Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 13.519
Filtrar
Más filtros

Colección SES
Publication year range
1.
CA Cancer J Clin ; 73(2): 198-222, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36260350

RESUMEN

Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver tumor and remains a fatal malignancy in the majority of patients. Approximately 20%-30% of patients are eligible for resection, which is considered the only potentially curative treatment; and, after resection, a median survival of 53 months has been reported when sequenced with adjuvant capecitabine. For the 70%-80% of patients who present with locally unresectable or distant metastatic disease, systemic therapy may delay progression, but survival remains limited to approximately 1 year. For the past decade, doublet chemotherapy with gemcitabine and cisplatin has been considered the most effective first-line regimen, but results from the recent use of triplet regimens and even immunotherapy may shift the paradigm. More effective treatment strategies, including those that combine systemic therapy with locoregional therapies like radioembolization or hepatic artery infusion, have also been developed. Molecular therapies, including those that target fibroblast growth factor receptor and isocitrate dehydrogenase, have recently received US Food and Drug Administration approval for a defined role as second-line treatment for up to 40% of patients harboring these actionable genomic alterations, and whether they should be considered in the first-line setting is under investigation. Furthermore, as the oncology field seeks to expand indications for immunotherapy, recent data demonstrated that combining durvalumab with standard cytotoxic therapy improved survival in patients with ICC. This review focuses on the current and future strategies for ICC treatment, including a summary of the primary literature for each treatment modality and an algorithm that can be used to drive a personalized and multidisciplinary approach for patients with this challenging malignancy.


Asunto(s)
Antineoplásicos , Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/cirugía , Resultado del Tratamiento , Antineoplásicos/uso terapéutico , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética
2.
Mol Cell ; 81(16): 3339-3355.e8, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34352206

RESUMEN

Cancer cells selectively promote translation of specific oncogenic transcripts to facilitate cancer survival and progression, but the underlying mechanisms are poorly understood. Here, we find that N7-methylguanosine (m7G) tRNA modification and its methyltransferase complex components, METTL1 and WDR4, are significantly upregulated in intrahepatic cholangiocarcinoma (ICC) and associated with poor prognosis. We further reveal the critical role of METTL1/WDR4 in promoting ICC cell survival and progression using loss- and gain-of-function assays in vitro and in vivo. Mechanistically, m7G tRNA modification selectively regulates the translation of oncogenic transcripts, including cell-cycle and epidermal growth factor receptor (EGFR) pathway genes, in m7G-tRNA-decoded codon-frequency-dependent mechanisms. Moreover, using overexpression and knockout mouse models, we demonstrate the crucial oncogenic function of Mettl1-mediated m7G tRNA modification in promoting ICC tumorigenesis and progression in vivo. Our study uncovers the important physiological function and mechanism of METTL1-mediated m7G tRNA modification in the regulation of oncogenic mRNA translation and cancer progression.


Asunto(s)
Colangiocarcinoma/genética , Proteínas de Unión al GTP/genética , Metiltransferasas/genética , Biosíntesis de Proteínas , Animales , Carcinogénesis/genética , Colangiocarcinoma/patología , Progresión de la Enfermedad , Receptores ErbB/genética , Guanosina/análogos & derivados , Guanosina/genética , Humanos , Ratones , Procesamiento Postranscripcional del ARN/genética , ARN Mensajero/genética , ARN de Transferencia/genética
3.
Genes Dev ; 35(15-16): 1123-1141, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34301768

RESUMEN

Spliceosomal small nuclear RNAs (snRNAs) are modified by small Cajal body (CB)-specific ribonucleoproteins (scaRNPs) to ensure snRNP biogenesis and pre-mRNA splicing. However, the function and subcellular site of snRNA modification are largely unknown. We show that CB localization of the protein Nopp140 is essential for concentration of scaRNPs in that nuclear condensate; and that phosphorylation by casein kinase 2 (CK2) at ∼80 serines targets Nopp140 to CBs. Transiting through CBs, snRNAs are apparently modified by scaRNPs. Indeed, Nopp140 knockdown-mediated release of scaRNPs from CBs severely compromises 2'-O-methylation of spliceosomal snRNAs, identifying CBs as the site of scaRNP catalysis. Additionally, alternative splicing patterns change indicating that these modifications in U1, U2, U5, and U12 snRNAs safeguard splicing fidelity. Given the importance of CK2 in this pathway, compromised splicing could underlie the mode of action of small molecule CK2 inhibitors currently considered for therapy in cholangiocarcinoma, hematological malignancies, and COVID-19.


Asunto(s)
Células Intersticiales de Cajal/metabolismo , Metilación , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Empalme del ARN , ARN Nuclear Pequeño/metabolismo , Quinasa de la Caseína II/antagonistas & inhibidores , Quinasa de la Caseína II/metabolismo , Colangiocarcinoma/tratamiento farmacológico , Neoplasias Hematológicas/tratamiento farmacológico , Humanos , Fosforilación , ARN Nuclear Pequeño/química , Ribonucleoproteínas/metabolismo , Empalmosomas/genética , Tratamiento Farmacológico de COVID-19
4.
Proc Natl Acad Sci U S A ; 121(6): e2317756121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38300868

RESUMEN

Fibroblast growth factor receptor (FGFR) kinase inhibitors have been shown to be effective in the treatment of intrahepatic cholangiocarcinoma and other advanced solid tumors harboring FGFR2 alterations, but the toxicity of these drugs frequently leads to dose reduction or interruption of treatment such that maximum efficacy cannot be achieved. The most common adverse effects are hyperphosphatemia caused by FGFR1 inhibition and diarrhea due to FGFR4 inhibition, as current therapies are not selective among the FGFRs. Designing selective inhibitors has proved difficult with conventional approaches because the orthosteric sites of FGFR family members are observed to be highly similar in X-ray structures. In this study, aided by analysis of protein dynamics, we designed a selective, covalent FGFR2 inhibitor. In a key initial step, analysis of long-timescale molecular dynamics simulations of the FGFR1 and FGFR2 kinase domains allowed us to identify differential motion in their P-loops, which are located adjacent to the orthosteric site. Using this insight, we were able to design orthosteric binders that selectively and covalently engage the P-loop of FGFR2. Our drug discovery efforts culminated in the development of lirafugratinib (RLY-4008), a covalent inhibitor of FGFR2 that shows substantial selectivity over FGFR1 (~250-fold) and FGFR4 (~5,000-fold) in vitro, causes tumor regression in multiple FGFR2-altered human xenograft models, and was recently demonstrated to be efficacious in the clinic at doses that do not induce clinically significant hyperphosphatemia or diarrhea.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Hiperfosfatemia , Humanos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/química , Conductos Biliares Intrahepáticos/metabolismo , Diarrea , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química
5.
N Engl J Med ; 388(3): 228-239, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36652354

RESUMEN

BACKGROUND: Alterations in fibroblast growth factor receptor 2 (FGFR2) have emerged as promising drug targets for intrahepatic cholangiocarcinoma, a rare cancer with a poor prognosis. Futibatinib, a next-generation, covalently binding FGFR1-4 inhibitor, has been shown to have both antitumor activity in patients with FGFR-altered tumors and strong preclinical activity against acquired resistance mutations associated with ATP-competitive FGFR inhibitors. METHODS: In this multinational, open-label, single-group, phase 2 study, we enrolled patients with unresectable or metastatic FGFR2 fusion-positive or FGFR2 rearrangement-positive intrahepatic cholangiocarcinoma and disease progression after one or more previous lines of systemic therapy (excluding FGFR inhibitors). The patients received oral futibatinib at a dose of 20 mg once daily in a continuous regimen. The primary end point was objective response (partial or complete response), as assessed by independent central review. Secondary end points included the response duration, progression-free and overall survival, safety, and patient-reported outcomes. RESULTS: Between April 16, 2018, and November 29, 2019, a total of 103 patients were enrolled and received futibatinib. A total of 43 of 103 patients (42%; 95% confidence interval, 32 to 52) had a response, and the median duration of response was 9.7 months. Responses were consistent across patient subgroups, including patients with heavily pretreated disease, older adults, and patients who had co-occurring TP53 mutations. At a median follow-up of 17.1 months, the median progression-free survival was 9.0 months and overall survival was 21.7 months. Common treatment-related grade 3 adverse events were hyperphosphatemia (in 30% of the patients), an increased aspartate aminotransferase level (in 7%), stomatitis (in 6%), and fatigue (in 6%). Treatment-related adverse events led to permanent discontinuation of futibatinib in 2% of the patients. No treatment-related deaths occurred. Quality of life was maintained throughout treatment. CONCLUSIONS: In previously treated patients with FGFR2 fusion or rearrangement-positive intrahepatic cholangiocarcinoma, the use of futibatinib, a covalent FGFR inhibitor, led to measurable clinical benefit. (Funded by Taiho Oncology and Taiho Pharmaceutical; FOENIX-CCA2 ClinicalTrials.gov number, NCT02052778.).


Asunto(s)
Antineoplásicos , Neoplasias de los Conductos Biliares , Conductos Biliares Intrahepáticos , Colangiocarcinoma , Inhibidores de Proteínas Quinasas , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Anciano , Humanos , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/uso terapéutico , Calidad de Vida , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Antineoplásicos/administración & dosificación
6.
EMBO Rep ; 25(3): 1022-1054, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38332153

RESUMEN

Cholangiocarcinoma is a devastating liver cancer characterized by high aggressiveness and therapy resistance, resulting in poor prognosis. Long non-coding RNAs and signals imposed by oncogenic pathways, such as transforming growth factor ß (TGFß), frequently contribute to cholangiocarcinogenesis. Here, we explore novel effectors of TGFß signalling in cholangiocarcinoma. LINC00313 is identified as a novel TGFß target gene. Gene expression and genome-wide chromatin accessibility profiling reveal that nuclear LINC00313 transcriptionally regulates genes involved in Wnt signalling, such as the transcriptional activator TCF7. LINC00313 gain-of-function enhances TCF/LEF-dependent transcription, promotes colony formation in vitro and accelerates tumour growth in vivo. Genes affected by LINC00313 over-expression in CCA tumours are associated with KRAS and TP53 mutations and reduce overall patient survival. Mechanistically, ACTL6A and BRG1, subunits of the SWI/SNF chromatin remodelling complex, interact with LINC00313 and affect TCF7 and SULF2 transcription. We propose a model whereby TGFß induces LINC00313 in order to regulate the expression of hallmark Wnt pathway genes, in co-operation with SWI/SNF. By modulating key genes of the Wnt pathway, LINC00313 fine-tunes Wnt/TCF/LEF-dependent transcriptional responses and promotes cholangiocarcinogenesis.


Asunto(s)
Colangiocarcinoma , ARN Largo no Codificante , Humanos , Vía de Señalización Wnt , ARN Largo no Codificante/genética , Factor de Crecimiento Transformador beta/metabolismo , Factores de Transcripción/metabolismo , Actinas/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo
7.
Mol Cell Proteomics ; 23(9): 100821, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39069074

RESUMEN

Intrahepatic cholangiocarcinoma (iCCA) has a poor prognosis, and elucidation of the molecular mechanisms underlying iCCA malignancy is of great significance. Glycosylation, an important post-translational modification, is closely associated with tumor progression. Altered glycosylation, including aberrant sialylation resulting from abnormal expression of sialyltransferases (STs) and neuraminidases (NEUs), is a significant feature of cancer cells. However, there is limited information on the roles of STs and NEUs in iCCA malignancy. Here, utilizing our proteogenomic resources from a cohort of 262 patients with iCCA, we identified ST3GAL1 as a prognostically relevant molecule in iCCA. Moreover, overexpression of ST3GAL1 promoted proliferation, migration, and invasion and inhibited apoptosis of iCCA cells in vitro. Through proteomic analyses, we identified the downstream pathway potentially regulated by ST3GAL1, which was the NF-κB signaling pathway, and further demonstrated that this pathway was positively correlated with malignancy in iCCA cells. Notably, glycoproteomics showed that O-glycosylation was changed in iCCA cells with high ST3GAL1 expression. Importantly, the altered O-glycopeptides underscored the potential utility of O-glycosylation profiling as a discriminatory marker for iCCA cells with ST3GAL1 overexpression. Additionally, miR-320b was identified as a post-transcriptional regulator of ST3GAL1, capable of suppressing ST3GAL1 expression and then reducing the proliferation, migration, and invasion abilities of iCCA cell lines. Taken together, these results suggest ST3GAL1 could serve as a promising therapeutic target for iCCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , beta-Galactosida alfa-2,3-Sialiltransferasa , Femenino , Humanos , Masculino , Persona de Mediana Edad , Apoptosis , beta-Galactosida alfa-2,3-Sialiltransferasa/metabolismo , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Colangiocarcinoma/patología , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Regulación Neoplásica de la Expresión Génica , Glicosilación , Invasividad Neoplásica , FN-kappa B/metabolismo , Fenotipo , Pronóstico , Proteómica/métodos , Sialiltransferasas/metabolismo , Sialiltransferasas/genética , Transducción de Señal
8.
Annu Rev Med ; 74: 293-306, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36170665

RESUMEN

Biliary tract cancer (BTC) is the second most common primary liver cancer after hepatocellular carcinoma and accounts for 2% of cancer-related deaths. BTCs are classified according to their anatomical origin into intrahepatic (iCCA), perihilar, or distal cholangiocarcinoma, as well as gall bladder carcinoma. While the mutational profiles in these anatomical BTC subtypes overlap to a large extent, iCCA is notable for the high frequency of IDH1/2 mutations (10-22%) and the nearly exclusive occurrence of FGFR2 fusions in 10-15% of patients. In recent years, FGFR2 fusions have become one of the most promising targets for precision oncology targeting BTC, with FGFR inhibitors already approved in Europe and the United States for patients with advanced, pretreated iCCA. While the therapeutic potential of nonfusion alterations is still under debate, it is expected that the field of FGFR2-directed therapies will be subject to rapid further evolution and optimization. The scope of this review is to provide an overview of oncogenic FGFR signaling in iCCA cells and highlight the pathophysiology, diagnostic testing strategies, and therapeutic promises and challenges associated with FGFR2-altered iCCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Medicina de Precisión , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/diagnóstico , Mutación , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/uso terapéutico
9.
Gastroenterology ; 166(5): 886-901.e7, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38096955

RESUMEN

BACKGROUND & AIMS: Metabolic and transcriptional programs respond to extracellular matrix-derived cues in complex environments, such as the tumor microenvironment. Here, we demonstrate how lysyl oxidase (LOX), a known factor in collagen crosslinking, contributes to the development and progression of cholangiocarcinoma (CCA). METHODS: Transcriptomes of 209 human CCA tumors, 143 surrounding tissues, and single-cell data from 30 patients were analyzed. The recombinant protein and a small molecule inhibitor of the LOX activity were used on primary patient-derived CCA cultures to establish the role of LOX in migration, proliferation, colony formation, metabolic fitness, and the LOX interactome. The oncogenic role of LOX was further investigated by RNAscope and in vivo using the AKT/NICD genetically engineered murine CCA model. RESULTS: We traced LOX expression to hepatic stellate cells and specifically hepatic stellate cell-derived inflammatory cancer-associated fibroblasts and found that cancer-associated fibroblast-driven LOX increases oxidative phosphorylation and metabolic fitness of CCA, and regulates mitochondrial function through transcription factor A, mitochondrial. Inhibiting LOX activity in vivo impedes CCA development and progression. Our work highlights that LOX alters tumor microenvironment-directed transcriptional reprogramming of CCA cells by facilitating the expression of the oxidative phosphorylation pathway and by increasing stemness and mobility. CONCLUSIONS: Increased LOX is driven by stromal inflammatory cancer-associated fibroblasts and correlates with diminished survival of patients with CCA. Modulating the LOX activity can serve as a novel tumor microenvironment-directed therapeutic strategy in bile duct pathologies.


Asunto(s)
Neoplasias de los Conductos Biliares , Fibroblastos Asociados al Cáncer , Colangiocarcinoma , Células Estrelladas Hepáticas , Proteína-Lisina 6-Oxidasa , Microambiente Tumoral , Humanos , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/enzimología , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Fibroblastos Asociados al Cáncer/enzimología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Colangiocarcinoma/patología , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/enzimología , Regulación Neoplásica de la Expresión Génica , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Células Estrelladas Hepáticas/enzimología , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/enzimología , Fosforilación Oxidativa , Proteína-Lisina 6-Oxidasa/metabolismo , Proteína-Lisina 6-Oxidasa/genética , Transducción de Señal
10.
Am J Pathol ; 194(7): 1388-1404, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38670529

RESUMEN

Intrahepatic cholangiocarcinoma (ICC) is a highly malignant neoplasm prone to metastasis. Whether cancer-associated fibroblasts (CAFs) affect the metastasis of ICC is unclear. Herein, ICC patient-derived CAF lines and related cancerous cell lines were established and the effects of CAFs on the tumor progressive properties of the ICC cancerous cells were analyzed. CAFs could be classified into cancer-restraining or cancer-promoting categories based on distinct tumorigenic effects. The RNA-sequencing analyses of ICC cancerous cell lines identified polycomb group ring finger 4 (PCGF4; alias BMI1) as a potential metastasis regulator. The changes of PCGF4 levels in ICC cells mirrored the restraining or promoting effects of CAFs on ICC migration. Immunohistochemical analyses on the ICC tissue microarrays indicated that PCGF4 was negatively correlated with overall survival of ICC. The promoting effects of PCGF4 on cell migration, drug resistance activity, and stemness properties were confirmed. Mechanistically, cancer-restraining CAFs triggered the proteasome-dependent degradation of PCGF4, whereas cancer-promoting CAFs enhanced the stability of PCGF4 via activating the IL-6/phosphorylated STAT3 pathway. In summary, the current data identified the role of CAFs in ICC metastasis and revealed a new mechanism of the CAFs on ICC progression in which PCGF4 acted as the key effector by both categories of CAFs. These findings shed light on developing comprehensive therapeutic strategies for ICC.


Asunto(s)
Neoplasias de los Conductos Biliares , Fibroblastos Asociados al Cáncer , Colangiocarcinoma , Metástasis de la Neoplasia , Complejo Represivo Polycomb 1 , Animales , Humanos , Masculino , Ratones , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/genética , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Movimiento Celular , Colangiocarcinoma/patología , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Regulación Neoplásica de la Expresión Génica , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 1/genética , Factor de Transcripción STAT3/metabolismo
11.
Hepatology ; 79(4): 941-958, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37018128

RESUMEN

Cholangiocarcinoma (CCA) comprises diverse tumors of the biliary tree and is characterized by late diagnosis, short-term survival, and chemoresistance. CCAs are mainly classified according to their anatomical location and include diverse molecular subclasses harboring inter-tumoral and intratumoral heterogeneity. Besides the tumor cell component, CCA is also characterized by a complex and dynamic tumor microenvironment where tumor cells and stromal cells crosstalk in an intricate network of interactions. Cancer-associated fibroblasts, one of the most abundant cell types in the tumor stroma of CCA, are actively involved in cholangiocarcinogenesis by participating in multiple aspects of the disease including extracellular matrix remodeling, immunomodulation, neo-angiogenesis, and metastasis. Despite their overall tumor-promoting role, recent evidence indicates the presence of transcriptional and functional heterogeneous CAF subtypes with tumor-promoting and tumor-restricting properties. To elucidate the complexity and potentials of cancer-associated fibroblasts as therapeutic targets in CCA, this review will discuss the origin of cancer-associated fibroblasts, their heterogeneity, crosstalk, and role during tumorigenesis, providing an overall picture of the present and future perspectives toward cancer-associated fibroblasts targeting CCA.


Asunto(s)
Aracnodactilia , Neoplasias de los Conductos Biliares , Sistema Biliar , Fibroblastos Asociados al Cáncer , Colangiocarcinoma , Contractura , Humanos , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Conductos Biliares Intrahepáticos , Microambiente Tumoral
12.
Hepatology ; 79(4): 798-812, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37505213

RESUMEN

ABSTRACT AND AIM: Cholangiocarcinoma (CCA) is a highly aggressive and lethal cancer that originates from the biliary epithelium. Systemic treatment options for CCA are currently limited, and the first targeted drug of CCA, pemigatinib, emerged in 2020 for CCA treatment by inhibiting FGFR2 phosphorylation. However, the regulatory mechanism of FGFR2 phosphorylation is not fully elucidated. APPROACH AND RESULTS: Here we screened the FGFR2-interacting proteins and showed that protein tyrosine phosphatase (PTP) N9 interacts with FGFR2 and negatively regulates FGFR2 pY656/657 . Using phosphatase activity assays and modeling the FGFR2-PTPN9 complex structure, we identified FGFR2 pY656/657 as a substrate of PTPN9, and found that sec. 14p domain of PTPN9 interacts with FGFR2 through ACAP1 mediation. Coexpression of PTPN9 and ACAP1 indicates a favorable prognosis for CCA. In addition, we identified key amino acids and motifs involved in the sec. 14p-APCP1-FGFR2 interaction, including the "YRETRRKE" motif of sec. 14p, Y471 of PTPN9, as well as the PH and Arf-GAP domain of ACAP1. Moreover, we discovered that the FGFR2 I654V substitution can decrease PTPN9-FGFR2 interaction and thereby reduce the effectiveness of pemigatinib treatment. Using a series of in vitro and in vivo experiments including patient-derived xenografts (PDX), we showed that PTPN9 synergistically enhances pemigatinib effectiveness and suppresses CCA proliferation, migration, and invasion by inhibiting FGFR2 pY656/657 . CONCLUSIONS: Our study identifies PTPN9 as a negative regulator of FGFR2 phosphorylation and a synergistic factor for pemigatinib treatment. The molecular mechanism, oncogenic function, and clinical significance of the PTPN9-ACAP1-FGFR2 complex are revealed, providing more evidence for CCA precision treatment.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Morfolinas , Pirimidinas , Pirroles , Humanos , Colangiocarcinoma/tratamiento farmacológico , Epitelio , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Conductos Biliares Intrahepáticos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Proteínas Activadoras de GTPasa
13.
Hepatology ; 79(1): 96-106, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37505216

RESUMEN

BACKGOUND AND AIMS: In advanced, liver-only intrahepatic cholangiocarcinoma (iCCA), selective internal radiation therapy (SIRT) has been suggested as promising in nonrandomized studies. We aimed to compare data from patients with advanced, liver-only iCCA treated in the first line in clinical trials with either chemotherapy alone or the combination with SIRT. APPROACH AND RESULTS: We collected individual patients' data from the ABC-01, ABC-02, ABC-03, BINGO, AMEBICA, and MISPHEC prospective trials. Data from patients with liver-only iCCA treated in chemotherapy-only arms of the first 5 trials were compared with data from patients treated with SIRT and chemotherapy in MISPHEC. Emulated target trial paradigm and Inverse Probability of Treatment Weighting (IPTW methods) using the propensity score were used to minimize biases. We compared 41 patients treated with the combination with 73 patients treated with chemotherapy alone, the main analysis being in 43 patients treated with cisplatin-gemcitabine or gemcitabine-oxaliplatin. After weighting, overall survival was significantly higher in patients treated with SIRT: median 21.7 months (95% CI: 14.1; not reached) versus 15.9 months(95% CI: 9.8; 18.9), HR = 0.59 (95% CI: 0.34; 0.99), p = 0.049. Progression-free survival was significantly improved: median 14.3 months (95% CI: 7.8; not reached) versus 8.4 months (95% CI: 5.9; 12.1), HR = 0.52 (95% CI: 0.31; 0.89), p < 0.001. Results were confirmed in most sensitivity analyses. CONCLUSIONS: This analysis derived from prospective clinical trials suggests that SIRT combined with chemotherapy might improve outcomes over chemotherapy alone in patients with advanced, liver-only iCCA. Randomized controlled evidence is needed to confirm these findings.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Gemcitabina , Estudios Prospectivos , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/radioterapia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/radioterapia
14.
Hepatology ; 80(1): 69-86, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377465

RESUMEN

BACKGROUND AND AIMS: Lymph node metastasis is a significant risk factor for patients with cholangiocarcinoma, but the mechanisms underlying cholangiocarcinoma colonization in the lymph node microenvironment remain unclear. We aimed to determine whether metabolic reprogramming fueled the adaptation and remodeling of cholangiocarcinoma cells to the lymph node microenvironment. APPROACH AND RESULTS: Here, we applied single-cell RNA sequencing of primary tumor lesions and paired lymph node metastases from patients with cholangiocarcinoma and revealed significantly reduced intertumor heterogeneity and syntropic lipid metabolic reprogramming of cholangiocarcinoma after metastasis to lymph nodes, which was verified by pan-cancer single-cell RNA sequencing analysis, highlighting the essential role of lipid metabolism in tumor colonization in lymph nodes. Metabolomics and in vivo CRISPR/Cas9 screening identified PPARγ as a crucial regulator in fueling cholangiocarcinoma colonization in lymph nodes through the oleic acid-PPARγ-fatty acid-binding protein 4 positive feedback loop by upregulating fatty acid uptake and oxidation. Patient-derived organoids and animal models have demonstrated that blocking this loop impairs cholangiocarcinoma proliferation and colonization in the lymph node microenvironment and is superior to systemic inhibition of fatty acid oxidation. PPARγ-regulated fatty acid metabolic reprogramming in cholangiocarcinoma also contributes to the immune-suppressive niche in lymph node metastases by producing kynurenine and was found to be associated with tumor relapse, immune-suppressive lymph node microenvironment, and poor immune checkpoint blockade response. CONCLUSIONS: Our results reveal the role of the oleic acid-PPARγ-fatty acid-binding protein 4 loop in fueling cholangiocarcinoma colonization in lymph nodes and demonstrate that PPARγ-regulated lipid metabolic reprogramming is a promising therapeutic target for relieving cholangiocarcinoma lymph node metastasis burden and reducing further progression.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Proteínas de Unión a Ácidos Grasos , Metástasis Linfática , Ácido Oléico , PPAR gamma , Microambiente Tumoral , Colangiocarcinoma/patología , Colangiocarcinoma/metabolismo , PPAR gamma/metabolismo , Humanos , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/metabolismo , Animales , Proteínas de Unión a Ácidos Grasos/metabolismo , Ratones , Ganglios Linfáticos/patología , Metabolismo de los Lípidos
15.
Hepatology ; 79(4): 857-868, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37732945

RESUMEN

BACKGROUND AND AIMS: Inherited short telomeres are associated with a risk of liver disease, whereas longer telomeres predispose to cancer. The association between telomere length and risk of HCC and cholangiocarcinoma remains unknown. APPROACH AND RESULTS: We measured leukocyte telomere length using multiplex PCR in 63,272 individuals from the Danish general population. Telomere length and plasma ALT concentration were not associated (ß = 4 ×10 -6 , p -value = 0.06) in a linear regression model, without any signs of a nonlinear relationship. We tested the association between telomere length and risk of cirrhosis, HCC, and cholangiocarcinoma using Cox regression. During a median follow-up of 11 years, 241, 76, and 112 individuals developed cirrhosis, HCC, and cholangiocarcinoma, respectively. Telomere length and risk of cirrhosis were inversely and linearly associated ( p -value = 0.004, p for nonlinearity = 0.27). Individuals with telomeres in the shortest vs. longest quartile had a 2.25-fold higher risk of cirrhosis. Telomere length and risk of HCC were nonlinearly associated ( p -value = 0.009, p -value for nonlinearity = 0.01). This relationship resembled an inverted J-shape, with the highest risk observed in individuals with short telomeres. Individuals with telomeres in the shortest versus longest quartile had a 2.29-fold higher risk of HCC. Telomere length was inversely and linearly associated with the risk of cholangiocarcinoma. Individuals with telomeres in the shortest versus longest quartile had a 1.86-fold higher risk of cholangiocarcinoma. CONCLUSIONS: Shorter telomere length is associated with a higher risk of cirrhosis, HCC, and cholangiocarcinoma.


Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/epidemiología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Factores de Riesgo , Neoplasias Hepáticas/epidemiología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Leucocitos , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Colangiocarcinoma/epidemiología , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Neoplasias de los Conductos Biliares/epidemiología , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Telómero/genética
16.
Hepatology ; 79(2): 341-354, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37530544

RESUMEN

BACKGROUND: While resection remains the only curative option for perihilar cholangiocarcinoma, it is well known that such surgery is associated with a high risk of morbidity and mortality. Nevertheless, beyond facing life-threatening complications, patients may also develop early disease recurrence, defining a "futile" outcome in perihilar cholangiocarcinoma surgery. The aim of this study is to predict the high-risk category (futile group) where surgical benefits are reversed and alternative treatments may be considered. METHODS: The study cohort included prospectively maintained data from 27 Western tertiary referral centers: the population was divided into a development and a validation cohort. The Framingham Heart Study methodology was used to develop a preoperative scoring system predicting the "futile" outcome. RESULTS: A total of 2271 cases were analyzed: among them, 309 were classified within the "futile group" (13.6%). American Society of Anesthesiology (ASA) score ≥ 3 (OR 1.60; p = 0.005), bilirubin at diagnosis ≥50 mmol/L (OR 1.50; p = 0.025), Ca 19-9 ≥ 100 U/mL (OR 1.73; p = 0.013), preoperative cholangitis (OR 1.75; p = 0.002), portal vein involvement (OR 1.61; p = 0.020), tumor diameter ≥3 cm (OR 1.76; p < 0.001), and left-sided resection (OR 2.00; p < 0.001) were identified as independent predictors of futility. The point system developed, defined three (ie, low, intermediate, and high) risk classes, which showed good accuracy (AUC 0.755) when tested on the validation cohort. CONCLUSIONS: The possibility to accurately estimate, through a point system, the risk of severe postoperative morbidity and early recurrence, could be helpful in defining the best management strategy (surgery vs. nonsurgical treatments) according to preoperative features.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Colangitis , Tumor de Klatskin , Humanos , Tumor de Klatskin/cirugía , Tumor de Klatskin/complicaciones , Inutilidad Médica , Recurrencia Local de Neoplasia/etiología , Colangitis/complicaciones , Hepatectomía/métodos , Neoplasias de los Conductos Biliares/patología , Colangiocarcinoma/patología , Estudios Retrospectivos , Resultado del Tratamiento
17.
Hepatology ; 79(2): 307-322, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37140231

RESUMEN

BACKGROUND AIMS: Cholangiocarcinoma (CCA) is a highly lethal malignancy originating from the biliary ducts. Current CCA diagnostic and prognostic assessments cannot satisfy the clinical requirement. Bile detection is rarely performed, and herein, we aim to estimate the clinical significance of bile liquid biopsy by assessing bile exosomal concentrations and components. APPROACH RESULTS: Exosomes in bile and sera from CCA, pancreatic cancer, and common bile duct stone were identified and quantified by transmission electronmicroscopy, nanoparticle tracking analysis, and nanoFCM. Exosomal components were assessed by liquid chromatography with tandem mass spectrometry and microRNA sequencing (miRNA-seq). Bile exosomal concentration in different diseases had no significant difference, but miR-182-5p and miR-183-5p were ectopically upregulated in CCA bile exosomes. High miR-182/183-5p in both CCA tissues and bile indicates a poor prognosis. Bile exosomal miR-182/183-5p is secreted by CCA cells and can be absorbed by biliary epithelium or CCA cells. With xenografts in humanized mice, we showed that bile exosomal miR-182/183-5p promotes CCA proliferation, invasion, and epithelial-mesenchymal transition (EMT) by targeting hydroxyprostaglandin dehydrogenase in CCA cells and mast cells (MCs), and increasing prostaglandin E2 generation, which stimulates PTGER1 and increases CCA stemness. In single-cell mRNA-seq, hydroxyprostaglandin dehydrogenase is predominantly expressed in MCs. miR-182/183-5p prompts MC to release VEGF-A release from MC by increasing VEGF-A expression, which facilitates angiogenesis. CONCLUSIONS: CCA cells secret exosomal miR-182/183-5p into bile, which targets hydroxyprostaglandin dehydrogenase in CCA cells and MCs and increases prostaglandin E2 and VEGF-A release. Prostaglandin E2 promotes stemness by activating PTGER1. Our results reveal a type of CCA self-driven progression dependent on bile exosomal miR-182/183-5p and MCs, which is a new interplay pattern of CCA and bile.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , MicroARNs , Humanos , Animales , Ratones , Dinoprostona , MicroARNs/genética , Bilis/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Neoplasias de los Conductos Biliares/patología , Línea Celular Tumoral , Colangiocarcinoma/patología , Conductos Biliares Intrahepáticos/patología , Hidroxiprostaglandina Deshidrogenasas/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
18.
Stem Cells ; 42(4): 301-316, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38262709

RESUMEN

Somatic cells that have been partially reprogrammed by the factors Oct4, Sox2, Klf4, and cMyc (OSKM) have been demonstrated to be potentially tumorigenic in vitro and in vivo due to the acquisition of cancer-associated genomic alterations and the absence of OSKM clearance over time. In the present study, we obtained partially reprogrammed, SSEA1-negative cells by transducing murine hepatocytes with Δ1Δ3-deleted adenoviruses that expressed the 4 OSKM factors. We observed that, under long-term 2D and 3D culture conditions, hepatocytes could be converted into LGR5-positive cells with self-renewal capacity that was dependent on 3 cross-signaling pathways: IL6/Jak/Stat3, LGR5/R-spondin, and Wnt/ß-catenin. Following engraftment in syngeneic mice, LGR5-positive cells that expressed the cancer markers CD51, CD166, and CD73 were capable of forming invasive and metastatic tumors reminiscent of intrahepatic cholangiocarcinoma (ICC): they were positive for CK19 and CK7, featured associations of cord-like structures, and contained cuboidal and atypical cells with dissimilar degrees of pleomorphism and mitosis. The LGR5+-derived tumors exhibited a highly vascularized stroma with substantial fibrosis. In addition, we identified pro-angiogenic factors and signaling pathways involved in neo-angiogenesis and vascular development, which represent potential new targets for anti-angiogenic strategies to overcome tumor resistance to current ICC treatments.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Animales , Ratones , Hepatocitos/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Vía de Señalización Wnt/genética
20.
J Pathol ; 263(1): 32-46, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38362598

RESUMEN

Cholangiolocarcinoma (CLC) is a primary liver carcinoma that resembles the canals of Hering and that has been reported to be associated with stem cell features. Due to its rarity, the nature of CLC remains unclear, and its pathological classification remains controversial. To clarify the positioning of CLC in primary liver cancers and identify characteristics that could distinguish CLC from other liver cancers, we performed integrated analyses using whole-exome sequencing (WES), immunohistochemistry, and a retrospective review of clinical information on eight CLC cases and two cases of recurrent CLC. WES demonstrated that CLC includes IDH1 and BAP1 mutations, which are characteristic of intrahepatic cholangiocarcinoma (iCCA). A mutational signature analysis showed a pattern similar to that of iCCA, which was different from that of hepatocellular carcinoma (HCC). CLC cells, including CK7, CK19, and EpCAM, were positive for cholangiocytic differentiation markers. However, the hepatocytic differentiation marker AFP and stem cell marker SALL4 were completely negative. The immunostaining patterns of CLC with CD56 and epithelial membrane antigen were similar to those of the noncancerous bile ductules. In contrast, mutational signature cluster analyses revealed that CLC formed a cluster associated with mismatch-repair deficiency (dMMR), which was separate from iCCA. Therefore, to evaluate MMR status, we performed immunostaining of four MMR proteins (PMS2, MSH6, MLH1, and MSH2) and detected dMMR in almost all CLCs. In conclusion, CLC had highly similar characteristics to iCCA but not to HCC. CLC can be categorized as a subtype of iCCA. In contrast, CLC has characteristics of dMMR tumors that are not found in iCCA, suggesting that it should be treated distinctly from iCCA. © 2024 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias de los Conductos Biliares , Neoplasias Encefálicas , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Colorrectales , Neoplasias Hepáticas , Síndromes Neoplásicos Hereditarios , Humanos , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Colangiocarcinoma/patología , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda