar
Más filtros

Publication year range
1.
Acc Chem Res ; 57(9): 1421-1433, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38666539

RESUMEN

Molecular imaging with antibodies radiolabeled with positron-emitting radionuclides combines the affinity and selectivity of antibodies with the sensitivity of Positron Emission Tomography (PET). PET imaging allows the visualization and quantification of the biodistribution of the injected radiolabeled antibody, which can be used to characterize specific biological interactions in individual patients. This characterization can provide information about the engagement of the antibody with a molecular target such as receptors present in elevated levels in tumors as well as providing insight into the distribution and clearance of the antibody. Potential applications of clinical PET with radiolabeled antibodies include identifying patients for targeted therapies, characterization of heterogeneous disease, and monitoring treatment response.Antibodies often take several days to clear from the blood pool and localize in tumors, so PET imaging with radiolabeled antibodies requires the use of a radionuclide with a similar radioactive half-life. Zirconium-89 is a positron-emitting radionuclide that has a radioactive half-life of 78 h and relatively low positron emission energy that is well suited to radiolabeling antibodies. It is essential that the zirconium-89 radionuclide be attached to the antibody through chemistry that provides an agent that is stable in vivo with respect to the dissociation of the radionuclide without compromising the biological activity of the antibody.This Account focuses on our research using a simple derivative of the bacterial siderophore desferrioxamine (DFO) with a squaramide ester functional group, DFO-squaramide (DFOSq), to link the chelator to antibodies. In our work, we produce conjugates with an average ∼4 chelators per antibody, and this does not compromise the binding of the antibody to the target. The resulting antibody conjugates of DFOSq are stable and can be easily radiolabeled with zirconium-89 in high radiochemical yields and purity. Automated methods for the radiolabeling of DFOSq-antibody conjugates have been developed to support multicenter clinical trials. Evaluation of several DFOSq conjugates with antibodies and low molecular weight targeting agents in tumor mouse models gave PET images with high tumor uptake and low background. The promising preclinical results supported the translation of this chemistry to human clinical trials using two different radiolabeled antibodies. The potential clinical impact of these ongoing clinical trials is discussed.The use of DFOSq to radiolabel relatively low molecular weight targeting molecules, peptides, and peptide mimetics is also presented. Low molecular weight molecules typically clear the blood pool and accumulate in target tissue more rapidly than antibodies, so they are usually radiolabeled with positron-emitting radionuclides with shorter radioactive half-lives such as fluorine-18 (t1/2 ∼ 110 min) or gallium-68 (t1/2 ∼ 68 min). Radiolabeling peptides and peptide mimetics with zirconium-89, with its longer radioactive half-life (t1/2 = 78 h), could facilitate the centralized manufacture and distribution of radiolabeled tracers. In addition, the ability to image patients at later time points with zirconium-89 based agents (e.g. 4-24 h after injection) may also allow the delineation of small or low-uptake disease sites as the delayed imaging results in increased clearance of the tracer from nontarget tissue and lower background signal.


Asunto(s)
Deferoxamina , Tomografía de Emisión de Positrones , Quinina/análogos & derivados , Radioisótopos , Circonio , Circonio/química , Radioisótopos/química , Deferoxamina/química , Tomografía de Emisión de Positrones/métodos , Animales , Humanos , Ratones , Radiofármacos/química , Neoplasias/diagnóstico por imagen
2.
Nano Lett ; 24(9): 2876-2884, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38385324

RESUMEN

Upconversion (UC)/downconversion (DC)-luminescent lanthanide-doped nanocrystals (LDNCs) with near-infrared (NIR, 650-1700 nm) excitation have been gaining increasing popularity in bioimaging. However, conventional NIR-excited LDNCs cannot be degraded and eliminated eventually in vivo owing to intrinsic "rigid" lattices, thus constraining clinical applications. A biodegradability-tunable heterogeneous core-shell-shell luminescent LDNC of Na3HfF7:Yb,Er@Na3ZrF7:Yb,Er@CaF2:Yb,Zr (abbreviated as HZC) was developed and modified with oxidized sodium alginate (OSA) for multimode bioimaging. The dynamic "soft" lattice-Na3Hf(Zr)F7 host and the varying Zr4+ doping content in the outmoster CaF2 shell endowed HZC with tunable degradability. Through elaborated core-shell-shell coating, Yb3+/Er3+-coupled UC red and green and DC second near-infrared (NIR-II) emissions were, respectively, enhanced by 31.23-, 150.60-, and 19.42-fold when compared with core nanocrystals. HZC generated computed tomography (CT) imaging contrast effects, thus enabling NIR-II/CT/UC trimodal imaging. OSA modification not only ensured the exemplary biocompatibility of HZC but also enabled tumor-specific diagnosis. The findings would benefit the clinical imaging translation of LDNCs.


Asunto(s)
Elementos de la Serie de los Lantanoides , Nanopartículas , Hafnio , Circonio , Nanopartículas/química , Tomografía Computarizada por Rayos X
3.
Nano Lett ; 24(37): 11738-11746, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39229926

RESUMEN

Fluoride-based lanthanide-doped nanoparticles (LDNPs) featuring second near-infrared (NIR-II, 1000-1700 nm) downconversion emission for bioimaging have attracted extensive attention. However, conventional LDNPs cannot be degraded and eliminated from organisms because of an inert lattice, which obstructs bioimaging applications. Herein, the core-shell LDNPs of Na3HfF7:Yb,Er@CaF2:Ce,Zr(Hf) [labeled as Zr(Hf)Ce-HC] with pH-selective and tunable degradability were synthesized for dual-modal bioimaging. Notably, the "softening" lattice of the Na3HfF7 matrix and different Zr4+(Hf4+) doping amounts in the shell enable Zr(Hf)Ce-HC with acidity-dependent and tunable degradability. After coating of an optimized Ce3+-doped CaF2:Zr shell, the near-infrared-IIb (NIR-IIb, 1500-1700 nm) luminescence intensity of ZrCe-HC is enhanced by 5.2 times compared with that of Na3HfF7:Yb,Er. The Hf element with high X-ray attenuation allows ZrCe-HC as the contrast agent for computed tomography (CT) bioimaging. The modification of oxidized sodium alginate endows ZrCe-HC with satisfying biocompatibility for NIR-IIb/CT dual-modal bioimaging. These findings would benefit the bioimaging applications of degradable fluoride-based LDNPs.


Asunto(s)
Fluoruros , Hafnio , Circonio , Circonio/química , Humanos , Hafnio/química , Fluoruros/química , Nanopartículas/química , Tomografía Computarizada por Rayos X/métodos , Animales , Medios de Contraste/química
4.
Lancet Oncol ; 25(8): 1015-1024, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38950555

RESUMEN

BACKGROUND: Delta-like ligand 3 (DLL3) is aberrantly expressed on the surface of small-cell lung cancer (SCLC) and neuroendocrine prostate cancer cells. We assessed the safety and feasibility of the DLL3-targeted imaging tracer [89Zr]Zr-DFO-SC16.56 (composed of the anti-DLL3 antibody SC16.56 conjugated to p-SCN-Bn-deferoxamine [DFO] serving as a chelator for zirconium-89) in patients with neuroendocrine-derived cancer. METHODS: We conducted an open-label, first-in-human study of immunoPET-CT imaging with [89Zr]Zr-DFO-SC16.56. The study was done at Memorial Sloan Kettering Cancer Center, New York, NY, USA. Patients aged 18 years or older with a histologically verified neuroendocrine-derived malignancy and an Eastern Cooperative Oncology Group performance status of 0-2 were eligible. An initial cohort of patients with SCLC (cohort 1) received 37-74 MBq [89Zr]Zr-DFO-SC16.56 as a single intravenous infusion at a total mass dose of 2·5 mg and had serial PET-CT scans at 1 h, day 1, day 3, and day 7 post-injection. The primary outcomes of phase 1 of the study (cohort 1) were to estimate terminal clearance half-time, determine whole organ time-integrated activity coefficients, and assess the safety of [89Zr]Zr-DFO-SC16.56. An expansion cohort of additional patients (with SCLC, neuroendocrine prostate cancer, atypical carcinoid tumours, and non-small-cell lung cancer; cohort 2) received a single infusion of [89Zr]Zr-DFO-SC16.56 at the same activity and mass dose as in the initial cohort followed by a single PET-CT scan 3-6 days later. Retrospectively collected tumour biopsy samples were assessed for DLL3 by immunohistochemistry. The primary outcome of phase 2 of the study in cohort 2 was to determine the potential association between tumour uptake of the tracer and intratumoural DLL3 protein expression, as determined by immunohistochemistry. This study is ongoing and is registered with ClinicalTrials.gov, NCT04199741. FINDINGS: Between Feb 11, 2020, and Jan 30, 2023, 12 (67%) men and six (33%) women were enrolled, with a median age of 64 years (range 23-81). Cohort 1 included three patients and cohort 2 included 15 additional patients. Imaging of the three patients with SCLC in cohort 1 showed strong tumour-specific uptake of [89Zr]Zr-DFO-SC16.56 at day 3 and day 7 post-injection. Serum clearance was biphasic with an estimated terminal clearance half-time of 119 h (SD 31). The highest mean absorbed dose was observed in the liver (1·83 mGy/MBq [SD 0·36]), and the mean effective dose was 0·49 mSv/MBq (SD 0·10). In cohort 2, a single immunoPET-CT scan on day 3-6 post-administration could delineate DLL3-avid tumours in 12 (80%) of 15 patients. Tumoural uptake varied between and within patients, and across anatomical sites, with a wide range in maximum standardised uptake value (from 3·3 to 66·7). Tumour uptake by [89Zr]Zr-DFO-SC16.56 was congruent with DLL3 immunohistochemistry in 15 (94%) of 16 patients with evaluable tissue. Two patients with non-avid DLL3 SCLC and neuroendocrine prostate cancer by PET scan showed the lowest DLL3 expression by tumour immunohistochemistry. One (6%) of 18 patients had a grade 1 allergic reaction; no grade 2 or worse adverse events were noted in either cohort. INTERPRETATION: DLL3 PET-CT imaging of patients with neuroendocrine cancers is safe and feasible. These results show the potential utility of [89Zr]Zr-DFO-SC16.56 for non-invasive in-vivo detection of DLL3-expressing malignancies. FUNDING: National Institutes of Health, Prostate Cancer Foundation, and Scannell Foundation.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Neoplasias Pulmonares , Proteínas de la Membrana , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Radioisótopos , Circonio , Humanos , Masculino , Persona de Mediana Edad , Anciano , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/inmunología , Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/inmunología , Tumores Neuroendocrinos/tratamiento farmacológico , Femenino , Deferoxamina/química , Inmunoconjugados/farmacocinética , Clasificación del Tumor , Radiofármacos , Adulto , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/administración & dosificación , Anciano de 80 o más Años , Benzodiazepinonas , Anticuerpos Monoclonales Humanizados
5.
J Am Chem Soc ; 146(8): 5108-5117, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38367279

RESUMEN

Enzymes are natural catalysts for a wide range of metabolic chemical transformations, including selective hydrolysis, oxidation, and phosphorylation. Herein, we demonstrate a strategy for the encapsulation of enzymes within a highly stable zirconium-based metal-organic framework. UiO-66-F4 was synthesized under mild conditions using an enzyme-compatible amino acid modulator, serine, at a modest temperature in an aqueous solution. Enzyme@UiO-66-F4 biocomposites were then formed by an in situ encapsulation route in which UiO-66-F4 grows around the enzymes and, consequently, provides protection for the enzymes. A range of enzymes, namely, lysozyme, horseradish peroxidase, and amano lipase, were successfully encapsulated within UiO-66-F4. We further demonstrate that the resulting biocomposites are stable under conditions that could denature many enzymes. Horseradish peroxidase encapsulated within UiO-66-F4 maintained its biological activity even after being treated with the proteolytic enzyme pepsin and heated at 60 °C. This strategy expands the toolbox of potential metal-organic frameworks with different topologies or functionalities that can be used as enzyme encapsulation hosts. We also demonstrate that this versatile process of in situ encapsulation of enzymes under mild conditions (i.e., submerged in water and at a modest temperature) can be generalized to encapsulate enzymes of various sizes within UiO-66-F4 while protecting them from harsh conditions (i.e., high temperatures, contact with denaturants or organic solvents).


Asunto(s)
Estructuras Metalorgánicas , Compuestos Organometálicos , Ácidos Ftálicos , Estructuras Metalorgánicas/química , Circonio/química , Biomimética , Compuestos Organometálicos/química , Peroxidasa de Rábano Silvestre
6.
J Am Chem Soc ; 146(2): 1644-1656, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38174960

RESUMEN

Photodynamic therapy (PDT), an emergent noninvasive cancer treatment, is largely dependent on the presence of efficient photosensitizers (PSs) and a sufficient oxygen supply. However, the therapeutic efficacy of PSs is greatly compromised by poor solubility, aggregation tendency, and oxygen depletion within solid tumors during PDT in hypoxic microenvironments. Despite the potential of PS-based metal-organic frameworks (MOFs), addressing hypoxia remains challenging. Boron dipyrromethene (BODIPY) chromophores, with excellent photostability, have exhibited great potential in PDT and bioimaging. However, their practical application suffers from limited chemical stability under harsh MOF synthesis conditions. Herein, we report the synthesis of the first example of a Zr-based MOF, namely, 69-L2, exclusively constructed from the BODIPY-derived ligands via a single-crystal to single-crystal post-synthetic exchange, where a direct solvothermal method is not applicable. To increase the PDT performance in hypoxia, we modify 69-L2 with fluorinated phosphate-functionalized methoxy poly(ethylene glycol). The resulting 69-L2@F is an oxygen carrier, enabling tumor oxygenation and simultaneously acting as a PS for reactive oxygen species (ROS) generation under LED irradiation. We demonstrate that 69-L2@F has an enhanced PDT effect in triple-negative breast cancer MDA-MB-231 cells under both normoxia and hypoxia. Following positive results, we evaluated the in vivo activity of 69-L2@F with a hydrogel, enabling local therapy in a triple-negative breast cancer mice model and achieving exceptional antitumor efficacy in only 2 days. We envision BODIPY-based Zr-MOFs to provide a solution for hypoxia relief and maximize efficacy during in vivo PDT, offering new insights into the design of promising MOF-based PSs for hypoxic tumors.


Asunto(s)
Compuestos de Boro , Estructuras Metalorgánicas , Neoplasias , Fotoquimioterapia , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Estructuras Metalorgánicas/química , Fotoquimioterapia/métodos , Circonio/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Oxígeno , Neoplasias/terapia , Hipoxia , Línea Celular Tumoral , Microambiente Tumoral
7.
Breast Cancer Res ; 26(1): 104, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918836

RESUMEN

BACKGROUND: Immune-positron emission tomography (PET) imaging with tracers that target CD8 and granzyme B has shown promise in predicting the therapeutic response following immune checkpoint blockade (ICB) in immunologically "hot" tumors. However, immune dynamics in the low T-cell infiltrating "cold" tumor immune microenvironment during ICB remain poorly understood. This study uses molecular imaging to evaluate changes in CD4 + T cells and CD8 + T cells during ICB in breast cancer models and examines biomarkers of response. METHODS: [89Zr]Zr-DFO-CD4 and [89Zr]Zr-DFO-CD8 radiotracers were used to quantify changes in intratumoral and splenic CD4 T cells and CD8 T cells in response to ICB treatment in 4T1 and MMTV-HER2 mouse models, which represent immunologically "cold" tumors. A correlation between PET quantification metrics and long-term anti-tumor response was observed. Further biological validation was obtained by autoradiography and immunofluorescence. RESULTS: Following ICB treatment, an increase in the CD8-specific PET signal was observed within 6 days, and an increase in the CD4-specific PET signal was observed within 2 days in tumors that eventually responded to immunotherapy, while no significant differences in CD4 or CD8 were found at the baseline of treatment that differentiated responders from nonresponders. Furthermore, mice whose tumors responded to ICB had a lower CD8 PET signal in the spleen and a higher CD4 PET signal in the spleen compared to non-responders. Intratumoral spatial heterogeneity of the CD8 and CD4-specific PET signals was lower in responders compared to non-responders. Finally, PET imaging, autoradiography, and immunofluorescence signals were correlated when comparing in vivo imaging to ex vivo validations. CONCLUSIONS: CD4- and CD8-specific immuno-PET imaging can be used to characterize the in vivo distribution of CD4 + and CD8 + T cells in response to immune checkpoint blockade. Imaging metrics that describe the overall levels and distribution of CD8 + T cells and CD4 + T cells can provide insight into immunological alterations, predict biomarkers of response to immunotherapy, and guide clinical decision-making in those tumors where the kinetics of the response differ.


Asunto(s)
Neoplasias de la Mama , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Modelos Animales de Enfermedad , Inhibidores de Puntos de Control Inmunológico , Tomografía de Emisión de Positrones , Microambiente Tumoral , Animales , Microambiente Tumoral/inmunología , Femenino , Ratones , Linfocitos T CD8-positivos/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Tomografía de Emisión de Positrones/métodos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/terapia , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Línea Celular Tumoral , Circonio , Radiofármacos , Radioisótopos
8.
Anal Chem ; 96(21): 8254-8262, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38728223

RESUMEN

Detection of endogenous peptides, especially those with modifications (such as phosphorylation) in biofluids, can serve as an indicator of intracellular pathophysiology. Although great progress has been made in phosphoproteomics in recent years, endogenous phosphopeptidomics has largely lagged behind. One main hurdle in endogenous phosphopeptidomics analysis is the coexistence of proteins and highly abundant nonmodified peptides in complex matrices. In this study, we developed an approach using zirconium(IV)-grafted mesoporous beads to enrich phosphopeptides, followed by analysis with a high resolution nanoRPLC-MS/MS system. The bifunctional material was first tested with digests of standard phosphoproteins and HeLa cell lysates, with excellent enrichment performance achieved. Given the size exclusion nature, the beads were directly applied for endogenous phosphopeptidomic analysis of serum samples from pancreatic ductal adenocarcinoma (PDAC) patients and controls. In total, 329 endogenous phosphopeptides (containing 113 high confidence sites) were identified across samples, by far the largest endogenous phosphopeptide data set cataloged to date. In addition, the method was readily applied for phosphoproteomics of the same set of samples, with 172 phosphopeptides identified and significant changes in dozens of phosphopeptides observed. Given the simplicity and robustness of the proposed method, we envision that it can be readily used for comprehensive phosphorylation studies of serum and other biofluid samples.


Asunto(s)
Fosfopéptidos , Dióxido de Silicio , Circonio , Circonio/química , Humanos , Dióxido de Silicio/química , Fosfopéptidos/sangre , Fosfopéptidos/análisis , Fosfopéptidos/química , Porosidad , Células HeLa , Proteómica/métodos , Espectrometría de Masas en Tándem
9.
Anal Chem ; 96(24): 10102-10110, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38831537

RESUMEN

Owing to the limitations of dual-signal luminescent materials and coreactants, constructing a ratiometric electrochemiluminescence (ECL) biosensor based on a single luminophore is a huge challenge. This work developed an excellent zirconium metal-organic framework (MOF) Zr-TBAPY as a single ECL luminophore, which simultaneously exhibited cathodic and anodic ECL without any additional coreactants. First, Zr-TBAPY was successfully prepared by a solvothermal method with 1,3,6,8-tetra(4-carboxyphenyl)pyrene (TBAPY) as the organic ligand and Zr4+ cluster as the metal node. The exploration of ECL mechanisms confirmed that the cathodic ECL of Zr-TBAPY originated from the pathway of reactive oxygen species (ROS) as the cathodic coreactant, which is generated by dissolved oxygen (O2), while the anodic ECL stemmed from the pathway of generated Zr-TBAPY radical itself as the anodic coreactant. Besides, N,N-diethylethylenediamine (DEDA) was developed as a regulator to ECL signals, which quenched the cathodic ECL and enhanced the anodic ECL, and the specific mechanisms of its dual action were also investigated. DEDA can act as the anodic coreactant while consuming the cathodic coreactant ROS. Therefore, the coreactant-free ratiometric ECL biosensor was skillfully constructed by combining the regulatory role of DEDA with the signal amplification reaction of catalytic hairpin assembly (CHA). The ECL biosensor realized the ultrasensitive ratio detection of HIV DNA. The linear range was 1 fM to 100 pM, and the limit of detection (LOD) was as low as 550 aM. The outstanding characteristic of Zr-TBAPY provided new thoughts for the development of ECL materials and developed a new way of fabricating the coreactant-free and single-luminophore ratiometric ECL platform.


Asunto(s)
Técnicas Biosensibles , ADN Viral , Técnicas Electroquímicas , Mediciones Luminiscentes , Estructuras Metalorgánicas , Circonio , Circonio/química , Estructuras Metalorgánicas/química , Técnicas Electroquímicas/métodos , Mediciones Luminiscentes/métodos , ADN Viral/análisis , Técnicas Biosensibles/métodos , Límite de Detección , Humanos , VIH/aislamiento & purificación
10.
Anal Chem ; 96(19): 7497-7505, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38687987

RESUMEN

Redox potential plays a key role in regulating intracellular signaling pathways, with its quantitative analysis in individual cells benefiting our understanding of the underlying mechanism in the pathophysiological events. Here, a metal organic framework (MOF)-functionalized SERS nanopotentiometer has been developed for the dynamic monitoring of intracellular redox potential. The approach is based on the encapsulation of zirconium-based MOF (Uio-66-F4) on a surface of gold-silver nanorods (Au-Ag NRs) that is modified with the newly synthesized redox-sensitive probe ortho-mercaptohydroquinone (HQ). Thanks to size exclusion of MOF as the chemical protector, the nanopotentiometer can be adapted to long-term use and possess high anti-interference ability toward nonredox species. Combining the superior fingerprint identification of SERS with the electrochemical activity of the quinone/hydroquinone, the nanopotentiometer shows a reversible redox responsivity and can quantify redox potential with a relatively wide range of -250-100 mV. Furthermore, the nanopotentiometer allows for dynamic visualization of intracellular redox potential changes induced by drugs' stimulation in a high-resolution manner. The developed approach would be promising for offering new insights into the correlation between redox potential and tumor proliferation-involved processes such as oxidative stress and hypoxia.


Asunto(s)
Oro , Estructuras Metalorgánicas , Oxidación-Reducción , Plata , Circonio , Estructuras Metalorgánicas/química , Humanos , Oro/química , Plata/química , Circonio/química , Espectrometría Raman , Nanotubos/química , Hidroquinonas/química , Nanopartículas del Metal/química
11.
Anal Chem ; 96(1): 538-546, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38102084

RESUMEN

This study developed a new zirconium metal-organic framework (MOF) luminophore named Zr-DPA@TCPP with dual-emission electrochemiluminescence (ECL) characteristics at a resolved potential. First, Zr-DPA@TCPP with a core-shell structure was effectively synthesized through the self-assembly of 9,10-di(p-carboxyphenyl)anthracene (DPA) and 5,10,15,20-tetra(4-carboxyphenyl)porphyrin (TCPP) as the respective organic ligands and the Zr cluster as the metal node. The reasonable integration of the two organic ligands DPA and TCPP with ECL properties into a single monomer, Zr-DPA@TCPP, successfully exhibited synchronous anodic and cathodic ECL signals. Besides, due to the impressively unique property of ferrocene (Fc), which can quench the anodic ECL but cannot affect the cathodic ECL signal, the ratiometric ECL biosensor was cleverly designed by using the cathode signal as an internal reference. Thus, combined with DNA recycle amplification reactions, the ECL biosensor realized sensitive ratiometric detection of HPV-16 DNA with the linear range of 1 fM-100 pM and the limit of detection (LOD) of 596 aM. The distinctive dual-emission properties of Zr-DPA@TCPP provided a new idea for the development of ECL luminophores and opened up an innovative avenue of fabricating the ratiometric ECL platform.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Circonio/química , Estructuras Metalorgánicas/química , Papillomavirus Humano 16 , Mediciones Luminiscentes , ADN/química , Límite de Detección , Técnicas Electroquímicas
12.
Anal Chem ; 96(31): 12739-12747, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39056189

RESUMEN

The functionalization of metal-organic frameworks (MOFs) with organic small molecules by in situ postsynthetic modification has garnered considerable attention. However, the precise engineering of recognition sites using this method remains rarely explored in optically controlled bioelectronics. Herein, employing the Schiff base reaction to embed the small molecule (THBA) into a Zr-MOF, we fabricated a hydroxyl-rich MOF on the surface of titanium dioxide nanorod arrays (U6H@TiO2 NRs) to develop light-sensitive gate electrodes with tailored recognition capabilities. The U6H@TiO2 NR gate electrodes were integrated into organic photoelectrochemical transistor (OPECT) sensing systems to tailor a sensitive device for bilirubin (I-Bil) detection. In the presence of I-Bil, coordination effects, hydrogen bonding, and π-π interactions facilitated strong binding between U6H@TiO2 NRs and the target I-Bil. The electron-donating property of I-Bil influenced the gate voltage, enabling precise control of the channel status and modulation of the channel current. The OPECT device exhibited exceptional analytical performance toward I-Bil with wide linearity ranging from 1 × 10-16 to 1 × 10-9 M and a low limit detection of 0.022 fM. Leveraging the versatility of small molecules for boosting the functionalization of materials, this work demonstrates the great potential of the small molecule family for OPECT bioanalysis and holds promise for the advancement of OPECT sensors.


Asunto(s)
Bilirrubina , Técnicas Electroquímicas , Estructuras Metalorgánicas , Titanio , Estructuras Metalorgánicas/química , Bilirrubina/análisis , Técnicas Electroquímicas/instrumentación , Titanio/química , Límite de Detección , Transistores Electrónicos , Humanos , Electrodos , Procesos Fotoquímicos , Nanotubos/química , Circonio/química
13.
Anal Chem ; 96(25): 10408-10415, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38863215

RESUMEN

The abnormal expression of protein tyrosine phosphatase 1B (PTP1B) is highly related to several serious human diseases. Therefore, an accurate PTP1B activity assay is beneficial to the diagnosis and treatment of these diseases. In this study, a dual-mode biosensing platform that enabled the sensitive and accurate assay of PTP1B activity was constructed based on the high-frequency (100 MHz) quartz crystal microbalance (QCM) and dual-signaling electrochemical (EC) ratiometric strategy. Covalent-organic framework@gold nanoparticles@ferrocene@single-strand DNA (COF@Au@Fc-S0) was introduced onto the QCM Au chip via the chelation between Zr4+ and phosphate groups (phosphate group of the phosphopeptide (P-peptide) on the QCM Au chip and the phosphate group of thiol-labeled single-stranded DNA (S0) on COF@Au@Fc-S0) and used as a signal reporter. When PTP1B was present, the dephosphorylation of the P-peptide led to the release of COF@Au@Fc-S0 from the QCM Au chip, resulting in an increase in the frequency of the QCM. Meanwhile, the released COF@Au@Fc-S0 hybridized with thiol/methylene blue (MB)-labeled hairpin DNA (S1-MB) on the Au NPs-modified indium-tin oxide (ITO) electrode. This caused MB to be far away from the electrode surface and Fc to be close to the electrode, leading to a decrease in the oxidation peak current of MB and an increase in the oxidation peak current of Fc. Thus, PTP1B-induced dephosphorylation of the P-peptide was monitored in real time by QCM, and PTP1B activity was detected sensitively and reliably using this innovative QCM-EC dual-mode sensing platform with an ultralow detection limit. This platform is anticipated to serve as a robust tool for the analysis of protein phosphatase activity and the discovery of drugs targeting protein phosphatase.


Asunto(s)
Técnicas Electroquímicas , Compuestos Ferrosos , Oro , Estructuras Metalorgánicas , Metalocenos , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Tecnicas de Microbalanza del Cristal de Cuarzo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/análisis , Oro/química , Humanos , Estructuras Metalorgánicas/química , Compuestos Ferrosos/química , Metalocenos/química , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Nanopartículas del Metal/química , Técnicas Biosensibles/métodos , Circonio/química , Pruebas de Enzimas/métodos
14.
Anal Chem ; 96(37): 14926-14934, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39219294

RESUMEN

In conventional metal-organic framework (MOF) luminophore-involved electrochemiluminescence (ECL) systems, the aggregation-caused quenching commonly exists for the organic luminescent ligands, limiting the ECL efficiency and detection sensitivity. Herein, by employing the aggregation-induced emission luminogen (AIEgen) 1,1,2,2-tetra(4-carboxylbiphenyl)ethylene (H4TCBPE) as a ligand, one high-efficiency ECL emitter (Zr-MOF) was synthesized through a simple hydrothermal reaction. Compared with H4TCBPE monomers and their aggregates, the resultant Zr-MOF possesses the strongest ECL emission, which is mainly attributed to the framework-induced ECL enhancement. Specifically, the heterostructure was prepared by the deposition of silver nanoparticles on TiO2 microflowers and utilized as an efficient coreaction accelerator. Remarkably, the formative heterojunction can increase the interfacial charge transfer efficiency and promote the carrier separation, facilitating the oxidation of coreactant tripropylamine. In this way, a novel aptamer-mediated ECL sensing platform is constructed, achieving the sensitive analysis of adenosine triphosphate with a low detection limit of 0.17 nM. As a proof-of-concept study, this work may enlighten the rational design of new-type MOF-based ECL materials and expand the application scope of the ECL technology.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Mediciones Luminiscentes , Nanopartículas del Metal , Estructuras Metalorgánicas , Plata , Titanio , Titanio/química , Plata/química , Estructuras Metalorgánicas/química , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Límite de Detección , Adenosina Trifosfato/análisis , Aptámeros de Nucleótidos/química , Circonio/química
15.
Bioconjug Chem ; 35(5): 633-637, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38656148

RESUMEN

Zirconium-89 is the most widely used radioisotope for immunoPET because its physical half-life (78.2 h) suits the one of antibodies. Desferrioxamine B (DFO) is the standard chelator for the complexation of zirconium(IV), and its bifunctional version, containing a phenylisothiocyanate function, is the most commonly used for the conjugation of DFO to proteins. However, preliminary results have shown that the thiourea link obtained from the conjugation of isothiocyanate and lysines is sensitive to the ionizing radiation generated by the radioisotope, leading to the rupture of the link and the release of the chelator/radiometal complex. This radiolysis phenomenon could produce nonspecific signal and prevent the detection of bone metastasis, as free zirconium accumulates into the bones. The aim of this work was to study the stability of a selection of conjugation linkers in 89Zr-labeled immunoconjugates. We have synthesized several DFO-based bifunctional chelators appended with an isothiocyanate moiety, a bicyclononyne, or a squaramate ester. Two antibodies (trastuzumab and rituximab) were conjugated and radiolabeled with zirconium-89. The effect of increasing activities of zirconium-89 on the integrity of the bioconjugate bearing thiourea links was evaluated as well as the impact of the presence of a radioprotectant. The stability of the radiolabeled antibodies was studied over 7 days in PBS and human plasma. Radioconjugates' integrity was evaluated using iTLC and size-exclusion chromatography. This study shows that the nature of the linker between the chelator and biomolecule can have a strong impact on the stability of the 89Zr-labeled conjugates, as well as on the aggregation of the conjugates.


Asunto(s)
Inmunoconjugados , Isotiocianatos , Radioisótopos , Circonio , Circonio/química , Inmunoconjugados/química , Isotiocianatos/química , Radioisótopos/química , Quelantes/química , Humanos , Deferoxamina/química
16.
Eur J Nucl Med Mol Imaging ; 51(11): 3202-3214, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38730087

RESUMEN

PURPOSE: ATG-101, a bispecific antibody that simultaneously targets the immune checkpoint PD-L1 and the costimulatory receptor 4-1BB, activates exhausted T cells upon PD-L1 crosslinking. Previous studies demonstrated promising anti-tumour efficacy of ATG-101 in preclinical models. Here, we labelled ATG-101 with 89Zr to confirm its tumour targeting effect and tissue biodistribution in a preclinical model. We also evaluated the use of immuno-PET to study tumour uptake of ATG-101 in vivo. METHODS: ATG-101, anti-PD-L1, and an isotype control were conjugated with p-SCN-Deferoxamine (Df). The Df-conjugated antibodies were radiolabelled with 89Zr, and their radiochemical purity, immunoreactivity, and serum stability were assessed. We conducted PET/MRI and biodistribution studies on [89Zr]Zr-Df-ATG-101 in BALB/c nude mice bearing PD-L1-expressing MDA-MB-231 breast cancer xenografts for up to 10 days after intravenous administration of [89Zr]Zr-labelled antibodies. The specificity of [89Zr]Zr-Df-ATG-101 was evaluated through a competition study with unlabelled ATG-101 and anti-PD-L1 antibodies. RESULTS: The Df-conjugation and [89Zr]Zr -radiolabelling did not affect the target binding of ATG-101. Biodistribution and imaging studies demonstrated biological similarity of [89Zr]Zr-Df-ATG-101 and [89Zr]Zr-Df-anti-PD-L1. Tumour uptake of [89Zr]Zr-Df-ATG-101 was clearly visualised using small-animal PET imaging up to 7 days post-injection. Competition studies confirmed the specificity of PD-L1 targeting in vivo. CONCLUSION: [89Zr]Zr-Df-ATG-101 in vivo distribution is dependent on PD-L1 expression in the MDA-MB-231 xenograft model. Immuno-PET with [89Zr]Zr-Df-ATG-101 provides real-time information about ATG-101 distribution and tumour uptake in vivo. Our data support the use of [89Zr]Zr-Df-ATG-101 to assess tumour and tissue uptake of ATG-101.


Asunto(s)
Anticuerpos Biespecíficos , Antígeno B7-H1 , Circonio , Animales , Circonio/química , Ratones , Antígeno B7-H1/metabolismo , Anticuerpos Biespecíficos/farmacocinética , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/inmunología , Distribución Tisular , Humanos , Línea Celular Tumoral , Radioisótopos/química , Deferoxamina/química , Deferoxamina/análogos & derivados , Tomografía de Emisión de Positrones , Femenino , Marcaje Isotópico , Ratones Endogámicos BALB C , Isotiocianatos
17.
Eur J Nucl Med Mol Imaging ; 51(11): 3223-3234, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38787397

RESUMEN

PURPOSE: Invasive fungal diseases, such as pulmonary aspergillosis, are common life-threatening infections in immunocompromised patients and effective treatment is often hampered by delays in timely and specific diagnosis. Fungal-specific molecular imaging ligands can provide non-invasive readouts of deep-seated fungal pathologies. In this study, the utility of antibodies and antibody fragments (Fab) targeting ß-glucans in the fungal cell wall to detect Aspergillus infections was evaluated both in vitro and in preclinical mouse models. METHODS: The binding characteristics of two commercially available ß-glucan antibody clones and their respective antigen-binding Fabs were tested using biolayer interferometry (BLI) assays and immunofluorescence staining. In vivo binding of the Zirconium-89 labeled antibodies/Fabs to fungal pathogens was then evaluated using PET/CT imaging in mouse models of fungal infection, bacterial infection and sterile inflammation. RESULTS: One of the evaluated antibodies (HA-ßG-Ab) and its Fab (HA-ßG-Fab) bound to ß-glucans with high affinity (KD = 0.056 & 21.5 nM respectively). Binding to the fungal cell wall was validated by immunofluorescence staining and in vitro binding assays. ImmunoPET imaging with intact antibodies however showed slow clearance and high background signal as well as nonspecific accumulation in sites of infection/inflammation. Conversely, specific binding of [89Zr]Zr-DFO-HA-ßG-Fab to sites of fungal infection was observed when compared to the isotype control Fab and was significantly higher in fungal infection than in bacterial infection or sterile inflammation. CONCLUSIONS: [89Zr]Zr-DFO-HA-ßG-Fab can be used to detect fungal infections in vivo. Targeting distinct components of the fungal cell wall is a viable approach to developing fungal-specific PET tracers.


Asunto(s)
Aspergilosis , Radioisótopos , Circonio , beta-Glucanos , Circonio/química , Animales , Ratones , Aspergilosis/diagnóstico por imagen , Aspergilosis/inmunología , beta-Glucanos/química , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/inmunología , Aspergillus , Fragmentos de Inmunoglobulinas/química , Fragmentos de Inmunoglobulinas/inmunología
18.
Eur J Nucl Med Mol Imaging ; 51(9): 2547-2557, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38625402

RESUMEN

PURPOSE: Cadherin-17 (CDH17) is a calcium-dependent cell adhesion protein that is overexpressed in several adenocarcinomas, including gastric, colorectal, and pancreatic adenocarcinoma. High levels of CDH17 have been linked to metastatic disease and poor prognoses in patients with these malignancies, fueling interest in the protein as a target for diagnostics and therapeutics. Herein, we report the synthesis, in vitro validation, and in vivo evaluation of a CDH17-targeted 89Zr-labeled immunoPET probe. METHODS: The CDH17-targeting mAb D2101 was modified with an isothiocyanate-bearing derivative of desferrioxamine (DFO) to produce a chelator-bearing immunoconjugate - DFO-D2101 - and flow cytometry and surface plasmon resonance (SPR) were used to interrogate its antigen-binding properties. The immunoconjugate was then radiolabeled with zirconium-89 (t1/2 ~ 3.3 days), and the serum stability and immunoreactive fraction of [89Zr]Zr-DFO-D2101 were determined. Finally, [89Zr]Zr-DFO-D2101's performance was evaluated in a trio of murine models of pancreatic ductal adenocarcinoma (PDAC): subcutaneous, orthotopic, and patient-derived xenografts (PDX). PET images were acquired over the course of 5 days, and terminal biodistribution data were collected after the final imaging time point. RESULTS: DFO-D2101 was produced with a degree of labeling of ~ 1.1 DFO/mAb. Flow cytometry with CDH17-expressing AsPC-1 cells demonstrated that the immunoconjugate binds to its target in a manner similar to its parent mAb, while SPR with recombinant CDH17 revealed that D2101 and DFO-D2101 exhibit nearly identical KD values: 8.2 × 10-9 and 6.7 × 10-9 M, respectively. [89Zr]Zr-DFO-D2101 was produced with a specific activity of 185 MBq/mg (5.0 mCi/mg), remained >80% stable in human serum over the course of 5 days, and boasted an immunoreactive fraction of >0.85. In all three murine models of PDAC, the radioimmunoconjugate yielded high contrast images, with high activity concentrations in tumor tissue and low uptake in non-target organs. Tumoral activity concentrations reached as high as >60 %ID/g in two of the cohorts bearing PDXs. CONCLUSION: Taken together, these data underscore that [89Zr]Zr-DFO-D2101 is a highly promising probe for the non-invasive visualization of CDH17 expression in PDAC. We contend that this radioimmunoconjugate could have a significant impact on the clinical management of patients with both PDAC and gastrointestinal adenocarcinoma, most likely as a theranostic imaging tool in support of CDH17-targeted therapies.


Asunto(s)
Cadherinas , Radioisótopos , Circonio , Animales , Humanos , Ratones , Cadherinas/metabolismo , Línea Celular Tumoral , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/metabolismo , Deferoxamina/química , Adenocarcinoma/diagnóstico por imagen , Inmunoconjugados/farmacocinética , Anticuerpos Monoclonales/farmacocinética , Distribución Tisular , Tomografía de Emisión de Positrones
19.
Mol Pharm ; 21(3): 1353-1363, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38282332

RESUMEN

Very late antigen-4 (VLA4; CD49d) is a promising immune therapy target in treatment-resistant leukemia and multiple myeloma, and there is growing interest in repurposing the humanized monoclonal antibody (Ab), natalizumab, for this purpose. Positron emission tomography with radiolabeled Abs (immuno-PET) could facilitate this effort by providing information on natalizumab's in vivo pharmacokinetic and target delivery properties. In this study, we labeled natalizumab with 89Zr specifically on sulfhydryl moieties via maleimide-deferoxamine conjugation. High VLA4-expressing MOLT4 human T cell acute lymphoblastic leukemia cells showed specific 89Zr-natalizumab binding that was markedly blocked by excess Ab. In nude mice bearing MOLT4 tumors, 89Zr-natalizumab PET showed high-contrast tumor uptake at 7 days postinjection. Biodistribution studies confirmed that uptake was the highest in MOLT4 tumors (2.22 ± 0.41%ID/g) and the liver (2.33 ± 0.76%ID/g), followed by the spleen (1.51 ± 0.42%ID/g), while blood activity was lower at 1.12 ± 0.21%ID/g. VLA4-specific targeting in vivo was confirmed by a 58.1% suppression of tumor uptake (0.93 ± 0.15%ID/g) when excess Ab was injected 1 h earlier. In cultured MOLT4 cells, short-term 3 day exposure to the proteasome inhibitor bortezomib (BTZ) did not affect the α4 integrin level, but BTZ-resistant cells that survived the treatment showed increased α4 integrin expression. When the effects of BTZ treatment were tested in mice, there was no change of the α4 integrin level or 89Zr-natalizumab uptake in MOLT4 leukemia tumors, which underscores the complexity of tumor VLA4 regulation in vivo. In conclusion, 89Zr-natalizumab PET may be useful for noninvasive monitoring of tumor VLA4 and may assist in a more rational application of Ab-based therapies for hematologic malignancies.


Asunto(s)
Integrina alfa4beta1 , Leucemia , Humanos , Animales , Ratones , Natalizumab/uso terapéutico , Cisteína , Integrina alfa4 , Ratones Desnudos , Distribución Tisular , Línea Celular Tumoral , Tomografía de Emisión de Positrones/métodos , Circonio/química
20.
Mol Pharm ; 21(9): 4490-4497, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39077827

RESUMEN

The aim of this study was to evaluate the preclinical efficacy of [89Zr]Zr-DFO-Ab253 as a novel positron emission tomography (PET) tracer for CD146-positive malignant melanoma imaging. Considering the high expression of CD146 in malignant melanoma, this study investigated the effect of different CD146 expression levels on the tumor uptake of [89Zr]Zr-DFO-Ab253. CD146 selectivity was investigated by using the CD146-positive human melanoma cell A375 and the CD146-negative human alveolar epithelial cell A549. The cell uptake of [89Zr]Zr-DFO-Ab253 tracers was investigated, and receptor-binding affinities were measured by radioactive enzyme-linked immunosorbent assay. Biodistribution studies and micro-PET imaging of the radiotracers were performed on mice bearing A375 and A549 xenografts under baseline and blocking conditions. An immunohistochemical test was performed using A375 and A549 tissue sections for CD146 expression level analysis. [89Zr]Zr-DFO-Ab253 was obtained with a high radiochemical yield (87.86 ± 4.66%) and a satisfactory radiochemical purity (>98.0%). The specificity and affinity of [89Zr]Zr-DFO-Ab253 were confirmed in melanoma A375 cells and in vivo PET imaging of A375 tumor models. [89Zr]Zr-DFO-IgG and A549 lung tumors were prepared as control radiotracers and negative models to verify the specificity of [89Zr]Zr-DFO-Ab253 on CD146. [89Zr]Zr-DFO-Ab253 has a Kd of 4.01 ± 0.50 nM. PET imaging and biodistribution showed a higher uptake of [89Zr]Zr-DFO-Ab253 in A375 melanomas than that in A549 tumors (42.1 ± 4.04% vs 7.87 ± 1.30% ID/g at 120 h, P < 0.05). A low tumor uptake of [89Zr]Zr-DFO-IgG was observed with uptakes of 1.91 ± 0.41 and 2.80 ± 0.14 ID%/g when blocked at 120 h. The radiation-absorbed dose was calculated to be 0.13 mSv/MBq. This study demonstrates the synthesis and preclinical evaluation of [89Zr]Zr-DFO-Ab253 and indicates that the novel tracer has promising applications in malignant melanoma-specific PET imaging because of its high uptake and long-time retention in malignant melanoma. It also provides feasibility for the development of integrated molecular probes for diagnosis and treatment based on the CD146 target.


Asunto(s)
Anticuerpos Monoclonales , Antígeno CD146 , Melanoma , Tomografía de Emisión de Positrones , Radioisótopos , Circonio , Antígeno CD146/metabolismo , Antígeno CD146/inmunología , Animales , Humanos , Circonio/química , Melanoma/diagnóstico por imagen , Ratones , Tomografía de Emisión de Positrones/métodos , Anticuerpos Monoclonales/química , Distribución Tisular , Línea Celular Tumoral , Ratones Desnudos , Células A549 , Radiofármacos/química , Radiofármacos/farmacocinética , Femenino
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda