Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 3.736
Filtrar
Más filtros

Publication year range
1.
J Neurosci ; 44(17)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38438258

RESUMEN

Acetylcholine (ACh) is released from basal forebrain cholinergic neurons in response to salient stimuli and engages brain states supporting attention and memory. These high ACh states are associated with theta oscillations, which synchronize neuronal ensembles. Theta oscillations in the basolateral amygdala (BLA) in both humans and rodents have been shown to underlie emotional memory, yet their mechanism remains unclear. Here, using brain slice electrophysiology in male and female mice, we show large ACh stimuli evoke prolonged theta oscillations in BLA local field potentials that depend upon M3 muscarinic receptor activation of cholecystokinin (CCK) interneurons (INs) without the need for external glutamate signaling. Somatostatin (SOM) INs inhibit CCK INs and are themselves inhibited by ACh, providing a functional SOM→CCK IN circuit connection gating BLA theta. Parvalbumin (PV) INs, which can drive BLA oscillations in baseline states, are not involved in the generation of ACh-induced theta, highlighting that ACh induces a cellular switch in the control of BLA oscillatory activity and establishes an internally BLA-driven theta oscillation through CCK INs. Theta activity is more readily evoked in BLA over the cortex or hippocampus, suggesting preferential activation of the BLA during high ACh states. These data reveal a SOM→CCK IN circuit in the BLA that gates internal theta oscillations and suggest a mechanism by which salient stimuli acting through ACh switch the BLA into a network state enabling emotional memory.


Asunto(s)
Acetilcolina , Colecistoquinina , Ratones Endogámicos C57BL , Ritmo Teta , Ritmo Teta/efectos de los fármacos , Ritmo Teta/fisiología , Animales , Masculino , Ratones , Femenino , Acetilcolina/farmacología , Acetilcolina/metabolismo , Colecistoquinina/farmacología , Colecistoquinina/metabolismo , Interneuronas/fisiología , Interneuronas/efectos de los fármacos , Somatostatina/metabolismo , Somatostatina/farmacología , Amígdala del Cerebelo/fisiología , Amígdala del Cerebelo/efectos de los fármacos , Complejo Nuclear Basolateral/fisiología , Complejo Nuclear Basolateral/efectos de los fármacos , Red Nerviosa/fisiología , Red Nerviosa/efectos de los fármacos , Receptor Muscarínico M3/fisiología , Receptor Muscarínico M3/metabolismo , Parvalbúminas/metabolismo
2.
Am J Physiol Cell Physiol ; 326(1): C112-C124, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38047304

RESUMEN

The gut peptide cholecystokinin (CCK) is released during feeding and promotes satiation by increasing excitation of vagal afferent neurons that innervate the upper gastrointestinal tract. Vagal afferent neurons express CCK1 receptors (CCK1Rs) in the periphery and at central terminals in the nucleus of the solitary tract (NTS). While the effects of CCK have been studied for decades, CCK receptor signaling and coupling to membrane ion channels are not entirely understood. Previous findings have implicated L-type voltage-gated calcium channels as well as transient receptor potential (TRP) channels in mediating the effects of CCK, but the lack of selective pharmacology has made determining the contributions of these putative mediators difficult. The nonselective ion channel transient receptor potential vanilloid subtype 1 (TRPV1) is expressed throughout vagal afferent neurons and controls many forms of signaling, including spontaneous glutamate release onto NTS neurons. Here we tested the hypothesis that CCK1Rs couple directly to TRPV1 to mediate vagal signaling using fluorescent calcium imaging and brainstem electrophysiology. We found that CCK signaling at high concentrations (low-affinity binding) was potentiated in TRPV1-containing afferents and that TRPV1 itself mediated the enhanced CCK1R signaling. While competitive antagonism of TRPV1 failed to alter CCK1R signaling, TRPV1 pore blockade or genetic deletion (TRPV1 KO) significantly reduced the CCK response in cultured vagal afferents and eliminated its ability to increase spontaneous glutamate release in the NTS. Together, these results establish that TRPV1 mediates the low-affinity effects of CCK on vagal afferent activation and control of synaptic transmission in the brainstem.NEW & NOTEWORTHY Cholecystokinin (CCK) signaling via the vagus nerve reduces food intake and produces satiation, yet the signaling cascades mediating these effects remain unknown. Here we report that the capsaicin receptor transient receptor potential vanilloid subtype 1 (TRPV1) potentiates CCK signaling in the vagus and mediates the ability of CCK to control excitatory synaptic transmission in the nucleus of the solitary tract. These results may prove useful in the future development of CCK/TRPV1-based therapeutic interventions.


Asunto(s)
Ácido Glutámico , Canales de Potencial de Receptor Transitorio , Ácido Glutámico/metabolismo , Núcleo Solitario , Neuronas Aferentes/metabolismo , Nervio Vago , Colecistoquinina/farmacología , Canales de Potencial de Receptor Transitorio/metabolismo
3.
Mol Psychiatry ; 28(8): 3459-3474, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37365241

RESUMEN

Depression is a common and severe mental disorder. Evidence suggested a substantial causal relationship between stressful life events and the onset of episodes of major depression. However, the stress-induced pathogenesis of depression and the related neural circuitry is poorly understood. Here, we investigated how cholecystokinin (CCK) and CCKBR in the basolateral amygdala (BLA) are implicated in stress-mediated depressive-like behavior. The BLA mediates emotional memories, and long-term potentiation (LTP) is widely considered a trace of memory. We identified that the cholecystokinin knockout (CCK-KO) mice impaired LTP in the BLA, while the application of CCK4 induced LTP after low-frequency stimulation (LFS). The entorhinal cortex (EC) CCK neurons project to the BLA and optogenetic activation of EC CCK afferents to BLA-promoted stress susceptibility through the release of CCK. We demonstrated that EC CCK neurons innervate CCKBR cells in the BLA and CCK-B receptor knockout (CCKBR-KO) mice impaired LTP in the BLA. Moreover, the CCKBR antagonists also blocked high-frequency stimulation (HFS) induced LTP formation in the BLA. Notably, CCKBR antagonists infusion into the BLA displayed an antidepressant-like effect in the chronic social defeat stress model. Together, these results indicate that CCKBR could be a potential target to treat depression.


Asunto(s)
Complejo Nuclear Basolateral , Humanos , Ratones , Animales , Potenciación a Largo Plazo/fisiología , Receptor de Colecistoquinina B/fisiología , Depresión/tratamiento farmacológico , Colecistoquinina/farmacología , Colecistoquinina/fisiología
4.
J Physiol ; 601(12): 2391-2405, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36965132

RESUMEN

The exocrine pancreas secretes fluid and digestive enzymes in response to parasympathetic release of acetylcholine (ACh) via the vagus nerve and the gut hormone cholecystokinin (CCK). Both secretion of fluid and exocytosis of secretory granules containing enzymes and zymogens are dependent on an increase in the cytosolic [Ca2+ ] in acinar cells. It is thought that the specific spatiotemporal characteristics of the Ca2+ signals are fundamental for appropriate secretion and that these properties are disrupted in disease states in the pancreas. While extensive research has been performed to characterize Ca2+ signalling in acinar cells, this has exclusively been achieved in ex vivo preparations of exocrine cells, where it is difficult to mimic physiological conditions. Here we have developed a method to optically observe pancreatic acinar Ca2+ signals in vivo using a genetically expressed Ca2+ indicator and imaged with multi-photon microscopy in live animals. In vivo, acinar cells exhibited baseline activity in fasted animals, which was dependent on CCK1 receptors (CCK1Rs). Both stimulation of intrinsic nervous input and administration of systemic CCK induced oscillatory activity in a proportion of the cells, but the maximum frequencies were vastly different. Upon feeding, oscillatory activity was also observed, which was dependent on CCK1Rs. No evidence of a vago-vagal reflex mediating the effects of CCK was observed. Our in vivo method revealed the spatial and temporal profile of physiologically evoked Ca2+ signals, which will provide new insights into future studies of the mechanisms underlying exocrine physiology and that are disrupted in pathological conditions. KEY POINTS: In the exocrine pancreas, the spatiotemporal properties of Ca2+ signals are fundamentally important for the appropriate stimulation of secretion by the neurotransmitter acetylcholine and gut hormone cholecystokinin. These characteristics were previously defined in ex vivo studies. Here we report the spatiotemporal characteristics of Ca2+ signals in vivo in response to physiological stimulation in a mouse engineered to express a Ca2+ indicator in acinar cells. Specific Ca2+ 'signatures' probably important for stimulating secretion are evoked in vivo in fasted animals, by feeding, neural stimulation and cholecystokinin administration. The Ca2+ signals are probably the result of the direct action of ACh and CCK on acinar cells and not indirectly through a vago-vagal reflex.


Asunto(s)
Células Acinares , Páncreas Exocrino , Ratones , Animales , Acetilcolina/farmacología , Páncreas , Colecistoquinina/farmacología , Calcio/farmacología
5.
Am J Physiol Regul Integr Comp Physiol ; 324(4): R547-R555, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36847494

RESUMEN

Hindbrain growth hormone secretagogue receptor (GHSR) agonism increases food intake, yet the underlying neural mechanisms remain unclear. The functional effects of hindbrain GHSR antagonism by its endogenous antagonist liver-expressed antimicrobial peptide 2 (LEAP2) are also yet unexplored. To test the hypothesis that hindbrain GHSR agonism attenuates the food intake inhibitory effect of gastrointestinal (GI) satiation signals, ghrelin (at a feeding subthreshold dose) was administered to the fourth ventricle (4V) or directly to the nucleus tractus solitarius (NTS) before systemic delivery of the GI satiation signal cholecystokinin (CCK). Also examined, was whether hindbrain GHSR agonism attenuated CCK-induced NTS neural activation (c-Fos immunofluorescence). To investigate an alternate hypothesis that hindbrain GHSR agonism enhances feeding motivation and food seeking, intake stimulatory ghrelin doses were administered to the 4V and fixed ratio 5 (FR-5), progressive ratio (PR), and operant reinstatement paradigms for palatable food responding were evaluated. Also assessed were 4V LEAP2 delivery on food intake and body weight (BW) and on ghrelin-stimulated feeding. Both 4V and NTS ghrelin blocked the intake inhibitory effect of CCK and 4V ghrelin blocked CCK-induced NTS neural activation. Although 4V ghrelin increased low-demand FR-5 responding, it did not increase high-demand PR or reinstatement of operant responding. Fourth ventricle LEAP2 reduced chow intake and BW and blocked hindbrain ghrelin-stimulated feeding. Data support a role for hindbrain GHSR in bidirectional control of food intake through mechanisms that include interacting with the NTS neural processing of GI satiation signals but not food motivation and food seeking.


Asunto(s)
Hepcidinas , Receptores de Ghrelina , Receptores de Ghrelina/metabolismo , Ghrelina/farmacología , Ingestión de Alimentos , Núcleo Solitario/metabolismo , Colecistoquinina/farmacología
6.
Cerebellum ; 22(4): 756-760, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35733029

RESUMEN

This is a summary of the virtual presentation given at the 2021 meeting of the Society for Research on the Cerebellum and Ataxias, https://www.meetings.be/SRCA2021/ , where the therapeutic potential of the CCK-CCK1R pathway for treating diseases involving Purkinje cell degeneration was presented. Spinocerebellar ataxia type 1 (SCA1) is one of a group of almost 50 genetic diseases characterized by the degeneration of cerebellar Purkinje cells. The SCA1 Pcp2-ATXN1[30Q]D776 mouse model displays ataxia, i.e. Purkinje cell dysfunction, but lacks progressive Purkinje cell degeneration. RNA-seq revealed increased expression of cholecystokinin (CCK) in cerebella of Pcp2-ATXN1[30Q]D776 mice. Importantly, the absence of Cck1 receptor (CCK1R) in Pcp2-ATXN1[30Q]D776 mice conferred a progressive degenerative disease with Purkinje cell loss. Administration of a CCK1R agonist to Pcp2-AXTN1[82Q] mice reduced Purkinje cell pathology and associated deficits in motor performance. In addition, administration of the CCK1R agonist improved motor performance of Pcp2-ATXN2[127Q] SCA2 mice. Furthermore, CCK1R activation corrected mTORC1 signaling and improved the expression of calbindin in the cerebella of AXTN1[82Q] and ATXN2[127Q] mice. These results support the Cck-Cck1R pathway is a potential therapeutic target for the treatment of diseases involving Purkinje neuron degeneration.


Asunto(s)
Células de Purkinje , Ataxias Espinocerebelosas , Ratones , Animales , Células de Purkinje/fisiología , Colecistoquinina/farmacología , Colecistoquinina/metabolismo , Receptores de Colecistoquinina/metabolismo , Ataxina-1/genética , Ratones Transgénicos , Ataxias Espinocerebelosas/genética , Cerebelo/patología , Ataxia/genética , Modelos Animales de Enfermedad
7.
Gen Comp Endocrinol ; 342: 114352, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37517599

RESUMEN

In a fasting gastrointestinal tract, a characteristic cyclical rhythmic migrating motor complex (MMC) occur that comprises of three phases: I, II, and III. Among these, phase III contractions propagate from the stomach to the lower intestine in mammals, including humans, dogs, and Suncus murinus (suncus). Apart from the phase III of MMC propagating from the stomach, during the gastric phase II, small intestine-originated strong contractions propagate to the lower small intestine; however, the mechanism of contractions originating in the small intestine has not been clarified. In this study, we aimed to elucidate the role of cholecystokinin (CCK) in small intestinal motility. Administration of sulfated CCK-8 in phase I induced phase II-like contractions in the small intestine, which lasted for approximately 10-20 min and then returned to the baseline, while no change was observed in the stomach. Contractions of small intestine induced by CCK-8 were abolished by lorglumide, a CCK1 receptor antagonist. Gastrin, a ligand for the CCK2 receptor, evoked strong contractions in the stomach, but did not induce contractions in the small intestine. To examine the effect of endogenous CCK on contractions of small intestinal origin, lorglumide was administered during phase II. However, there was no change in the duodenal motility pattern, and strong contractions of small intestinal origin were not abolished by treatment with lorglumide. These results suggest that exogenous CCK stimulates contractions of small intestine via CCK1 receptors, whereas endogenous CCK is not involved in the strong contractions of small intestinal origin.


Asunto(s)
Motilidad Gastrointestinal , Sincalida , Humanos , Animales , Perros , Sincalida/farmacología , Complejo Mioeléctrico Migratorio/fisiología , Colecistoquinina/farmacología , Estómago , Musarañas , Receptores de Colecistoquinina
8.
Reprod Domest Anim ; 58(8): 1164-1171, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37332097

RESUMEN

In a previous study, our group detected the cholecystokinin (CCK) protein in the porcine oviduct. This fact, together with the involvement of CCK in the regulation of sperm protein tyrosine phosphorylation by the modulation of HCO3 - uptake (in mice and humans) suggests a role for CCK during sperm capacitation. Therefore, on the one hand, the expression of CCK receptors (CCK1R and CCK2R) on boar testes has been investigated and probed; on the other hand, boar spermatozoa (from seminal doses of 1-day and 5-day storage) were exposed to different concentrations of CCK (0-control, 25 or 50 µM) in a medium supporting capacitation supplemented with 0, 5 or 25 mmol/L of HCO3 - for 1 h at 38.5°C. Sperm motion (total and progressive motility), kinetic parameters, viability, acrosome status, and mitochondrial activity were determined. No differences between groups (0, 25 or 50 µM of CCK) were observed when HCO3 - was absent in the media (p > .05). However, the results showed that when the media was supplemented with 5 mmol/L HCO3 - in 1-day seminal dose storage, the linearity index (LIN, %), straightness index (STR, %) and oscillation index (WOB, %) (sperm kinetics parameters) increased in the presence of CCK regardless the concentration (p < .05). Nevertheless, CCK in sperm from 5-day storage only increased the WOB parameter in comparison to the control (p < .05). Furthermore, the average amplitude of the lateral displacement of the sperm head (ALH, µm) and curvilinear velocity (VCL, µm/s) decreased when CCK was present, depending on its concentration and sperm aging (1-day vs. 5-days) (p < .05). In the case of the media supporting capacitation supplemented with 25 mmol/L HCO3 - , any differences were observed except for sperm viability in the 5-day seminal doses, which increased in the 50 µM-CCK group compared to the control (p < .05). In conclusion, these data suggest an implication of CCK protein during sperm capacitation under low bicarbonate concentration increasing the sperm linear trajectory.


Asunto(s)
Bicarbonatos , Motilidad Espermática , Humanos , Porcinos , Masculino , Animales , Ratones , Bicarbonatos/farmacología , Motilidad Espermática/fisiología , Colecistoquinina/farmacología , Colecistoquinina/metabolismo , Semen/metabolismo , Espermatozoides/fisiología , Capacitación Espermática/fisiología
9.
Am J Physiol Endocrinol Metab ; 323(3): E267-E280, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35830689

RESUMEN

Others have shown that leptin and cholecystokinin (CCK) act synergistically to suppress food intake. Experiments described here tested whether leptin in the ventromedial hypothalamus (VMH) contributes to the synergy with peripheral CCK in male Sprague Dawley rats. A subthreshold injection of 50-ng leptin into the VMH 1 h before a peripheral injection of 1 µg/kg CCK did not change the response to CCK in rats offered chow or low-fat purified diet, but did exaggerate the reduction in intake of high-fat diet 30 min and 1 h after injection in rats that had been food deprived for 8 h. By contrast, deletion of leptin receptor-expressing cells in the VMH using leptin-conjugated saporin (Lep-Sap) abolished the response to peripheral CCK in chow-fed rats. Lateral ventricle injection of 2-µg leptin combined with peripheral CCK exaggerated the inhibition of chow intake for up to 6 h in control rats treated with Blank-saporin, but not in Lep-Sap rats. Blank-Saporin rats offered low- or high-fat purified diet also demonstrated a dose-response inhibition of intake that reached significance with 1 µg/kg of CCK for both diets. CCK did not inhibit intake of Lep-Sap rats in either low- or high-fat-fed rats. Thus, although basal activation of VMH leptin receptors makes a significant contribution to the synergy with CCK, increased leptin activity in the VMH does not exaggerate the response to CCK in intact rats offered low-fat diets, but does enhance the response in those offered high-fat diet.NEW & NOTEWORTHY Leptin is a feedback signal in the control of energy balance, whereas cholecystokinin (CCK) is a short-term satiety signal that inhibits meal size. The two hormones synergize to promote satiety. We tested whether leptin receptors in the ventromedial nucleus of the hypothalamus (VMH) contribute to the synergy. The results suggest that there is a requirement for a baseline level of activation of leptin receptors in the VMH in order for CCK to promote satiety.


Asunto(s)
Leptina , Receptores de Leptina , Animales , Colecistoquinina/farmacología , Leptina/metabolismo , Leptina/farmacología , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Saporinas , Núcleo Hipotalámico Ventromedial/metabolismo
10.
Chem Senses ; 472022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35427413

RESUMEN

Administration of cholecystokinin (CCK) or the glucagon-like peptide 1 (GLP-1) receptor agonist Exendin-4 (Ex-4) reduces food intake. Findings in the literature suggest CCK reduces intake primarily as a satiety signal whereas GLP-1 may play a role in both satiety and reward-related feeding signals. Compounds that humans describe as âsweetâ and âfattyâ are palatable yet are signaled via separate transduction pathways. Here, unconditioned lick responses to sucrose and intralipid were measured in a brief-access lick procedure in food-restricted male rats in response to i.p. administration of Ex-4 (3 h before test), CCK (30 min before test), or a combination of both. The current experimental design measures lick responses to water and varying concentrations of both sucrose (0.03, 0.1, and 0.5 M) and intralipid (0.2%, 2%, and 20%) during 10-s trials across a 30-min single test session. This design minimized postingestive influences. Compared with saline-injected controls, CCK (1.0, 3.0, or 6.0 µg/kg) did not change lick responses to sucrose or intralipid. Number of trials initiated and lick responses to both sucrose and intralipid were reduced in rats injected with 3.0 µg/kg, but not 1.0 µg/kg Ex-4. The supplement of CCK did not alter lick responses or trials initiated compared with Ex-4 administration alone. These findings support a role for GLP-1 but not CCK in the oral responsiveness to palatable stimuli. Furthermore, Ex-4-induced reductions were observed for both sucrose and intralipid, compounds representing âsweetâ and âfat,â respectively.


Asunto(s)
Colecistoquinina , Sacarosa , Animales , Colecistoquinina/farmacología , Ingestión de Alimentos , Emulsiones , Exenatida/farmacología , Péptido 1 Similar al Glucagón/farmacología , Masculino , Fosfolípidos , Ratas , Aceite de Soja , Sacarosa/farmacología
11.
Endocr Res ; 46(2): 57-65, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33426974

RESUMEN

The vagus nerve and the celiaco-mesenteric ganglia (CMG) are required for reduction of meal size (MS) and prolongation of the intermeal interval (IMI) by intraperitoneal (ip) sulfated cholecystokinin-8 (CCK-8). However, recently we have shown that the gut regulates these responses. Therefore, reevaluating the role of the vagus and the CMG in the feeding responses evoked by CCK is necessary because the gut contains the highest concentration of enteric, vagal and splanchnic afferents and CCK-A receptors, which are required for reduction of food intake by this peptide, compared to other abdominal organs. To address this necessity, we injected sulfated CCK-8 (0, 0.1, 0.5, 1 and 3 nmol/kg) in the aorta, near the gastrointestinal sites of action of the peptide, in three groups of free-feeding rats (n = 10 rats per group), subdiaphragmatic vagotomy (VGX), celiaco-mesenteric ganglionectomy (CMGX) and sham-operated, and recorded seven feeding responses. In the sham group, CCK-8 reduced MS (normal chow), prolonged the intermeal interval (IMI, time between first and second meals), increased satiety ratio (SR, IMI/MS), shortened duration of first meal, reduced total (24 hrs) food intake and reduced number of meals relative to saline vehicle. Vagotomy attenuated all of the previous responses except IMI length and SR, and CMGX attenuated all of those responses. In conclusion, the feeding responses evoked by sulfated CCK-8 require, independently, the vagus nerve and the CMG.


Asunto(s)
Conducta Animal/fisiología , Colecistoquinina/farmacología , Conducta Alimentaria/fisiología , Ganglios Simpáticos/fisiología , Fragmentos de Péptidos/farmacología , Saciedad/fisiología , Simpatectomía , Vagotomía , Nervio Vago/fisiología , Animales , Arteria Celíaca , Colecistoquinina/administración & dosificación , Conducta Alimentaria/efectos de los fármacos , Ganglios Simpáticos/cirugía , Masculino , Fragmentos de Péptidos/administración & dosificación , Ratas , Ratas Sprague-Dawley , Saciedad/efectos de los fármacos , Factores de Tiempo , Nervio Vago/cirugía
12.
Int J Mol Sci ; 22(24)2021 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-34948415

RESUMEN

Opioids are the most potent widely used analgesics, primarily, but not exclusively, in palliative care. However, they are associated with numerous side effects, such as tolerance, addiction, respiratory depression, and cardiovascular events. This, in turn, can result in their overuse in cases of addiction, the need for dose escalation in cases of developing tolerance, and the emergence of dose-related opioid toxicity, resulting in respiratory depression or cardiovascular problems that can even lead to unintentional death. Therefore, a very important challenge for researchers is to look for ways to counteract the side effects of opioids. The use of peptides and their related compounds, which have been shown to modulate the effects of opioids, may provide such an opportunity. This short review is a compendium of knowledge about the most important and recent findings regarding selected peptides and their modulatory effects on various opioid actions, including cardiovascular and respiratory responses. In addition to the peptides more commonly reported in the literature in the context of their pro- and/or anti-opioid activity-such as neuropeptide FF (NPFF), cholecystokinin (CCK), and melanocyte inhibiting factor (MIF)-we also included in the review nociceptin/orphanin (N/OFQ), ghrelin, oxytocin, endothelin, and venom peptides.


Asunto(s)
Analgésicos Opioides/uso terapéutico , Antagonistas de Narcóticos/uso terapéutico , Péptidos/uso terapéutico , Analgésicos Opioides/farmacología , Animales , Colecistoquinina/farmacología , Colecistoquinina/uso terapéutico , Tolerancia a Medicamentos , Ghrelina/farmacología , Ghrelina/uso terapéutico , Humanos , Antagonistas de Narcóticos/farmacología , Oligopéptidos/farmacología , Oligopéptidos/uso terapéutico , Péptidos Opioides/farmacología , Péptidos Opioides/uso terapéutico , Péptidos/farmacología , Receptores Opioides/metabolismo , Nociceptina
13.
Bull Exp Biol Med ; 171(5): 633-637, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34617181

RESUMEN

We studied the effect of CCK-8 on BP and blood content of CGRP in rats with hypertension caused by fructose or inhibition of NO synthase with L-NAME. The decrease in the CGRP content was found during the development of fructose-induced hypertension, but not L-NAME-caused hypertension. Administration of CCK-8 to fructose-fed animals reduced BP and increased the content of CGRP. In rats with hypertension caused by NO deficit, CCK-8 lowered BP, but did not affect the content of CGRP. These findings suggest that CGRP mediates the hypotensive effect of CCK-8 in fructose-induced hypertension, but not in NO-deficient hypertension.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Péptido Relacionado con Gen de Calcitonina/sangre , Colecistoquinina/farmacología , Hipertensión , Fragmentos de Péptidos/farmacología , Animales , Fructosa/efectos adversos , Hipertensión/sangre , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Hipertensión/fisiopatología , Resistencia a la Insulina , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos
14.
Am J Physiol Cell Physiol ; 318(4): C787-C796, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32073876

RESUMEN

Cholecystokinin (CCK) is a gut-derived peptide that potently promotes satiety and facilitates gastric function in part by activating G protein-coupled CCK1 receptors on primary vagal afferent neurons. CCK signaling is dynamic and rapidly desensitizes, due to decreases in either receptor function and the resulting signal cascade, ion channel effectors, or both. Here we report a decay-time analytical approach using fluorescent calcium imaging that relates peak and steady-state calcium responses in dissociated vagal afferent neurons, enabling discrimination between receptor and ion channel effector functions. We found desensitization of CCK-induced activation was predictable, consistent across cells, and strongly concentration dependent. The decay-time constant (tau) was inversely proportional to CCK concentration, apparently reflecting the extent of receptor activation. To test this possibility, we directly manipulated the ion channel effector(s) with either decreased bath calcium or the broad-spectrum pore blocker ruthenium red. Conductance inhibition diminished the magnitude of the CCK responses without altering decay kinetics, confirming changes in tau reflect changes in receptor function selectively. Next, we investigated the contributions of the PKC and PKA signaling cascades on the magnitude and decay-time constants of CCK calcium responses. While inhibition of either PKC or PKA increased CCK calcium response magnitude, only general PKC inhibition significantly decreased the decay-time constant. These findings suggest that PKC alters CCK receptor signaling dynamics, while PKA alters the ion channel effector of the CCK response. This analytical approach should prove useful in understanding receptor/effector changes underlying acute desensitization of G-protein coupled signaling and provide insight into CCK receptor dynamics.


Asunto(s)
Colecistoquinina/farmacología , Neuronas Aferentes/efectos de los fármacos , Ganglio Nudoso/efectos de los fármacos , Nervio Vago/efectos de los fármacos , Animales , Calcio/metabolismo , Neuronas/efectos de los fármacos , Neuronas Aferentes/citología , Neuronas Aferentes/fisiología , Ganglio Nudoso/citología , Ganglio Nudoso/fisiología , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
15.
Int J Obes (Lond) ; 44(2): 447-456, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31175319

RESUMEN

BACKGROUND/OBJECTIVES: Cholecystokinin (CCK) is a regulator of appetite and energy intake in man. The aim of this study was to determine the effect of NN9056, a long-acting CCK-1 receptor-selective CCK analogue, on food intake and body weight (BW) in obese Göttingen Minipigs. SUBJECTS/METHODS: Tolerability of NN9056 and acute effects on food intake, pancreas histology, amylase and lipase levels were assessed in lean domestic pigs in doses up to 100 nmol/kg (n = 3-4). Subsequently, obese Göttingen Minipigs were treated subcutaneously (s.c.) once daily for 13 weeks with vehicle, NN9056 low dose (regulated from 5 to 2 nmol/kg) or NN9056 high dose (10 nmol/kg) (n = 7-8). Food intake was measured daily and BW twice weekly. At the end of the treatment period, an intravenous glucose tolerance test (IVGTT) and a 24-h exposure profile was obtained. Data are mean ± SD. RESULTS: The acute studies in domestic pigs showed significant and dose-dependent effect of NN9056 on food intake, acceptable tolerability and no histopathological signs of pancreatitis. Sub-chronic treatment in obese Göttingen Minipigs was also well tolerated and accumulated food intake was significantly lower in both treated groups compared to vehicle, with no significant difference between the dose levels of NN9056 (41.8 ± 12.6, 51.5 ± 13.8 and 86.5 ± 19.5 kg in high-dose, low-dose and vehicle groups, respectively, p = 0.012 and p < 0.0001 for low and high dose vs. vehicle, respectively). Accordingly, there was a weight loss in both treated groups vs. a weight gain in the vehicle group (-7.2 ± 4.6%, -2.3 ± 3.2% and 12.3 ± 3.9% in the high-dose, low-dose and vehicle groups, respectively, p < 0.0001 for both vs. vehicle). IVGTT data were not significantly different between groups. CONCLUSION: NN9056, a long-acting CCK-1 receptor-selective CCK analogue, significantly reduced food intake and BW in obese Göttingen Minipigs after once daily s.c. dosing for 13 weeks.


Asunto(s)
Peso Corporal/efectos de los fármacos , Colecistoquinina , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Energía/efectos de los fármacos , Obesidad/metabolismo , Animales , Colecistoquinina/efectos adversos , Colecistoquinina/análogos & derivados , Colecistoquinina/metabolismo , Colecistoquinina/farmacología , Modelos Animales de Enfermedad , Femenino , Humanos , Unión Proteica , Porcinos , Porcinos Enanos
16.
Neurochem Res ; 45(9): 2173-2183, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32661781

RESUMEN

Cholecystokinin (CCK) had been the first gastrointestinal hormone known to exert anorexic effects. CCK had been inferred to contribute to the onset of functional dyspepsia (FD) symptoms. To understand the pathophysiology of FD, the roles of stress have to be clarified. In this study, we aimed to clarify the influence of stress on the action of cholecystokinin (CCK) on appetite and gastric emptying. Using rats, stress was simulated by giving restraint stress or intraperitoneal injection of the stress-related peptide hormone urocortin 1 (UCN1). The effects of CCK and restraint stress, alone or in combination, on food intake and gastric motility were examined, and c-Fos expression in the neurons of appetite control network in the central nervous system was assessed by immunohistochemical staining. CCK inhibited food intake and gastric emptying in a dose-dependent manner. Food intake for 1 h was significantly lower with UCN1 (2 nmol/kg) than with the saline control. Restraint stress amplified the suppressive effects of CCK on food intake for 1 h and on gastric emptying. With regard to brain function, the CCK induced c-Fos expression in the neurons of the nucleus tractus solitarius and paraventricular nucleus of the hypothalamus was markedly and significantly amplified by the addition of restraint stress with CCK. The results suggested that stress might amplify the anorexic effects of CCK through activation of the nuclei that comprise the brain neuronal network for satiation; this might play a role in the pathogenesis of the postprandial distress syndromes of functional dyspepsia.


Asunto(s)
Apetito/efectos de los fármacos , Colecistoquinina/farmacología , Vaciamiento Gástrico/efectos de los fármacos , Neuronas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Estrés Psicológico/fisiopatología , Animales , Encéfalo/citología , Encéfalo/metabolismo , Dispepsia/etiología , Ingestión de Alimentos/efectos de los fármacos , Masculino , Neuronas/metabolismo , Ratas Sprague-Dawley , Urocortinas/farmacología
17.
Molecules ; 25(10)2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32443832

RESUMEN

Farnesoid X receptor (FXR) and Takeda G-protein coupled receptor 5 (TGR5) are the two known bile acid (BA) sensitive receptors and are expressed in the intestine and liver as well as in extra-enterohepatic tissues. The physiological effects of extra-enterohepatic FXR/TRG5 remain unclear. Further, the extent BAs escape liver reabsorption and how they interact with extra-enterohepatic FXR/TGR5 is understudied. We investigated if hepatic BA reuptake differed between BAs agonistic for FXR and TGR5 compared to non-agonists in the rat. Blood was collected from the portal vein and inferior caval vein from anesthetized rats before and 5, 20, 30, and 40 min post stimulation with sulfated cholecystokinin-8. Plasma concentrations of 20 different BAs were assessed by liquid chromatography coupled to mass spectrometry. Total portal vein BA AUC was 3-4 times greater than in the vena cava inferior (2.7 ± 0.6 vs. 0.7 ± 0.2 mM x min, p < 0.01, n = 8) with total unconjugated BAs being 2-3-fold higher than total conjugated BAs (AUC 8-10 higher p < 0.05 for both). However, in both cases, absolute ratios varied greatly among different BAs. The average hepatic reuptake of BAs agonistic for FXR/TGR5 was similar to non-agonists. However, as the sum of non-agonist BAs in vena portae was 2-3-fold higher than the sum agonist (p < 0.05), the peripheral BA pool was composed mostly of non-agonist BAs. We conclude that hepatic BA reuptake varies substantially by type and does not favor FXR/TGR5 BAs agonists.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Acoplados a Proteínas G/genética , Animales , Ácidos y Sales Biliares/agonistas , Ácidos y Sales Biliares/genética , Colecistoquinina/farmacología , Intestinos/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Ratas
18.
J Physiol ; 597(6): 1605-1625, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30618146

RESUMEN

KEY POINTS: Excitatory glutamate neurons are sparse in the rostral hypothalamic arcuate nucleus (ARC), the subregion that has received the most attention in the past. In striking contrast, excitatory neurons are far more common (by a factor of 10) in the caudal ARC, an area which has received relatively little attention. These glutamate cells may play a negative role in energy balance and food intake. They can show an increase in phosphorylated Stat-3 in the presence of leptin, are electrically excited by the anorectic neuromodulator cholecystokinin, and inhibited by orexigenic neuromodulators neuropeptide Y, met-enkephalin, dynorphin and the catecholamine dopamine. The neurons project local axonal connections that excite other ARC neurons including proopiomelanocortin neurons that can play an important role in obesity. These data are consistent with models suggesting that the ARC glutamatergic neurons may play both a rapid and a slower role in acting as anorectic neurons in CNS control of food intake and energy homeostasis. ABSTRACT: Here we interrogate a unique class of excitatory neurons in the hypothalamic arcuate nucleus (ARC) that utilizes glutamate as a fast neurotransmitter using mice expressing GFP under control of the vesicular glutamate transporter 2 (vGluT2) promoter. These neurons show a unique distribution, synaptic characterization, cellular physiology and response to neuropeptides involved in energy homeostasis. Although apparently not previously appreciated, the caudal ARC showed a far greater density of vGluT2 cells than the rostral ARC, as seen in transgenic vGluT2-GFP mice and mRNA analysis. After food deprivation, leptin induced an increase in phosphorylated Stat-3 in vGluT2-positive neurons, indicating a response to hormonal cues of energy state. Based on whole-cell recording electrophysiology in brain slices, vGluT2 neurons were spontaneously active with a spike frequency around 2 Hz. vGluT2 cells were responsive to a number of neuropeptides related to energy homeostasis; they were excited by the anorectic peptide cholecystokinin, but inhibited by orexigenic neuropeptide Y, dynorphin and met-enkephalin, consistent with an anorexic role in energy homeostasis. Dopamine, associated with the hedonic aspect of enhancing food intake, inhibited vGluT2 neurons. Optogenetic excitation of vGluT2 cells evoked EPSCs in neighbouring neurons, indicating local synaptic excitation of other ARC neurons. Microdrop excitation of ARC glutamate cells in brain slices rapidly increased excitatory synaptic activity in anorexigenic proopiomelanocortin neurons. Together these data support the perspective that vGluT2 cells may be more prevalent in the ARC than previously appreciated, and play predominantly an anorectic role in energy metabolism.


Asunto(s)
Núcleo Arqueado del Hipotálamo/fisiología , Ingestión de Alimentos , Metabolismo Energético , Potenciales Postsinápticos Excitadores , Neuronas/metabolismo , Potenciales de Acción , Animales , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/metabolismo , Colecistoquinina/farmacología , Dopamina/farmacología , Dinorfinas/farmacología , Encefalina Metionina/farmacología , Ácido Glutámico/metabolismo , Homeostasis , Leptina/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/fisiología , Neuropéptido Y/farmacología , Proopiomelanocortina/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
19.
Am J Physiol Endocrinol Metab ; 316(4): E568-E577, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30753113

RESUMEN

Deletion of the leptin receptor from vagal afferent neurons (VAN) using a conditional deletion (Nav1.8/LepRfl/fl) results in an obese phenotype with increased food intake and lack of exogenous cholecystokinin (CCK)-induced satiation in male mice. Female mice are partially protected from weight gain and increased food intake in response to ingestion of high-fat (HF) diets. However, whether the lack of leptin signaling in VAN leads to an obese phenotype or disruption of hypothalamic-pituitary-gonadal axis function in female mice is unclear. Here, we tested the hypothesis that leptin signaling in VAN is essential to maintain estrogen signaling and control of food intake, energy expenditure, and adiposity in female mice. Female Nav1.8/LepRfl/fl mice gained more weight, had increased gonadal fat mass, increased meal number in the dark phase, and increased total food intake compared with wild-type controls. Resting energy expenditure was unaffected. The decrease in food intake produced by intraperitoneal injection of CCK (3 µg/kg body wt) was attenuated in female Nav1.8/LepRfl/fl mice compared with wild-type controls. Intraperitoneal injection of ghrelin (100 µg/kg body wt) increased food intake in Nav1.8/LepRfl/fl mice but not in wild-type controls. Ovarian steroidogenesis was suppressed, resulting in decreased plasma estradiol, which was accompanied by decreased expression of estrogen receptor-1 (Esr1) in VAN but not in the hypothalamic arcuate nucleus. These data suggest that the absence of leptin signaling in VAN is accompanied by disruption of estrogen signaling in female mice, leading to an obese phenotype possibly via altered control of feeding behavior.


Asunto(s)
Ingestión de Alimentos/genética , Conducta Alimentaria/fisiología , Neuronas Aferentes/metabolismo , Obesidad/genética , Receptores de Leptina/genética , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Peso Corporal/genética , Colecistoquinina/farmacología , Dieta Alta en Grasa , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético , Estradiol/metabolismo , Receptor alfa de Estrógeno/metabolismo , Estrógenos/metabolismo , Conducta Alimentaria/efectos de los fármacos , Femenino , Ghrelina/farmacología , Ratones , Obesidad/metabolismo , Saciedad , Nervio Vago/citología , Aumento de Peso/genética
20.
Am J Physiol Regul Integr Comp Physiol ; 317(1): R39-R48, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30916576

RESUMEN

In a previous study (Kissileff HR, Carretta JC, Geliebter A, Pi-Sunyer FX. Am J Physiol Regul Integr Comp Physiol 285: R992-R998, 2003), when subthreshold gastric distension (300 ml) and a low dose of cholecystokinin octapeptide (CCK-8) (112 ng/min for 21 min) were concurrently administered to human participants, intake of a test meal was significantly reduced. However, the supra-additive interaction of CCK-8 and gastric distension was not significant. The purpose of the present study was to determine whether a significant interaction would be obtained when CCK-8 and gastric distension were each increased by 50% above levels used in the previous study. Twelve normal-weight, healthy participants were tested four times each with either CCK-8 (168 ng/min for 30 min) or saline infusion crossed with gastric distension (450 ml) or no distension. The combination of CCK-8 and gastric distension reduced food intake by a mean of 405 ± 86 g (SE) in comparison with the saline nondistension condition (P < 0.001), which is a 51% reduction. Although there were some differences in the protocols, the combined effect was double that seen in the previous study. Although the interactive effect was larger [118 ± 109 g (SE)] than it was previously [73 ± 86 (SE)], it was not significant (P = 0.29). There were also reports of a short-lived sick feeling after CCK-8, with and without distension, that was not observed in the previous study. Thus the combination of CCK-8 at 1.5 times threshold and gastric distension at 450 ml (increased from 300 ml) resulted in a combined effect to reduce food intake, which was also 1.5 times its previous value, and thus appears linear.


Asunto(s)
Colecistoquinina/farmacología , Vaciamiento Gástrico , Fragmentos de Péptidos/farmacología , Respuesta de Saciedad/efectos de los fármacos , Adolescente , Adulto , Ingestión de Alimentos , Femenino , Humanos , Masculino , Estómago/efectos de los fármacos , Estómago/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda