Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 609
Filtrar
1.
Cell Mol Life Sci ; 78(5): 2247-2262, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32939562

RESUMEN

The neurotransmitter serotonin has been implicated in a range of complex neurological disorders linked to alterations of neuronal circuitry. Serotonin is synthesized in the developing brain before most neuronal circuits become fully functional, suggesting that serotonin might play a distinct regulatory role in shaping circuits prior to its function as a classical neurotransmitter. In this study, we asked if serotonin acts as a guidance cue by examining how serotonin alters growth cone motility of rodent sensory neurons in vitro. Using a growth cone motility assay, we found that serotonin acted as both an attractive and repulsive guidance cue through a narrow concentration range. Extracellular gradients of 50 µM serotonin elicited attraction, mediated by the serotonin 5-HT2a receptor while 100 µM serotonin elicited repulsion mediated by the 5-HT1b receptor. Importantly, high resolution imaging of growth cones indicated that these receptors signalled through their canonical pathways of endoplasmic reticulum-mediated calcium release and cAMP depletion, respectively. This novel characterisation of growth cone motility in response to serotonin gradients provides compelling evidence that secreted serotonin acts at the molecular level as an axon guidance cue to shape neuronal circuit formation during development.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Conos de Crecimiento/efectos de los fármacos , Células Receptoras Sensoriales/efectos de los fármacos , Serotonina/farmacología , Animales , Orientación del Axón/efectos de los fármacos , Axones/efectos de los fármacos , Axones/metabolismo , Calcio/metabolismo , Células Cultivadas , Femenino , Conos de Crecimiento/fisiología , Humanos , Ratas Sprague-Dawley , Receptor de Serotonina 5-HT1B , Receptores de Serotonina 5-HT2 , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo
2.
Nature ; 518(7539): 404-8, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25470046

RESUMEN

Contusive spinal cord injury leads to a variety of disabilities owing to limited neuronal regeneration and functional plasticity. It is well established that an upregulation of glial-derived chondroitin sulphate proteoglycans (CSPGs) within the glial scar and perineuronal net creates a barrier to axonal regrowth and sprouting. Protein tyrosine phosphatase σ (PTPσ), along with its sister phosphatase leukocyte common antigen-related (LAR) and the nogo receptors 1 and 3 (NgR), have recently been identified as receptors for the inhibitory glycosylated side chains of CSPGs. Here we find in rats that PTPσ has a critical role in converting growth cones into a dystrophic state by tightly stabilizing them within CSPG-rich substrates. We generated a membrane-permeable peptide mimetic of the PTPσ wedge domain that binds to PTPσ and relieves CSPG-mediated inhibition. Systemic delivery of this peptide over weeks restored substantial serotonergic innervation to the spinal cord below the level of injury and facilitated functional recovery of both locomotor and urinary systems. Our results add a new layer of understanding to the critical role of PTPσ in mediating the growth-inhibited state of neurons due to CSPGs within the injured adult spinal cord.


Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Regeneración Nerviosa , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Secuencia de Aminoácidos , Animales , Matriz Extracelular/química , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Femenino , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/fisiología , Humanos , Ratones , Datos de Secuencia Molecular , Regeneración Nerviosa/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/química , Traumatismos de la Médula Espinal/patología
3.
Biophys J ; 117(5): 880-891, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31427070

RESUMEN

Axonal beading, or the formation of a series of swellings along the axon, and retraction are commonly observed shape transformations that precede axonal atrophy in Alzheimer's disease, Parkinson's disease, and other neurodegenerative conditions. The mechanisms driving these morphological transformations are poorly understood. Here, we report controlled experiments that can induce either beading or retraction and follow the time evolution of these responses. By making quantitative analysis of the shape modes under different conditions, measurement of membrane tension, and using theoretical considerations, we argue that membrane tension is the main driving force that pushes cytosol out of the axon when microtubules are degraded, causing axonal thinning. Under pharmacological perturbation, atrophy is always retrograde, and this is set by a gradient in the microtubule stability. The nature of microtubule depolymerization dictates the type of shape transformation, vis-à-vis beading or retraction. Elucidating the mechanisms of these shape transformations may facilitate development of strategies to prevent or arrest axonal atrophy due to neurodegenerative conditions.


Asunto(s)
Axones/metabolismo , Microtúbulos/metabolismo , Actinas/metabolismo , Animales , Atrofia , Axones/efectos de los fármacos , Fenómenos Biomecánicos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Embrión de Pollo , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Imagenología Tridimensional , Membranas , Microtúbulos/efectos de los fármacos , Nocodazol/farmacología , Polimerizacion , Tiazolidinas/farmacología
4.
Genesis ; 57(7-8): e23301, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31038837

RESUMEN

Retinoic acid (RA), the active metabolite of vitamin A, functions through nuclear receptors, one of which is the retinoic acid receptor (RAR). Though the RAR is essential for various aspects of vertebrate development, little is known about the role of RAR in nonchordate invertebrates. Here, we examined the potential role of an invertebrate RAR in mediating chemotropic effects of retinoic acid. The RAR of the protostome Lymnaea stagnalis is present in the growth cones of regenerating cultured motorneurons, and a synthetic RAR agonist (EC23), was able to mimic the effects of retinoic acid in inducing growth cone turning. We also examined the ability of the natural retinoids, all-trans RA and 9-cis RA, as well as the synthetic RAR agonists, to disrupt embryonic development in Lymnaea. Developmental defects included delays in embryo hatching, arrested eye, and shell development, as well as more severe abnormalities such as halted development. Developmental defects induced by some (but not all) synthetic RAR agonists were found to mimic those induced by addition of high concentrations of the natural retinoid isomers. These pharmacological data support a possible physiological role for the RAR in axon guidance and embryonic development of an invertebrate protostome species.


Asunto(s)
Orientación del Axón , Embrión no Mamífero/metabolismo , Receptores de Ácido Retinoico/genética , Animales , Células Cultivadas , Embrión no Mamífero/efectos de los fármacos , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Lymnaea , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Receptores de Ácido Retinoico/agonistas , Receptores de Ácido Retinoico/metabolismo , Tretinoina/metabolismo , Tretinoina/farmacología
5.
J Neurosci ; 38(10): 2589-2604, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29440387

RESUMEN

Nogo receptor type 1 (NgR1) is known to inhibit neuronal regeneration in the CNS. Previously, we have shown that lateral olfactory tract usher substance (LOTUS) interacts with NgR1 and inhibits its function by blocking its ligand binding. Therefore, LOTUS is expected to have therapeutic potential for the promotion of neuronal regeneration. However, it remains unknown whether the soluble form of LOTUS (s-LOTUS) also has an inhibitory action on NgR1 function as a candidate for therapeutic agents. Here, we show that s-LOTUS inhibits NgR1-mediated signaling by inhibiting the molecular interaction between NgR1 and its coreceptor, p75 neurotrophin receptor (p75NTR). In contrast to the membrane-bound form of LOTUS, s-LOTUS did not block ligand binding to NgR1. However, we identified p75NTR as a novel LOTUS binding partner and found that s-LOTUS suppressed the interaction between p75NTR and NgR1. s-LOTUS inhibited myelin-associated inhibitor (MAI)-induced RhoA activation in murine cortical neurons. Functional analyses revealed that s-LOTUS inhibited MAI-induced growth cone collapse and neurite outgrowth inhibition in chick DRG neurons. In addition, whereas olfactory bulb neurons of lotus-KO mice are sensitive to MAI due to a lack of LOTUS expression, treatment with s-LOTUS inhibited MAI-induced growth cone collapse in these neurons. Finally, we observed that s-LOTUS promoted axonal regeneration in optic nerve crush injury of mice (either sex). These findings suggest that s-LOTUS inhibits NgR1-mediated signaling, possibly by interfering with the interaction between NgR1 and p75NTR Therefore, s-LOTUS may have potential as a therapeutic agent for neuronal regeneration in the damaged CNS.SIGNIFICANCE STATEMENT Nogo receptor type 1 (NgR1) is a receptor well known to inhibit neuronal regeneration in the CNS. Because the membrane-bound form of lateral olfactory tract usher substance (LOTUS) antagonizes NgR1 through a cis-type molecular interaction between LOTUS and NgR1, the soluble form of LOTUS (s-LOTUS) is expected to be a therapeutic agent for neuronal regeneration. In our present study, we show that s-LOTUS inhibits the interaction between NgR1 and p75NTR, NgR1 ligand-induced RhoA activation, growth cone collapse, and neurite outgrowth inhibition and promotes axonal regeneration. Our results indicate that s-LOTUS inhibits NgR1-mediated signaling through a trans-type molecular interaction between LOTUS and NgR1 and, therefore, s-LOTUS may have therapeutic potential for neuronal regeneration.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Receptor Nogo 1/efectos de los fármacos , Receptores de Factor de Crecimiento Nervioso/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Embrión de Pollo , Femenino , Conos de Crecimiento/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Glicoproteína Asociada a Mielina/antagonistas & inhibidores , Compresión Nerviosa , Regeneración Nerviosa/efectos de los fármacos , Neuritas/efectos de los fármacos , Neuronas/efectos de los fármacos , Receptor Nogo 1/metabolismo , Bulbo Olfatorio/citología , Bulbo Olfatorio/efectos de los fármacos , Proteínas de Unión al GTP rho/antagonistas & inhibidores , Proteína de Unión al GTP rhoA
6.
J Cell Sci ; 129(20): 3878-3891, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27591261

RESUMEN

The cellular prion protein (PrPC), encoded by the PRNP gene, is a ubiquitous glycoprotein, which is highly expressed in the brain. This protein, mainly known for its role in neurodegenerative diseases, is involved in several physiological processes including neurite outgrowth. By using a novel focal stimulation technique, we explored the potential function of PrPC, in its soluble form, as a signaling molecule. Thus, soluble recombinant prion proteins (recPrP) encapsulated in micro-vesicles were released by photolysis near the hippocampal growth cones. Local stimulation of wild-type growth cones with full-length recPrP induced neurite outgrowth and rapid growth cone turning towards the source. This effect was shown to be concentration dependent. Notably, PrPC-knockout growth cones were insensitive to recPrP stimulation, but this property was rescued in PrP-knockout growth cones expressing GFP-PrP. Taken together, our findings indicate that recPrP functions as a signaling molecule, and that its homophilic interaction with membrane-anchored PrPC might promote neurite outgrowth and facilitate growth cone guidance.


Asunto(s)
Neuritas/metabolismo , Proteínas Priónicas/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Ratones , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuritas/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Recombinantes/metabolismo , Transducción de Señal/efectos de los fármacos
7.
PLoS Biol ; 13(3): e1002119, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25826604

RESUMEN

During nervous system development, gradients of Sonic Hedgehog (Shh) and Netrin-1 attract growth cones of commissural axons toward the floor plate of the embryonic spinal cord. Mice defective for either Shh or Netrin-1 signaling have commissural axon guidance defects, suggesting that both Shh and Netrin-1 are required for correct axon guidance. However, how Shh and Netrin-1 collaborate to guide axons is not known. We first quantified the steepness of the Shh gradient in the spinal cord and found that it is mostly very shallow. We then developed an in vitro microfluidic guidance assay to simulate these shallow gradients. We found that axons of dissociated commissural neurons respond to steep but not shallow gradients of Shh or Netrin-1. However, when we presented axons with combined Shh and Netrin-1 gradients, they had heightened sensitivity to the guidance cues, turning in response to shallower gradients that were unable to guide axons when only one cue was present. Furthermore, these shallow gradients polarized growth cone Src-family kinase (SFK) activity only when Shh and Netrin-1 were combined, indicating that SFKs can integrate the two guidance cues. Together, our results indicate that Shh and Netrin-1 synergize to enable growth cones to sense shallow gradients in regions of the spinal cord where the steepness of a single guidance cue is insufficient to guide axons, and we identify a novel type of synergy that occurs when the steepness (and not the concentration) of a guidance cue is limiting.


Asunto(s)
Conos de Crecimiento/efectos de los fármacos , Proteínas Hedgehog/farmacología , Factores de Crecimiento Nervioso/farmacología , Médula Espinal/efectos de los fármacos , Proteínas Supresoras de Tumor/farmacología , Familia-src Quinasas/genética , Animales , Quimiotaxis/fisiología , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Proteínas Hedgehog/deficiencia , Proteínas Hedgehog/genética , Dispositivos Laboratorio en un Chip , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Imagen Molecular , Factores de Crecimiento Nervioso/deficiencia , Factores de Crecimiento Nervioso/genética , Netrina-1 , Cultivo Primario de Células , Transducción de Señal , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo , Médula Espinal/ultraestructura , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Familia-src Quinasas/metabolismo
8.
PLoS Biol ; 13(10): e1002286, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26496209

RESUMEN

The molecular composition of the cannabinoid type 1 (CB1) receptor complex beyond the classical G-protein signaling components is not known. Using proteomics on mouse cortex in vivo, we pulled down proteins interacting with CB1 in neurons and show that the CB1 receptor assembles with multiple members of the WAVE1 complex and the RhoGTPase Rac1 and modulates their activity. Activation levels of CB1 receptor directly impacted on actin polymerization and stability via WAVE1 in growth cones of developing neurons, leading to their collapse, as well as in synaptic spines of mature neurons, leading to their retraction. In adult mice, CB1 receptor agonists attenuated activity-dependent remodeling of dendritic spines in spinal cord neurons in vivo and suppressed inflammatory pain by regulating the WAVE1 complex. This study reports novel signaling mechanisms for cannabinoidergic modulation of the nervous system and demonstrates a previously unreported role for the WAVE1 complex in therapeutic applications of cannabinoids.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Lóbulo Frontal/metabolismo , Plasticidad Neuronal , Neuronas/metabolismo , Lóbulo Parietal/metabolismo , Receptor Cannabinoide CB1/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Animales , Células COS , Cannabinoides/farmacología , Células Cultivadas , Chlorocebus aethiops , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Embrión de Mamíferos/citología , Lóbulo Frontal/citología , Lóbulo Frontal/efectos de los fármacos , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Lóbulo Parietal/citología , Lóbulo Parietal/efectos de los fármacos , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo
9.
Br J Anaesth ; 120(4): 745-760, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29576115

RESUMEN

BACKGROUND: Exposure of the developing brain to propofol results in cognitive deficits. Recent data suggest that inhibition of neuronal apoptosis does not prevent cognitive defects, suggesting mechanisms other than neuronal apoptosis play a role in anaesthetic neurotoxicity. Proper neuronal growth during development is dependent upon growth cone morphology and axonal transport. Propofol modulates actin dynamics in developing neurones, causes RhoA-dependent depolymerisation of actin, and reduces dendritic spines and synapses. We hypothesised that RhoA inhibition prevents synaptic loss and subsequent cognitive deficits. The present study tested whether RhoA inhibition with the botulinum toxin C3 (TAT-C3) prevents propofol-induced synapse and neurite loss, and preserves cognitive function. METHODS: RhoA activation, growth cone morphology, and axonal transport were measured in neonatal rat neurones (5-7 days in vitro) exposed to propofol. Synapse counts (electron microscopy), dendritic arborisation (Golgi-Cox), and network connectivity were measured in mice (age 28 days) previously exposed to propofol at postnatal day 5-7. Memory was assessed in adult mice (age 3 months) previously exposed to propofol at postnatal day 5-7. RESULTS: Propofol increased RhoA activation, collapsed growth cones, and impaired retrograde axonal transport of quantum dot-labelled brain-derived neurotrophic factor, all of which were prevented with TAT-C3. Adult mice previously treated with propofol had decreased numbers of total hippocampal synapses and presynaptic vesicles, reduced hippocampal dendritic arborisation, and infrapyramidal mossy fibres. These mice also exhibited decreased hippocampal-dependent contextual fear memory recall. All anatomical and behavioural changes were prevented with TAT-C3 pre-treatment. CONCLUSION: Inhibition of RhoA prevents propofol-mediated hippocampal neurotoxicity and associated cognitive deficits.


Asunto(s)
Transporte Axonal/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Conos de Crecimiento/efectos de los fármacos , Propofol , Sinapsis/efectos de los fármacos , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Animales , Toxinas Botulínicas , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Hipnóticos y Sedantes , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Síndromes de Neurotoxicidad , Ratas , Ratas Sprague-Dawley , Proteína de Unión al GTP rhoA/genética
10.
Int J Mol Sci ; 19(2)2018 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-29382077

RESUMEN

A crucial neuronal structure for the development and regeneration of neuronal networks is the axonal growth cone. Affected by different guidance cues, it grows in a predetermined direction to reach its final destination. One of those cues is the vascular endothelial growth factor (VEGF), which was identified as a positive effector for growth cone movement. These positive effects are mainly mediated by a reorganization of the actin network. This study shows that VEGF triggers a tight colocalization of cofilin and the Arp2/3 complex to the actin cytoskeleton within chicken dorsal root ganglia (DRG). Live cell imaging after microinjection of GFP (green fluorescent protein)-cofilin and RFP (red fluorescent protein)-LifeAct revealed that both labeled proteins rapidly redistributed within growth cones, and showed a congruent distribution pattern after VEGF supplementation. Disruption of signaling upstream of cofilin via blocking LIM-kinase (LIMK) activity resulted in growth cones displaying regressive growth behavior. Microinjection of GFP-p16b (a subunit of the Arp2/3 complex) and RFP-LifeAct revealed that both proteins redistributed into lamellipodia of the growth cone within minutes after VEGF stimulation. Disruption of the signaling to the Arp2/3 complex in the presence of VEGF by inhibition of N-WASP (neuronal Wiskott-Aldrich-Scott protein) caused retraction of growth cones. Hence, cofilin and the Arp2/3 complex appear to be downstream effector proteins of VEGF signaling to the actin cytoskeleton of DRG growth cones. Our data suggest that VEGF simultaneously affects different pathways for signaling to the actin cytoskeleton, since activation of cofilin occurs via inhibition of LIMK, whereas activation of Arp2/3 is achieved by stimulation of N-WASP.


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Conos de Crecimiento/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Animales , Células Cultivadas , Embrión de Pollo , Ganglios Espinales/citología , Conos de Crecimiento/efectos de los fármacos , Quinasas Lim/metabolismo , Transporte de Proteínas , Proteína del Síndrome de Wiskott-Aldrich/metabolismo
11.
Int J Mol Sci ; 19(9)2018 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-30217012

RESUMEN

Retinoic acid (RA) is the biologically active metabolite of vitamin A and has become a well-established factor that induces neurite outgrowth and regeneration in both vertebrates and invertebrates. However, the underlying regulatory mechanisms that may mediate RA-induced neurite sprouting remain unclear. In the past decade, microRNAs have emerged as important regulators of nervous system development and regeneration, and have been shown to contribute to processes such as neurite sprouting. However, few studies have demonstrated the role of miRNAs in RA-induced neurite sprouting. By miRNA sequencing analysis, we identify 482 miRNAs in the regenerating central nervous system (CNS) of the mollusc Lymnaeastagnalis, 219 of which represent potentially novel miRNAs. Of the remaining conserved miRNAs, 38 show a statistically significant up- or downregulation in regenerating CNS as a result of RA treatment. We further characterized the expression of one neuronally-enriched miRNA upregulated by RA, miR-124. We demonstrate, for the first time, that miR-124 is expressed within the cell bodies and neurites of regenerating motorneurons. Moreover, we identify miR-124 expression within the growth cones of cultured ciliary motorneurons (pedal A), whereas expression in the growth cones of another class of respiratory motorneurons (right parietal A) was absent in vitro. These findings support our hypothesis that miRNAs are important regulators of retinoic acid-induced neuronal outgrowth and regeneration in regeneration-competent species.


Asunto(s)
MicroARNs/fisiología , Moluscos/efectos de los fármacos , Moluscos/crecimiento & desarrollo , Tretinoina/farmacología , Animales , Sistema Nervioso Central , Conos de Crecimiento/efectos de los fármacos , MicroARNs/genética , Neuronas/efectos de los fármacos
12.
J Biol Chem ; 291(3): 1092-102, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26598525

RESUMEN

The low-density lipoprotein receptor-related protein receptors 1 and 2 (LRP1 and LRP2) are emerging as important cell signaling mediators in modulating neuronal growth and repair. We examined whether LRP1 and LRP2 are able to mediate a specific aspect of neuronal growth: axon guidance. We sought to identify LRP1 and LRP2 ligands that could induce axonal chemoattraction, which might have therapeutic potential. Using embryonic sensory neurons (rat dorsal root ganglia) in a growth cone turning assay, we tested a range of LRP1 and LRP2 ligands for the ability to guide growth cone navigation. Three ligands were chemorepulsive: α-2-macroglobulin, tissue plasminogen activator, and metallothionein III. Conversely, only one LRP ligand, metallothionein II, was found to be chemoattractive. Chemoattraction toward a gradient of metallothionein II was calcium-dependent, required the expression of both LRP1 and LRP2, and likely involves further co-receptors such as the tropomyosin-related kinase A (TrkA) receptor. The potential for LRP-mediated chemoattraction to mediate axonal regeneration was examined in vivo in a model of chemical denervation in adult rats. In these in vivo studies, metallothionein II was shown to enhance epidermal nerve fiber regeneration so that it was complete within 7 days compared with 14 days in saline-treated animals. Our data demonstrate that both LRP1 and LRP2 are necessary for metallothionein II-mediated chemotactic signal transduction and that they may form part of a signaling complex. Furthermore, the data suggest that LRP-mediated chemoattraction represents a novel, non-classical signaling system that has therapeutic potential as a disease-modifying agent for the injured peripheral nervous system.


Asunto(s)
Axones/fisiología , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/agonistas , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/agonistas , Regeneración Nerviosa , Proteínas del Tejido Nervioso/agonistas , Neurogénesis , Nervios Periféricos/fisiología , Animales , Axones/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Quimiotaxis/efectos de los fármacos , Epidermis/efectos de los fármacos , Epidermis/inervación , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/fisiología , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Ligandos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/antagonistas & inhibidores , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/antagonistas & inhibidores , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Masculino , Metalotioneína/farmacología , Metalotioneína/uso terapéutico , Regeneración Nerviosa/efectos de los fármacos , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/efectos de los fármacos , Nervios Periféricos/citología , Nervios Periféricos/efectos de los fármacos , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Interferencia de ARN , Conejos , Ratas Sprague-Dawley
13.
Mol Cell Neurosci ; 74: 71-7, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27074429

RESUMEN

Lipid mediator prostaglandin E2 (PGE2) is an endogenous signaling molecule that plays an important role during early development of the nervous system. Abnormalities in the PGE2 signaling pathway have been associated with neurodevelopmental disorders such as autism spectrum disorders. In this study we use ratiometric fura-2AM calcium imaging to show that higher levels of PGE2 elevate intracellular calcium levels in the cell soma and growth cones of differentiated neuroectodermal (NE-4C) stem cells. PGE2 also increased the amplitude of calcium fluctuation in the neuronal growth cones and affected the neurite extension length. In summary, our results show that PGE2 may adversely impact intracellular calcium dynamics in differentiated neuronal cells and possibly affect early development of the nervous system.


Asunto(s)
Señalización del Calcio , Dinoprostona/farmacología , Células Madre Embrionarias/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Animales , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Ratones , Placa Neural/citología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Proyección Neuronal
14.
Dev Dyn ; 245(6): 667-77, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27005305

RESUMEN

BACKGROUND: Antioxidants such as the green tea polyphenol epigallocatechin gallate (EGCG) are neuroprotective under many conditions in mature nervous systems; however, their impact has rarely been explored in developing nervous systems, in which a critical step is the formation of connections between neurons. Axons emerge from newly formed neurons and are led by a dynamic structure found at their tip called a growth cone. Here we explore the impact of EGCG on the development of retinal ganglion cell (RGC) axons, which connect the eye to the brain. RESULTS: EGCG acts directly on RGC axons to increase the number of growth cone filopodia, fingerlike projections that respond to extrinsic signals, in vitro and in vivo. Furthermore, EGCG exposure leads to a dramatic defect in the guided growth of RGC axons where the axons fail to make a key turn in the mid-diencephalon required to reach their target. Intriguingly, at guidance points where RGCs do not show a change in direction, EGCG has no influence on RGC axon behavior. CONCLUSIONS: We propose that EGCG stabilizes filopodia and prevents normal filopodial dynamics required for axons to change their direction of outgrowth at guidance decision points. Developmental Dynamics 245:667-677, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Axones/efectos de los fármacos , Axones/metabolismo , Catequina/análogos & derivados , Conos de Crecimiento/efectos de los fármacos , Seudópodos/efectos de los fármacos , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Orientación del Axón/efectos de los fármacos , Encéfalo/citología , Encéfalo/efectos de los fármacos , Catequina/farmacología , Gonadotropina Coriónica/farmacología , Diencéfalo/citología , Diencéfalo/efectos de los fármacos , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Femenino , Humanos , Hibridación in Situ , Neurogénesis/efectos de los fármacos , Retina/citología , Retina/efectos de los fármacos , Xenopus
15.
J Neurosci ; 35(40): 13713-9, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26446223

RESUMEN

Serine palmitoyltransferase (SPT) is a key enzyme in the first step of sphingolipid biosynthesis. Mutations in the SPTLC1 gene that encodes for SPT subunits cause hereditary sensory neuropathy type 1. However, little is understood about how mutant SPT regulates mechanisms of sensory neuron and axonal growth. Using transgenic mice overexpressing the C133W SPT mutant, we found that mutant dorsal root ganglia (DRG) during growth in vitro exhibit increased neurite length and branching, coinciding with elevated expression of actin-cross-linking proteins at the neuronal growth cone, namely phosphorylated Ezrin/Radixin/Moesin. In addition, inhibition of SPT was able to reverse the mutant phenotype. Because mutant SPT preferentially uses l-alanine over its canonical substrate l-serine, we also investigated the effects of substrate availability on DRG neurons. Supplementation with l-serine or removal of l-alanine independently restored normal growth patterns in mutant SPTLC1(C133W) DRG. Therefore, we report that substrate availability and selectivity of SPT influence the regulation of neurite growth in DRG neurons. SIGNIFICANCE STATEMENT: Hereditary sensory neuropathy type 1 is an autosomal-dominant disorder that leads to a sensory neuropathy due to mutations in the serine palmitoyltransferase (SPT) enzyme. We investigated how mutant SPT and substrate levels regulate neurite growth. Because SPT is an important enzyme in the synthesis of sphingolipids, our data are of broader significance to other peripheral and metabolic disorders.


Asunto(s)
Ganglios Espinales/citología , Conos de Crecimiento/fisiología , Mutación/genética , Neuronas/fisiología , Dinámicas no Lineales , Serina C-Palmitoiltransferasa/genética , Alanina/farmacología , Análisis de Varianza , Animales , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Ácidos Grasos Monoinsaturados/farmacología , Conos de Crecimiento/efectos de los fármacos , Inmunosupresores/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Serina/farmacología , Especificidad por Sustrato , Factores de Transcripción/metabolismo
16.
J Neurochem ; 138(4): 532-45, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27167578

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) modulate the growth and structure of neurons throughout the nervous system. Ligand stimulation of the α7 nAChR has been shown to regulate the large heterotrimeric GTP-binding protein (G protein) signaling in various types of cells. Here, we demonstrate a role for α7 nAChR/G protein interaction in the activation of the small (monomeric) RhoA GTPase leading to cytoskeletal changes during neurite growth. Treatment of PC12 cells with the α7 nAChR agonist choline or PNU-282987 was associated with an increase in RhoA activity and an inhibition in neurite growth. Specifically, choline treatment was found to attenuate the velocity of microtubule growth at the growth cone and decrease the rate of actin polymerization throughout the cell. The effects of α7 nAChR activation were abolished by expression of a dominant negative α7 nAChR (α7345-348A ) deficient in G protein coupling. Proteomic analysis of immunoprecipitated α7 nAChR complexes from differentiating PC12 cells and synaptic fractions of the developing mouse hippocampus revealed the existence of Rho GTPase-regulating guanine nucleotide exchange factors within α7 nAChR interactomes. These findings underscore the role of α7 nAChR/G protein in cytoskeletal regulation during neurite growth. This image depicts the hypothesized interaction of the traditionally ionotropic α7 nicotinic acetylcholine receptor (α7 nAChR) and its ability to interact and signal through both large and small G proteins, leading to the regulation of cytoskeletal growth. Using differentiated PC12 cells, and the specific agonist choline, it was shown that α7 nAChR/G protein interactions mediate both short- and long-term neurite growth dynamics through increased RhoA activation. Activation of RhoA was shown to decrease actin polymerization, and lead to an overall decrease in neurite growth via regulation of the microtubule network. Cover Image for this issue: doi: 10.1111/jnc.13330.


Asunto(s)
Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Benzamidas/farmacología , Compuestos Bicíclicos con Puentes/farmacología , Señalización del Calcio/fisiología , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Activación Enzimática , Femenino , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Masculino , Ratones Endogámicos C57BL , Microtúbulos/metabolismo , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Agonistas Nicotínicos/farmacología , Células PC12 , Ratas , Receptor Nicotínico de Acetilcolina alfa 7/efectos de los fármacos
17.
J Cell Sci ; 127(Pt 1): 230-9, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24198394

RESUMEN

The polarisation of developing neurons to form axons and dendrites is required for the establishment of neuronal connections leading to proper brain function. The protein kinase AKT and the MAP kinase scaffold protein JNK-interacting protein-1 (JIP1) are important regulators of axon formation. Here we report that JIP1 and AKT colocalise in axonal growth cones of cortical neurons and collaborate to promote axon growth. The loss of AKT protein from the growth cone results in the degradation of JIP1 by the proteasome, and the loss of JIP1 promotes a similar fate for AKT. Reduced protein levels of both JIP1 and AKT in the growth cone can be induced by glutamate and this coincides with reduced axon growth, which can be rescued by a stabilized mutant of JIP1 that rescues AKT protein levels. Taken together, our data reveal a collaborative relationship between JIP1 and AKT that is required for axon growth and can be regulated by changes in neuronal activity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Corteza Cerebral/metabolismo , Regulación del Desarrollo de la Expresión Génica , Conos de Crecimiento/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Embrión de Mamíferos , Ácido Glutámico/farmacología , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/ultraestructura , Ratones , Ratones Endogámicos C57BL , Cultivo Primario de Células , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
18.
Cells Tissues Organs ; 201(5): 342-53, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27160668

RESUMEN

The vitamin folic acid (FA) is essential for DNA synthesis, repair and methylation, and for methionine synthesis. Although it is necessary for neural development, recent studies suggest a possible link between excess maternal supplemental FA intake and adverse interferences with single-carbon metabolism and neural development. Insufficient FA early in brain development can lead to failure of the neural tube closure, but the consequences of too much intake have not been fully investigated. Plasma FA concentrations can increase greatly with dietary supplementation. To model the development of neural connectivity, we cultured dorsal root ganglia (DRGs) taken from 8-day-old chick embryos in a range of pteroylmonoglutamate (PteGlu, synthetic supplemental FA) concentrations. DRGs were cultured for 36 h, fixed and immunostained to reveal the locations of neural networks with synaptic vesicles. We found a concentration-dependent relationship with significant reduction in neurite length in PteGlu concentrations from 0.25 to 20 µM. The average total of stained synaptic areas surrounding each cultured DRG was significantly reduced as well. To further characterize the effects, we carried out time-lapse imaging of growth cones at terminals of extending neurites. We found that PteGlu reduced the area-changing activity of the growth cone, hindering its exploratory capabilities, along with a tendency to inhibit overall advancement, thus altering the ability to extend and form synapses. Our results show that PteGlu at 250 nM and higher reduces neurite extension and synapse formation in a dose-dependent manner during neurogenesis, and that its effect is mediated through inhibition of growth cone motility.


Asunto(s)
Ácido Fólico/farmacología , Ganglios Espinales/fisiología , Red Nerviosa/fisiología , Neurogénesis/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Ganglios Espinales/efectos de los fármacos , Ácido Glutámico/farmacología , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Leucovorina/farmacología , Red Nerviosa/efectos de los fármacos , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Imagen de Lapso de Tiempo
19.
BMC Biol ; 13: 10, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25729914

RESUMEN

BACKGROUND: Normal brain function depends on the development of appropriate patterns of neural connections. A critical role in guiding axons to their targets during neural development is played by neuronal growth cones. These have a complex and rapidly changing morphology; however, a quantitative understanding of this morphology, its dynamics and how these are related to growth cone movement, is lacking. RESULTS: Here we use eigenshape analysis (principal components analysis in shape space) to uncover the set of five to six basic shape modes that capture the most variance in growth cone form. By analysing how the projections of growth cones onto these principal modes evolve in time, we found that growth cone shape oscillates with a mean period of 30 min. The variability of oscillation periods and strengths between different growth cones was correlated with their forward movement, such that growth cones with strong, fast shape oscillations tended to extend faster. A simple computational model of growth cone shape dynamics based on dynamic microtubule instability was able to reproduce quantitatively both the mean and variance of oscillation periods seen experimentally, suggesting that the principal driver of growth cone shape oscillations may be intrinsic periodicity in cytoskeletal rearrangements. CONCLUSIONS: Intrinsically driven shape oscillations are an important component of growth cone shape dynamics. More generally, eigenshape analysis has the potential to provide new quantitative information about differences in growth cone behaviour in different conditions.


Asunto(s)
Conos de Crecimiento/metabolismo , Animales , Quimiotaxis/efectos de los fármacos , Bases de Datos como Asunto , Vidrio , Conos de Crecimiento/efectos de los fármacos , Ratones , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Modelos Biológicos , Movimiento/efectos de los fármacos , Factor de Crecimiento Nervioso/farmacología , Periodicidad , Ratas Wistar , Análisis de Regresión , Reproducibilidad de los Resultados , Factores de Tiempo , Pez Cebra
20.
J Neurosci ; 34(21): 7165-78, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24849351

RESUMEN

Extracellular molecular cues guide migrating growth cones along specific routes during development of axon tracts. Such processes rely on asymmetric elevation of cytosolic Ca(2+) concentrations across the growth cone that mediates its attractive or repulsive turning toward or away from the side with Ca(2+) elevation, respectively. Downstream of these Ca(2+) signals, localized activation of membrane trafficking steers the growth cone bidirectionally, with endocytosis driving repulsion and exocytosis causing attraction. However, it remains unclear how Ca(2+) can differentially regulate these opposite membrane-trafficking events. Here, we show that growth cone turning depends on localized imbalance between exocytosis and endocytosis and identify Ca(2+)-dependent signaling pathways mediating such imbalance. In embryonic chicken dorsal root ganglion neurons, repulsive Ca(2+) signals promote clathrin-mediated endocytosis through a 90 kDa splice variant of phosphatidylinositol-4-phosphate 5-kinase type-1γ (PIPKIγ90). In contrast, attractive Ca(2+) signals facilitate exocytosis but suppress endocytosis via Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and cyclin-dependent kinase 5 (Cdk5) that can inactivate PIPKIγ90. Blocking CaMKII or Cdk5 leads to balanced activation of both exocytosis and endocytosis that causes straight growth cone migration even in the presence of guidance signals, whereas experimentally perturbing the balance restores the growth cone's turning response. Remarkably, the direction of this resumed turning depends on relative activities of exocytosis and endocytosis, but not on the type of guidance signals. Our results suggest that navigating growth cones can be redirected by shifting the imbalance between exocytosis and endocytosis, highlighting the importance of membrane-trafficking imbalance for axon guidance and, possibly, for polarized cell migration in general.


Asunto(s)
Endocitosis/fisiología , Exocitosis/fisiología , Conos de Crecimiento/fisiología , Neuronas/citología , Animales , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/genética , Células Cultivadas , Embrión de Pollo , Clatrina/farmacología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Endocitosis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Exocitosis/efectos de los fármacos , Ganglios Espinales/citología , Conos de Crecimiento/efectos de los fármacos , Glicoproteína Asociada a Mielina/farmacología , Neuronas/efectos de los fármacos , Organofosfonatos/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fotólisis , Piperazinas/farmacología , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda