RESUMEN
The Human Connectome Project (HCP) was launched in 2010 as an ambitious effort to accelerate advances in human neuroimaging, particularly for measures of brain connectivity; apply these advances to study a large number of healthy young adults; and freely share the data and tools with the scientific community. NIH awarded grants to two consortia; this retrospective focuses on the "WU-Minn-Ox" HCP consortium centered at Washington University, the University of Minnesota, and University of Oxford. In just over 6 years, the WU-Minn-Ox consortium succeeded in its core objectives by: 1) improving MR scanner hardware, pulse sequence design, and image reconstruction methods, 2) acquiring and analyzing multimodal MRI and MEG data of unprecedented quality together with behavioral measures from more than 1100 HCP participants, and 3) freely sharing the data (via the ConnectomeDB database) and associated analysis and visualization tools. To date, more than 27 Petabytes of data have been shared, and 1538 papers acknowledging HCP data use have been published. The "HCP-style" neuroimaging paradigm has emerged as a set of best-practice strategies for optimizing data acquisition and analysis. This article reviews the history of the HCP, including comments on key events and decisions associated with major project components. We discuss several scientific advances using HCP data, including improved cortical parcellations, analyses of connectivity based on functional and diffusion MRI, and analyses of brain-behavior relationships. We also touch upon our efforts to develop and share a variety of associated data processing and analysis tools along with detailed documentation, tutorials, and an educational course to train the next generation of neuroimagers. We conclude with a look forward at opportunities and challenges facing the human neuroimaging field from the perspective of the HCP consortium.
Asunto(s)
Conectoma/historia , Encéfalo/diagnóstico por imagen , Bases de Datos Factuales , Imagen de Difusión por Resonancia Magnética , Femenino , Historia del Siglo XXI , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Neuroimagen , Estudios RetrospectivosRESUMEN
Contrary to common psychosurgical practice in the 1950s, Dr. Jean Talairach had the intuition, based on clinical experience, that the brain connectome and neuroplasticity had a role to play in psychosurgery. Due to the remarkable progress of pharmacology at that time and to the technical limits of neurosurgery, these concepts were not put into practice. Currently, these concepts are being confirmed by modern techniques such as neuroimaging and computational neurosciences, and could pave the way for therapeutic innovation in psychiatry. Psychosurgery commonly uses a localizationist approach, based on the idea that a lesion to a specific area is responsible for a deficit opposite to its function. To psychosurgeons such as Walter Freeman, who performed extensive lesions causing apparently inevitable deficit, Talairach answered with clinical data: complex psychic functions cannot be described that simply, because the same lesion does not provoke the same deficit in different patients. Moreover, cognitive impairment did not always follow efficacious psychosurgery. Talairach suggested that selectively destructing part of a network could open the door to a new organization, and that early psychotherapy could encourage this psychoplasticity. Talairach did not have the opportunity to put these concepts into practice in psychiatric diseases because of the sudden availability of neuroleptics, but connectomics and neuroplasticity gave rise to major advances in intraparenchymal neurosurgery, from epilepsy to low-grade glioma. In psychiatry, alongside long-standing theories implicating focal lesions and diffuse pathological processes, neuroimaging techniques are currently being developed. In mentally healthy individuals, combining diffusion tensor imaging with functional MRI, magnetoencephalography, and electroencephalography allows the determination of a comprehensive map of neural connections in the brain on many spatial scales, the so-called connectome. Ultimately, global neurocomputational models could predict physiological activity, behavior, and subjective feeling, and describe neuropsychiatric disorders. Connectomic studies comparing psychiatric patients with controls have already confirmed the early intuitions of Talairach. As a striking example, massive dysconnectivity has been found in schizophrenia, leading some authors to propose a "dysconnection hypothesis." Alterations of the connectome have also been demonstrated in obsessive-compulsive disorder and depression. Furthermore, normalization of the functional dysconnectivity has been observed following clinical improvement in several therapeutic interventions, from psychotherapy to pharmacological treatments. Provided that mental disorders result from abnormal structural or functional wiring, targeted psychosurgery would require that one be able: 1) to identify the pathological network involved in a given patient; 2) to use neurostimulation to safely create a reversible and durable alteration, mimicking a lesion, in a network compatible with neuroplasticity; and 3) to predict which functional lesion would result in adapted neuronal plasticity and/or to guide neuronal plasticity to promote recovery. All these conditions, already suggested by Talairach, could now be achievable considering modern biomarkers and surgical progress.
Asunto(s)
Encéfalo , Conectoma/historia , Trastornos Mentales/historia , Red Nerviosa , Plasticidad Neuronal , Psicocirugía/historia , Encéfalo/patología , Encéfalo/fisiología , Conectoma/métodos , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Trastornos Mentales/patología , Trastornos Mentales/cirugía , Red Nerviosa/patología , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Neurocirujanos/historia , Psiquiatría/historia , Psicocirugía/métodosRESUMEN
The rich variation in cytoarchitectonics of the human cortex is well known to play an important role in the differentiation of cortical information processing, with functional multimodal areas noted to display more branched, more spinous, and an overall more complex cytoarchitecture. In parallel, connectome studies have suggested that also the macroscale wiring profile of brain areas may have an important contribution in shaping neural processes; for example, multimodal areas have been noted to display an elaborate macroscale connectivity profile. However, how these two scales of brain connectivity are related-and perhaps interact-remains poorly understood. In this communication, we combined data from the detailed mappings of early twentieth century cytoarchitectonic pioneers Von Economo and Koskinas (1925) on the microscale cellular structure of the human cortex with data on macroscale connectome wiring as derived from high-resolution diffusion imaging data from the Human Connectome Project. In a cross-scale examination, we show evidence of a significant association between cytoarchitectonic features of human cortical organization-in particular the size of layer 3 neurons-and whole-brain corticocortical connectivity. Our findings suggest that aspects of microscale cytoarchitectonics and macroscale connectomics are related. SIGNIFICANCE STATEMENT: One of the most widely known and perhaps most fundamental properties of the human cortex is its rich variation in cytoarchitectonics. At the same time, neuroimaging studies have also revealed cortical areas to vary in their level of macroscale connectivity. Here, we provide evidence that aspects of local cytoarchitecture are associated with aspects of global macroscale connectivity, providing insight into the question of how the scales of micro-organization and macro-organization of the human cortex are related.
Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/fisiología , Conectoma , Red Nerviosa/fisiología , Neuronas/fisiología , Conectoma/historia , Historia del Siglo XX , Humanos , Imagen por Resonancia MagnéticaRESUMEN
CoCoMac, the "Collation of Connectivity Data for the Macaque" is a relational database system which presently constitutes the largest electronic repository of published neuroanatomical connectivity data. Developed since 1996, CoCoMac comprises approximately 40,000 experimental findings on anatomical connections in the macaque brain, as derived from neuroanatomical tract tracing studies. In this historical review, I describe the origin and the history of CoCoMac from a personal perspective, illustrate the principles of its structure and outline the impact it has had on systems neuroscience, in particular as a prelude to the "Human Connectome" research programme.
Asunto(s)
Encéfalo/anatomía & histología , Conectoma/historia , Bases de Datos Factuales/historia , Macaca/anatomía & histología , Modelos Anatómicos , Modelos Neurológicos , Animales , Historia del Siglo XX , Historia del Siglo XXIRESUMEN
The article 'Structure of the nervous system of the nematode Caenorhabditis elegans' (aka 'The mind of a worm') by White et al., published for the first time the complete set of synaptic connections in the nervous system of an animal. The work was carried out as part of a programme to begin to understand how genes determine the structure of a nervous system and how a nervous system creates behaviour. It became a major stimulus to the field of C. elegans research, which has since contributed insights into all areas of biology. Twenty-six years elapsed before developments, notably more powerful computers, made new studies of this kind possible. It is hoped that one day knowledge of synaptic structure, the connectome, together with results of many other investigations, will lead to an understanding of the human brain. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.