Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 787
Filtrar
Más filtros

Publication year range
1.
Fish Shellfish Immunol ; 149: 109527, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38561068

RESUMEN

Skin mucus analysis has recently been used as a non-invasive method to evaluate for fish welfare. The present research study was conducted to examine the skin mucosal immunity and skin microbiota profiles of sturgeons infected with Citrobacter freundii. Our histology results showed that the thickness of the epidermal layer of skin remained thinner, and the number of mucous cells was significantly decreased in sturgeons after infection (p < 0.05). Total protein, alanine aminotransferase, aspartate aminotransferase, superoxide dismutase, and creatine kinase levels in the mucus showed biphasic pattern (decrease and then increase). Lactate dehydrogenase, lysozyme, and acid phosphatase activities in the mucus showed an increasing trend after infection. Furthermore, 16S rRNA sequencing also revealed that C. freundii infection also affected the diversity and community structure of the skin mucus microbiota. An increase in microbial diversity (p > 0.05) and a decrease in microbial abundance (p < 0.05) after infection were noted. The predominant bacterial phyla in the skin mucus were Proteobacteria, Fusobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Specifically, the relative abundance of Fusobacteria increased after infection. The predominant bacterial genera in the skin mucus were Cetobacterium, Pelomonas, Bradyrhizobium, Flavobacterium, and Pseudomonas. The relative abundance of Cetobacterium, Pseudomonas, and Flavobacterium increased after infection. Our current research findings will provide new insights into the theoretical basis for future research studies exploring the mechanism of sturgeon infection with C. freundii.


Asunto(s)
Citrobacter freundii , Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Peces , Inmunidad Mucosa , Microbiota , Piel , Animales , Citrobacter freundii/inmunología , Microbiota/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Piel/inmunología , Piel/microbiología , Peces/inmunología , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/veterinaria , Infecciones por Enterobacteriaceae/microbiología , Moco/inmunología , Moco/microbiología , ARN Ribosómico 16S/genética
2.
Vet Pathol ; 61(1): 140-144, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37377060

RESUMEN

Citrobacter freundii, an opportunistic bacterial pathogen belonging to the family Enterobacteriaceae, has been sporadically reported in sea turtles. Here, the authors describe 3 unusual lesions associated with C. freundii infection in 3 loggerhead sea turtles stranded on the coast of Gran Canaria Island, Spain. It is possible that these 3 distinct lesions played a major role in the death of these turtles. The first turtle had caseous cholecystitis, a lesion not previously described in sea turtles. The second turtle had large intestinal diverticulitis, a rare condition in loggerheads. The third turtle had bilateral caseous salt gland adenitis. Histologically, numerous gram-negative bacilli were observed at the deepest edge of inflammation in all cases. Pure cultures of C. freundii were obtained from these 3 lesions. Molecular detection of C. freundii DNA in formalin-fixed paraffin-embedded samples from the lesions of the 3 turtles confirmed the microbiological isolation. These cases, in addition to expanding the limited body of knowledge on bacterial infections in sea turtles, highlight the potential pathogenic role of C. freundii in loggerhead turtles.


Asunto(s)
Linfadenitis , Tortugas , Animales , Citrobacter freundii , Tortugas/microbiología , Inflamación/veterinaria , Linfadenitis/veterinaria , España
3.
Lett Appl Microbiol ; 77(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38327245

RESUMEN

Antibiotic resistance in Citrobacter freundii is a public health concern. This study evaluated the closed genome of a C. freundii isolated from the stool of a hospitalized patient initially related to a Salmonella outbreak. Confirmation of the isolate was determined by whole-genome sequencing. Nanopore sequencing was performed using a MinION with a Flongle flow cell. Assembly using SPAdes and Unicycler yielded a closed genome annotated by National Center for Biotechnology Information Prokaryotic Genome Annotation Pipeline. Genomic analyses employed MLST 2.0, ResFinder4.1, PlasmidFinder2.1, and VFanalyzer. Phylogenetic comparison utilized the Center for Food Safety and Applied Nutrition (CFSAN)-single nucleotide polymorphism pipeline and Genetic Algorithm for Rapid Likelihood Inference. Antimicrobial susceptibility was tested by broth microdilution following Clinical and Laboratory Standards Institute criteria. Multi-locus sequence type in silico analysis assigned the C. freundii as sequence type 64 and the blaCMY-41 gene was detected in resistome investigation. The susceptibility to antibiotics, determined using Sensititre® plates, revealed resistance to aztreonam, colistin, cefoxitin, amoxicillin/clavulanic acid, sulfisoxazole, ampicillin, and streptomycin. The genetic relatedness of the C. freundii CFSAN077772 with publicly available C. freundii genomes revealed a close relationship to a C. freundii SRR1186659, isolated in 2009 from human stool in Tanzania. In addition, C. freundii CFSAN077772 is nested in the same cluster with C. freundii clinical strains isolated in Denmark, Mexico, Myanmar, and Canada, suggesting a successful intercontinental spread.


Asunto(s)
Citrobacter freundii , Infecciones por Enterobacteriaceae , Humanos , Citrobacter freundii/genética , beta-Lactamasas/genética , Tipificación de Secuencias Multilocus , Filogenia , Infecciones por Enterobacteriaceae/epidemiología , Antibacterianos/farmacología , Genómica , Pruebas de Sensibilidad Microbiana
4.
BMC Genomics ; 24(1): 506, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37649002

RESUMEN

BACKGROUND: The emergence and wide spread of carbapenemase-producing Enterobacteriaceae (CPE) poses a growing threat to global public health. However, clinically derived carbapenemase-producing Citrobacter causing multiple infections has rarely been investigated. Here we first report the isolation and comparative genomics of two blaNDM-5 carrying Citrobacter freundii (C. freundii) isolates from a patient with bloodstream and urinary tract infections. RESULTS: Antimicrobial susceptibility testing showed that both blaNDM-5 carrying C. freundii isolates were multidrug-resistant. Positive modified carbapenem inactivation method (mCIM) and EDTA-carbapenem inactivation method (eCIM) results suggested metallo-carbapenemase production. PCR and sequencing confirmed that both metallo-carbapenemase producers were blaNDM-5 positive. Genotyping and comparative genomics analyses revealed that both isolates exhibited a high level of genetic similarity. Plasmid analysis confirmed that the blaNDM-5 resistance gene is located on IncX3 plasmid with a length of 46,161 bp, and could successfully be transferred to the recipient Escherichia coli EC600 strain. A conserved structure sequence (ISAba125-IS5-blaNDM-5-trpF-IS26-umuD-ISKox3) was found in the upstream and downstream of the blaNDM-5 gene. CONCLUSIONS: The data presented in this study showed that the conjugative blaNDM-5 plasmid possesses a certain ability to horizontal transfer. The dissemination of NDM-5-producing C. freundii isolates should be of close concern in future clinical surveillance. To our knowledge, this is the first study to characterize C. freundii strains carrying the blaNDM-5 gene from one single patient with multiple infections.


Asunto(s)
Carbapenémicos , Citrobacter freundii , Humanos , Citrobacter freundii/genética , Mapeo Cromosómico , Secuencia Conservada , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Escherichia coli , Genómica
5.
J Antimicrob Chemother ; 78(7): 1677-1682, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37207353

RESUMEN

OBJECTIVES: To characterize a carbapenem-resistant Citrobacter freundii (Cf-Emp) co-producing class A, B and D carbapenemases, resistant to novel ß-lactamase inhibitor combinations (BLICs) and cefiderocol. METHODS: Carbapenemase production was tested by an immunochromatography assay. Antibiotic susceptibility testing (AST) was performed by broth microdilution. WGS was performed using short- and long-read sequencing. Transfer of carbapenemase-encoding plasmids was assessed by conjugation experiments. RESULTS: Cf-Emp was isolated on selective medium for carbapenem-resistant Enterobacterales from the surveillance rectal swab taken at hospital admission from a patient of Moroccan origin. Cf-Emp produced three different carbapenemases, including KPC-2, OXA-181 and VIM-1, and was resistant to all ß-lactams including carbapenems, novel BLICs (ceftazidime/avibactam, meropenem/vaborbactam and imipenem/relebactam) and cefiderocol. MIC of aztreonam/avibactam was 0.25 mg/L. The strain belonged to ST22, one of the C. freundii lineages of global diffusion, known to be associated with carbapenemase production. Each carbapenemase gene was located aboard a different plasmid (named pCf-KPC, pCf-OXA and pCf-VIM, respectively), which also carried other clinically relevant resistance genes, such as armA (pCf-KPC), blaSHV-12 (pCf-VIM) and qnrS1 (pCf-OXA). Transferability to Escherichia coli J53 by conjugation was observed for all plasmids. CONCLUSIONS: The finding of enterobacterial strains carrying multiple carbapenemase genes on transferable plasmids is alarming, because similar strains could provide an important reservoir for disseminating these clinically relevant resistance determinants.


Asunto(s)
Citrobacter freundii , Inhibidores de beta-Lactamasas , Humanos , Inhibidores de beta-Lactamasas/farmacología , Proteínas Bacterianas/genética , beta-Lactamasas/genética , Antibacterianos/farmacología , Carbapenémicos/farmacología , Plásmidos/genética , Combinación de Medicamentos , Pruebas de Sensibilidad Microbiana , Cefiderocol
6.
J Antimicrob Chemother ; 78(4): 1009-1014, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36879495

RESUMEN

BACKGROUND: The role of piperacillin/tazobactam for treatment of serious infections due to AmpC-producing organisms remains debatable, particularly in immunocompromised patients. METHODS: This was a retrospective cohort study in immunocompromised patients that investigated the effect of definitive treatment with either piperacillin/tazobactam versus cefepime or carbapenems for bacteraemia caused by cefoxitin-non-susceptible Enterobacterales. The primary endpoint was a composite of clinical and microbiological failure. A logistic regression model was constructed to assess the impact of definitive treatment choice on the primary endpoint. RESULTS: A total of 81 immunocompromised patients with blood cultures positive for cefoxitin-non-susceptible Enterobacterales were included for analysis. There was more microbiological failure in the piperacillin/tazobactam arm compared with the cefepime/carbapenem arm (11.4% versus 0.0%, P = 0.019). Definitive treatment with cefepime or a carbapenem was associated with a decreased odds of clinical or microbiological failure (OR 0.303, 95% CI 0.093-0.991, P = 0.048) when controlling for baseline characteristics. CONCLUSIONS: In immunocompromised patients with bacteraemia due to cefoxitin-non-susceptible Enterobacterales, definitive treatment with piperacillin/tazobactam was associated with an increased risk of microbiological failure and higher odds of clinical or microbiological failure compared with cefepime or carbapenems.


Asunto(s)
Bacteriemia , Enterobacter aerogenes , Morganella morganii , Humanos , Cefepima/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Carbapenémicos/uso terapéutico , Cefoxitina/farmacología , Cefoxitina/uso terapéutico , Citrobacter freundii , Serratia marcescens , Enterobacter cloacae , Estudios Retrospectivos , Combinación Piperacilina y Tazobactam/uso terapéutico , Bacteriemia/tratamiento farmacológico , Bacteriemia/microbiología , beta-Lactamasas , Pruebas de Sensibilidad Microbiana
7.
Microb Pathog ; 179: 106098, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37028686

RESUMEN

Citrobacter freundii is an important foodborne pathogen that can cause urethritis, bacteremia, necrotizing abscess, and meningitis in infants. In this study, a gas-producing isolate from vacuum-packed meat products was identified as C. freundii by 16S rDNA. In addition, a new virulent phage YZU-L1, which could specifically lyse C. freundii, was isolated from sewage samples in Yangzhou. Transmission electron microscopy showed that phage YZU-L1 had a polyhedral head of 73.51 nm in diameter and a long tail of 161.15 nm in length. According to phylogenetic analysis employing the terminase large subunit, phage YZU-L1 belonged to the Demerecviridae family and the Markadamsvirinae subfamily. The burst size was 96 PFU/cell after 30 min of latent period and 90 min of rising period. Phage YZU-L1 could maintain high activity at pH of 4-13, and resist 50 °C for up to 60 min. The complete genome of YZU-L1 was 115,014 bp double-stranded DNA with 39.94% G + C content, encoding 164 open reading frames (ORFs), without genes encoding for virulence, antibiotic resistance, or lysogenicity. Phage YZU-L1 treatment significantly reduced the viable bacterial count of C. freundii in a sterile fish juice model, which is expected to be a natural agent for the biocontrol of C. freundii in foods.


Asunto(s)
Bacteriófagos , Productos de la Carne , Animales , Bacteriófagos/genética , Citrobacter freundii/genética , Filogenia , ADN , Genoma Viral
8.
Fish Shellfish Immunol ; 143: 109224, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37956797

RESUMEN

Citrobacter freundii, a common pathogen of freshwater fish, causes significant commercial losses to the global fish farming industry. In the present study, a highly pathogenic C. freundii strain was isolated and identified from largemouth bass (Micropterus salmoides). The pathogenicity and antibiotic sensitivity of the C. freundii strain were evaluated, and the histopathology and host immune response of largemouth bass infected with C. freundii were investigated. The results showed that C. freundii was the pathogen causing disease outbreaks in largemouth bass, and the infected fish showed typical signs of acute hemorrhages and visceral enlargement. Antimicrobial susceptibility testing showed that the C. freundii strain was resistant to Kanamycin, Medimycin, Clindamycin, Penicillin, Oxacillin, Ampicillin, Cephalexin, Cefazolin, Cefradine and Vancomycin. Histopathological analysis showed different pathological changes in major tissues of diseased fish. In addition, humoral immune factors such as superoxide dismutase (SOD), catalase (CAT) and lysozyme (LZM) were used as serum indicators to evaluate the immune response of largemouth bass after infection. Quantitative real-time PCR (qRT-PCR) was performed to investigate the expression pattern of immune-related genes (CXCR1, IL-8, IRF7, IgM, CD40, IFN-γ, IL-1ß, Hep1, and Hep2) in liver, spleen, and head kidney tissues, which demonstrated a strong immune response induced by C. freundii infection in largemouth bass. The present study provides insights into the pathogenic mechanism of C. freundii and immune response in largemouth bass, promoting the prevention and treatment of diseases caused by C. freundii infection.


Asunto(s)
Lubina , Enfermedades de los Peces , Animales , Citrobacter freundii , Inmunidad
9.
Ann Clin Microbiol Antimicrob ; 22(1): 24, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055768

RESUMEN

BACKGROUND: Carbapenemase-producing gram-negative organisms continue to be a significant healthcare concern and a therapeutic challenge. Members of the genus Citrobacter have emerged as increasingly multidrug resistant and versatile healthcare-associated pathogens. In this study we investigated five KPC-producing Citrobacter freundii isolates, from the same patient, that presented unusual phenotypic characteristics including false susceptibility to carbapenems detection by culture-based methods. METHODS: The isolates were tested for antimicrobial susceptibility using broth microdilution and disk diffusion. Production of serine carbapenemase was confirmed with the mCIM (modified carbapenem inactivation method) test. Genotypes were determined by PCR and whole genome sequencing analysis. RESULTS: The five isolates were susceptible to meropenem by broth microdilution and presented varying colonial morphologies and levels of susceptibility to carbapenems by multiple phenotypic methods, despite being positive for carbapenemase production by mCIM and positive for blaKPC by PCR. Whole genome sequence analysis showed that three of the five highly related isolates harbor an additional gene cassette, including blaCARB-2, ant(2''), aadA2, dfrA19, catB3, cmlA1, mph(E), msr(E), and qnrA1. The presence of these genes explains the difference in phenotypes observed. CONCLUSION: Failure to detect and completely eradicate the carbapenemase-producing C. freundii in the urine with ertapenem therapy, likely due to the presence of a heterogeneous population, resulted in the phenotypic and genotypic adaptations of the organism as it disseminated to the bloodstream and kidneys. The fact that carbapenemase-producing C. freundii can elude detection by phenotypic methods and can so easily acquire and transfer resistance gene cassettes is of concern.


Asunto(s)
Antibacterianos , Citrobacter freundii , Citrobacter freundii/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , beta-Lactamasas/genética , Carbapenémicos/farmacología , Genotipo , Fenotipo , Pruebas de Sensibilidad Microbiana
10.
Can J Microbiol ; 69(1): 44-52, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36332226

RESUMEN

Citrobacter freundii SRS1, gram-negative bacteria, were isolated from Savar, Bangladesh. The strain could tolerate up to 80 mmol L-1 sodium arsenite, 400 mmol L-1 sodium arsenate, 5 mmol L-1 manganese sulfate, 3 mmol L-1 lead nitrate, 2.5 mmol L-1 cobalt chloride, 2.5 mmol L-1 cadmium acetate, and 2.5 mmol L-1 chromium chloride. The whole-genome sequencing revealed that the genome size of C. freundii SRS1 is estimated to be 5.4 Mb long, and the G + C content is 51.7%. The genome of C. freundii SRS1 contains arsA, arsB, arsC, arsD, arsH, arsR, and acr3 genes for arsenic resistance; czcA, czcD, cbiN, and cbiM genes for cobalt resistance; chrA and chrB genes for chromium resistance; mntH, sitA, sitB, sitC, and sitD genes for manganese resistance; and zntA gene for lead and cadmium resistance. This novel acr3 gene has never previously been reported in any C. freundii strain except SRS1. A set of 130 completely sequenced strains of C. freundii was selected for phylogenomic analysis. The phylogenetic tree showed that the SRS1 strain is closely related to the C. freundii 62 strain. Further analyses of the genes involved in metal and metalloid resistance might facilitate identifying the mechanisms and pathways involved in high metal resistance in the C. freundii SRS1 strain.


Asunto(s)
Arsénico , Arsénico/farmacología , Arsénico/metabolismo , Citrobacter freundii/genética , Citrobacter freundii/metabolismo , Bangladesh , Filogenia , Secuenciación Completa del Genoma
11.
Sensors (Basel) ; 23(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36772306

RESUMEN

1,3-propanediol (1,3-PD) has a wide range of industrial applications. The most studied natural producers capable of fermenting glycerol to 1,3-PD belong to the genera Klebsiella, Citrobacter, and Clostridium. In this study, the optimization of medium composition for the biosynthesis of 1,3-PD by Citrobacter freundii AD119 was performed using the one-factor-at-a-time method (OFAT) and a two-step statistical experimental design. Eleven mineral components were tested for their impact on the process using the Plackett-Burman design. MgSO4 and CoCl2 were found to have the most pronounced effect. Consequently, a central composite design was used to optimize the concentration of these mineral components. Besides minerals, carbon and nitrogen sources were also optimized. Partial glycerol substitution with other carbon sources was found not to improve the bioconversion process. Moreover, although yeast extract was found to be the best nitrogen source, it was possible to replace it in part with (NH4)2SO4 without a negative impact on 1,3-PD production. As a part of the optimization procedure, an artificial neural network model of the growth of C. freundii and 1,3-PD production was developed as a predictive tool supporting the design and control of the bioprocess under study.


Asunto(s)
Citrobacter freundii , Glicerol , Proyectos de Investigación , Propilenglicol , Redes Neurales de la Computación , Carbono , Nitrógeno , Medios de Cultivo , Fermentación
12.
Zhonghua Yu Fang Yi Xue Za Zhi ; 57(12): 2122-2128, 2023 Dec 06.
Artículo en Zh | MEDLINE | ID: mdl-38186165

RESUMEN

Objective: To explore the drug resistance mechanism and gene structure characteristics of a carbapenemase-producing novel incompatibility group plasmid pNY2385-KPC from Citrobacter freundii. Methods: A multi-drug resistant strain was obtained from urine samples of patients with fever in the emergency ward of Li Huili Hospital, Ningbo Medical Center. Bacterial species was preliminary identified and finally confirmed by 16S rRNA gene amplification and the average nucleotide identity alignment, respectively. The minimum inhibitory concentrations of the antimicrobial agents were determined by VITEK 2 Compact System. The complete genome sequence was obtained by "third-generation" sequencing methods, and then detailed annotation of gene function and comparative genomic analysis of plasmid structure were carried out by BLASTP/BLASTN, RefSeq, ConservedDomains, ResFinder, Isfinder, etc. Results: The pNY2385-KPC carried by citrobacter freundii NY2385 belonged a novel incompatibility group, and contained blaKPC-2 and conjugative transfer (type Ⅳ secretory system, T4SS) genes, which could induce conjugative transfer. A total of 15 plasmids of the same type as pNY2385-KPC were retrieved by NCBI, which were from Citrobacter freundii, and the rest were from Serratia marcescens, Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Raoultella planticola and other bacteria, and were broad-host-range plasmids. The sequence comparative analysis of all 6 of the novel plasmid from Citrobacter freundii showed that the structure of the novel plasmid had certain conserved property, with Tn6296 variant structure carrying blaKPC-2, and plasmid pCF1807-3 had both repApNY2385-KPC and repAIncX8. Conclusion: The pNY2385-KPC type plasmids in Citrobacter freundii carried blaKPC-2 resistance gene, which were divided into two subtypes: repApNY2385-KPC single replicator and repApNY2385-KPC/repAIncX8 complex replicator, belonging to broad-host-range plasmids. And as a mobile genetic element, the plasmids promote the spread of blaKPC-2.


Asunto(s)
Citrobacter freundii , Servicio de Urgencia en Hospital , Humanos , Citrobacter freundii/genética , ARN Ribosómico 16S/genética , Escherichia coli , Genómica
13.
Chembiochem ; 23(13): e202200028, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35577764

RESUMEN

The M379A mutant of Citrobacter freundii tyrosine phenol-lyase (TPL) has been prepared. M379A TPL is a robust catalyst to prepare a number of tyrosines substituted at the 3-position with bulky groups that cannot be made with wild type TPL. The three dimensional structures of M379A TPL complexed with L-methionine and 3-bromo-DL-phenylalanine have been determined by X-ray crystallography. Methionine is bound as a quinonoid complex in a closed active site in 3 of 4 chains of homotetrameric M379A TPL. M379A TPL reacts with L-methionine about 8-fold slower than wild type TPL. The temperature dependence shows that the slower reaction is due to less positive activation entropy. The structure of the M379A TPL complex of 3-bromo-DL-phenylalanine has a quinonoid complex in two subunits, with an open active site conformation. The effects of the M379A mutation on TPL suggest that the mutant enzyme has altered the conformational dynamics of the active site.


Asunto(s)
Tirosina Fenol-Liasa , Dominio Catalítico , Citrobacter freundii/genética , Citrobacter freundii/metabolismo , Cinética , Metionina , Mutagénesis Sitio-Dirigida , Fenilalanina/metabolismo , Tirosina/metabolismo , Tirosina Fenol-Liasa/química , Tirosina Fenol-Liasa/genética , Tirosina Fenol-Liasa/metabolismo
14.
Appl Environ Microbiol ; 88(8): e0001922, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35380451

RESUMEN

Klebsiella pneumoniae carbapenemase (KPC) producers are an emerging threat to global health, and the hospital water environment is considered an important reservoir of these life-threatening bacteria. We characterized plasmids of KPC-2-producing Citrobacter freundii and Klebsiella variicola isolates recovered from hospital sewage in Japan. Antimicrobial susceptibility testing, whole-genome sequencing analysis, bacterial conjugation, and transformation experiments were performed for both KPC-2 producers. The blaKPC-2 gene was located on the Tn3 transposon-related region from an IncP-6 replicon plasmid that could not be transferred via conjugation. Compared to the blaKPC-2-encoding plasmid of the C. freundii isolate, alignment analysis of plasmids with blaKPC-2 showed that the blaKPC-2-encoding plasmid of the K. variicola isolate was a novel IncP-6/IncF-like hybrid plasmid containing a 75,218-bp insertion sequence composed of IncF-like plasmid conjugative transfer proteins. Carbapenem-resistant transformants harboring blaKPC-2 were obtained for both isolates. However, no IncF-like insertion region was found in the K. variicola donor plasmid of the transformant, suggesting that this IncF-like region is not readily functional for plasmid conjugative transfer and is maintained depending on the host cells. The findings on the KPC-2 producers and novel genetic content emphasize the key role of hospital sewage as a potential reservoir of pathogens and its linked dissemination of blaKPC-2 through the hospital water environment. Our results indicate that continuous monitoring for environmental emergence of antimicrobial-resistant bacteria might be needed to control the spread of these infectious bacteria. Moreover, it will help elucidate both the evolution and transmission pathways of these bacteria harboring antimicrobial resistance. IMPORTANCE Antimicrobial resistance is a significant problem for global health, and the hospital environment has been recognized as a reservoir of antimicrobial resistance. Here, we provide insight into the genomic features of blaKPC-2-harboring isolates of Citrobacter freundii and Klebsiella variicola obtained from hospital sewage in Japan. The findings of carbapenem-resistant bacteria containing this novel genetic context emphasize that hospital sewage could act as a potential reservoir of pathogens and cause the subsequent spread of blaKPC-2 via horizontal gene transfer in the hospital water environment. This indicates that serial monitoring for environmental bacteria possessing antimicrobial resistance may help us control the spread of infection and also lead to elucidating the evolution and transmission pathways of these bacteria.


Asunto(s)
Citrobacter freundii , Aguas del Alcantarillado , Antibacterianos , Carbapenémicos , Citrobacter freundii/genética , Hospitales , Japón , Klebsiella , Plásmidos/genética , Agua
15.
Microb Pathog ; 169: 105682, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35850373

RESUMEN

Out breaks of mass mortalities occurred in Macrobrachium nipponense farms in Jintan county, Jiangsu Province. The bacterial isolates from M. nipponense exhibited the same phenotypic traits and biochemical characteristics, and were identified as Citrobacter freundii according to biochemical characteristics and molecular identification. The infection test revealed that the strain YG2 was pathogenic to M. nipponense, and the half lethal dose (LD50) was 3.35 × 105 CFU/mL at 7 d post-infection. Detection of virulence genes indicated that YG2 was positive for cfa, ureG, ureF, ureE, ureD, viaB, ompX, and LDH. Furthermore, the results of extracellular enzyme analysis revealed that the strain can produce protease, amylase, lecithin, urease, and hemolysin. Antibiotic resistance results showed that the isolate was resistant to ampicillin, cefazolin, cephalothin, cefoxitin, aboren, doxycycline, neomycin, penicillin, erythromycin, and vancomycin. The expression level of MyD88, α2M, CDSP, and Relish were detected in hepatopancreas, hemolymph, gills and intestine tissues by quantitive real-time PCR (qRT-PCR), and clear transcriptional activation of these genes were observed in M. nipponense after C. freundii infection. These results revealed pathogenicity of C. freundii and its activation of host immune response, which will provide a scientific reference for the breeding and disease prevention in M. nipponense culture.


Asunto(s)
Palaemonidae , Animales , Citrobacter freundii/genética , Hepatopáncreas , Ureasa/genética , Virulencia/genética
16.
Microb Pathog ; 173(Pt A): 105818, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36216208

RESUMEN

Chinese sturgeon (Acipenser sinensis) is an indigenous species of China and is listed as a critically endangered species. Recently, second filial generations of Chinese sturgeon in the Yangtze River Fisheries Research Institute suffered from a severe disease. In this study, two kinds of pathogenic bacteria were isolated from diseased sturgeon and identified as Plesiomonas shigelloides and Citrobacter freundii, based on 16S rDNA gene sequence alignment analysis. Antimicrobial susceptibility testing showed that P. shigelloides was resistant to ampicillin, penicillin, midecamycin, oxacillin, and clindamycin; and sensitive to tocefatriaxone, piperacillin, cefoperazone, cefazolin, and ciprofloxacin. C. freundii was resistant to ampicillin, penicillin, midecamycin, oxacillin, and clindamycin; and sensitive to chloramphenicol, cefuroxime, norfloxacin, ciprofloxacin, and ceftazidime. The median lethal dose (LD50) values of P. shigelloides and C. freundii were 4.50 × 103 colony forming units (CFU)/g and 3.20 × 103 CFU/g, respectively. Clinical symptoms of challenged sturgeons were the same as those of naturally infected sturgeons. Histopathological examination disclosed severe damage in the viscera of P. shigelloides and C. freundii-infected sturgeons. This is the first report suggesting that P. shigelloides infection is associated with mortality of Chinese sturgeon. The results of this study revealed the pathogenesis and severe pathogenicity of P. shigelloides and C. freundii in cultured Chinese sturgeon, and offer insights into the prevention and treatment of bacterial infection caused by P. shigelloides and C. freundii in cultured sturgeons.


Asunto(s)
Plesiomonas , Animales , Plesiomonas/genética , Citrobacter freundii/genética , Virulencia , Clindamicina , Peces/genética , Oxacilina , Ampicilina , Ciprofloxacina
17.
Int Microbiol ; 25(3): 615-628, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35553276

RESUMEN

Ibuprofen (IBU) is the third most commonly used analgesic drug in the world. It enters the water system as a result of human excretion-based wastewater discharges. Hence, it attracts the attention of environmentalists for its ecological fate and degradation behavior. In this study, the two IBU degrading bacterial strains, Citrobacter freundii strain PYI-2 (MT039504) and Citrobacter portucalensis strain YPI-2 (MN744335), were isolated from industrial wastewater samples using an enrichment culture method, identified, and characterized. Physiological and batch culture degradation studies have indicated that these strains involved in IBU degradation and the intermediates produced during the process were analyzed. These strains degrade IBU in the batch culture. The optimum pH was reported for degradation of the PYI2 strain (6.9) and YPI2 strain (5.8), and the optimum temperatures were 42°C and 32°C, respectively. Biomass kinetic analysis of these strains was performed based on physical parameters (temperature, pH, and rpm) and confirmed by the experimental study. As indicated in the GC-MS chromatogram peaks, viz., hydroxyibuprofen, 2-(4-hydroxyphenylpropionic acid), 1,4-hydroquinone, and 2-hydroxy-1,4-quinol various intermediates compounds of degradation pathway were observed. Finally, through the GC-MS data, the metabolic pathway for degradation was predicted. In the study, it was confirmed that Citrobacter freundii strain PYI-2 and Citrobacter portucalensis strain YPI-2 exhibit metabolic potential for the biodegradation of IBU and can be further deployed in bioremediation.


Asunto(s)
Citrobacter freundii , Ibuprofeno , Biodegradación Ambiental , Biomasa , Citrobacter , Citrobacter freundii/metabolismo , Humanos , Ibuprofeno/química , Ibuprofeno/metabolismo , Cinética , Aguas Residuales
18.
Appl Microbiol Biotechnol ; 106(18): 6253-6262, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35969261

RESUMEN

Electronic exchanges occur between semiconductor minerals and microorganisms. However, researchers have focused on the photocatalytic degradation of pollutants by semiconductor minerals, and there is a limited amount of studies on semiconductor photogenerated electrons that influence the growth and energetic mechanisms of bacteria. Bioelectrochemical systems (BES) are important new bioengineering technologies for investigating the mechanisms by which bacteria absorb electrons. In this work, we built a BES that used α-Fe2O3 nanorods as a photoanode and Citrobacter freundii as bio-cathode bacteria to explore the effect of photoelectrons on C. freundii growth and metabolism. The photoanode was prepared by a hydrothermal synthesis method. As confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), the photoanode was made of α-Fe2O3. Corresponding scanning electron microscope (SEM) images showed that α-Fe2O3 nanorod arrays formed with a diameter of 50 nm, and the band gap was 2.03 eV, as indicated by UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The C. freundii growth metabolism changed significantly because of photoelectrons; under light conditions, the growth rate of C. freundii significantly accelerated, and as inferred from the three-dimensional fluorescence spectrum, the protein, humic acid, and NADH concentrations were significantly higher at 72 h. According to the changes in the organic acid content, photoelectrons participated in the reductive tricarboxylic acid cycle (rTCA) to enhance growth and metabolism. The results of the study have broad implications for advancing fields that study the effects of semiconductor minerals on electroactive microorganisms and the semiconductor-photoelectronic transport mechanisms of electroautotrophic microorganisms. KEY POINTS: • For the first time, A BES was built that used α-Fe2O3 nanorods as a photoanode and C. freundii as a bio-cathode bacteria. • Photoelectrons produced by α-Fe2O3 photoelectrode promote the growth of C. freundii. • Effects of photoelectrons on C. freundii metabolism were conjectured by the changes of organic acids and NADH.


Asunto(s)
Citrobacter freundii , Compuestos Férricos , Catálisis , Electrodos , Compuestos Férricos/química , NAD
19.
J Infect Chemother ; 28(12): 1677-1681, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36067910

RESUMEN

Plesiomonas shigelloides is a gram-negative facultative anaerobic bacillus, usually found in soil and freshwater, which causes self-limited diarrhea, although reports of bacteremia are rare. Here, we report the first case of an intratumoral abscess with mixed bacteremia caused by P. shigelloides, Citrobacter freundii, Streptococcus mitis/oralis, Clostridium perfringens, and Candida albicans in a patient with recurrent postoperative cholangiocarcinoma. A 77-year-old man with hilar cholangiocarcinoma and hypertension was admitted to our hospital with fever and abdominal pain. He had visited Vietnam for 3 years, 20 years ago. Abdominal computed tomography showed air within the recurrent tumor at the left liver lobectomy resection margin site, which was diagnosed as an intratumor abscess perforating the intestinal tract. P. shigelloides, C. freundii, S. mitis/oralis, C. perfringens, and C. albicans were isolated in blood culture. P. shigelloides was identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and 16S ribosomal RNA (16S rRNA) sequencing. Piperacillin-tazobactam was administered for almost a week, ampicillin-sulbactam and levofloxacin for almost 3 weeks, and antifungal agents for almost 2 weeks, and the patient was discharged thereafter. Although bloodstream infections caused by P. shigelloides in patients with cancer are extremely rare, long-term colonization and the potential for future intra-abdominal infections were implicated.


Asunto(s)
Bacteriemia , Neoplasias de los Conductos Biliares , Colangiocarcinoma , Plesiomonas , Sepsis , Absceso , Anciano , Antifúngicos , Bacteriemia/diagnóstico , Bacteriemia/tratamiento farmacológico , Bacteriemia/microbiología , Conductos Biliares Intrahepáticos , Candida albicans , Citrobacter freundii , Clostridium perfringens , Humanos , Levofloxacino , Masculino , Piperacilina , Plesiomonas/química , ARN Ribosómico 16S/genética , Suelo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Streptococcus mitis , Streptococcus oralis , Tazobactam
20.
J Invertebr Pathol ; 193: 107805, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35921916

RESUMEN

Citrobacter freundii is an important bacterial pathogen that causes serious diseases in Chinese mitten crab Eriocheir sinensis. However, scarce information is available on the use of Bacillus licheniformis to protect E. sinensis from C. freundii infection by improving the immunity, antioxidant ability and intestinal flora. In the present study, a 60-day feeding trial was conducted to examine the potential effects of dietary supplementation with antagonistic B. licheniformis on the non-specific immunity, antioxidant capability, intestinal flora and resistance of E. sinensis to C. freundii infection. The results indicated that dietary supplementation of B. licheniformis could boost non-specific immunity and antioxidant capability of E. sinensis in a significant dose-dependent manner respectively by increasing serum lysozyme, superoxide dismutase, alkaline phosphatase, and catalase activities and hepatopancreatic superoxide dismutase, catalase, acid phosphatase activities. In addition, crabs fed diets with B. licheniformis displayed increased composition and diversity of the intestinal flora, and exhibited significant defense against C. freundii infection with the relative percentage survivals ranging from 61.9% to 100.0% for seven days. To our knowledge, this is the first report of antagonistic B. licheniformis as a supplement in Chinese mitten crab feed to effectively resist C. freundii infection by improving the non-specific immunity, antioxidant status and intestinal flora.


Asunto(s)
Bacillus licheniformis , Braquiuros , Alimentación Animal/análisis , Animales , Antioxidantes/farmacología , Catalasa/farmacología , China , Citrobacter freundii , Inmunidad Innata , Superóxido Dismutasa
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda