RESUMEN
The Arctic Ocean is an oligotrophic ecosystem facing escalating threats of oil spills as ship traffic increases owing to climate change-induced sea ice retreat. Biostimulation is an oil spill mitigation strategy that involves introducing bioavailable nutrients to enhance crude oil biodegradation by endemic oil-degrading microbes. For bioremediation to offer a viable response for future oil spill mitigation in extreme Arctic conditions, a better understanding of the effects of nutrient addition on Arctic marine microorganisms is needed. Controlled experiments tracking microbial populations revealed a significant decline in community diversity along with changes in microbial community composition. Notably, differential abundance analysis highlighted the significant enrichment of the unexpected genera Lacinutrix, Halarcobacter and Candidatus Pseudothioglobus. These groups are not normally associated with hydrocarbon biodegradation, despite closer inspection of genomes from closely related isolates confirming the potential for hydrocarbon metabolism. Co-occurrence analysis further revealed significant associations between these genera and well-known hydrocarbon-degrading bacteria, suggesting potential synergistic interactions during oil biodegradation. While these findings broaden our understanding of how biostimulation promotes enrichment of endemic hydrocarbon-degrading genera, further research is needed to fully assess the suitability of nutrient addition as a stand-alone oil spill mitigation strategy in this sensitive and remote polar marine ecosystem.
Asunto(s)
Bacterias , Biodegradación Ambiental , Contaminación por Petróleo , Petróleo , Agua de Mar , Regiones Árticas , Agua de Mar/microbiología , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Petróleo/metabolismo , Nutrientes/metabolismo , Hidrocarburos/metabolismo , Microbiota , Contaminantes Químicos del Agua/metabolismoRESUMEN
Given the vast quantity of oil and gas input to the marine environment annually, hydrocarbon degradation by marine microorganisms is an essential ecosystem service. Linkages between taxonomy and hydrocarbon degradation capabilities are largely based on cultivation studies, leaving a knowledge gap regarding the intrinsic ability of uncultured marine microbes to degrade hydrocarbons. To address this knowledge gap, metagenomic sequence data from the Deepwater Horizon (DWH) oil spill deep-sea plume was assembled to which metagenomic and metatranscriptomic reads were mapped. Assembly and binning produced new DWH metagenome-assembled genomes that were evaluated along with their close relatives, all of which are from the marine environment (38 total). These analyses revealed globally distributed hydrocarbon-degrading microbes with clade-specific substrate degradation potentials that have not been reported previously. For example, methane oxidation capabilities were identified in all Cycloclasticus. Furthermore, all Bermanella encoded and expressed genes for non-gaseous n-alkane degradation; however, DWH Bermanella encoded alkane hydroxylase, not alkane 1-monooxygenase. All but one previously unrecognized DWH plume member in the SAR324 and UBA11654 have the capacity for aromatic hydrocarbon degradation. In contrast, Colwellia were diverse in the hydrocarbon substrates they could degrade. All clades encoded nutrient acquisition strategies and response to cold temperatures, while sensory and acquisition capabilities were clade specific. These novel insights regarding hydrocarbon degradation by uncultured planktonic microbes provides missing data, allowing for better prediction of the fate of oil and gas when hydrocarbons are input to the ocean, leading to a greater understanding of the ecological consequences to the marine environment.IMPORTANCEMicrobial degradation of hydrocarbons is a critically important process promoting ecosystem health, yet much of what is known about this process is based on physiological experiments with a few hydrocarbon substrates and cultured microbes. Thus, the ability to degrade the diversity of hydrocarbons that comprise oil and gas by microbes in the environment, particularly in the ocean, is not well characterized. Therefore, this study aimed to utilize non-cultivation-based 'omics data to explore novel genomes of uncultured marine microbes involved in degradation of oil and gas. Analyses of newly assembled metagenomic data and previously existing genomes from other marine data sets, with metagenomic and metatranscriptomic read recruitment, revealed globally distributed hydrocarbon-degrading marine microbes with clade-specific substrate degradation potentials that have not been previously reported. This new understanding of oil and gas degradation by uncultured marine microbes suggested that the global ocean harbors a diversity of hydrocarbon-degrading bacteria, which can act as primary agents regulating ecosystem health.
Asunto(s)
Bacterias , Biodegradación Ambiental , Hidrocarburos , Agua de Mar , Hidrocarburos/metabolismo , Agua de Mar/microbiología , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Océanos y Mares , Metagenoma , Metagenómica , Contaminación por Petróleo , FilogeniaRESUMEN
Oil spills are a frequent perturbation to the marine environment that has rapid and significant impacts on the local microbiome. Previous studies have shown that exposure to synthetic dispersant alone did not enhance heterotrophic microbial activity or oxidation rates of specific hydrocarbon components but increased the abundance of some taxa (e.g., Colwellia). In contrast, exposure to oil, but not dispersants, increased the abundance of other taxa (e.g., Marinobacter) and stimulated hydrocarbon oxidation rates. Here, we advance these findings by interpreting metatranscriptomic data from this experiment to explore how and why specific components of the microbial community responded to distinct organic carbon exposure regimes. Dispersant alone was selected for a unique community and for dominant organisms that reflected treatment- and time-dependent responses. Dispersant amendment also led to diverging functional profiles among the different treatments. Similarly, oil alone was selected for a community that was distinct from treatments amended with dispersants. The presence of oil and dispersants with added nutrients led to substantial differences in microbial responses, likely suggesting increased fitness driven by the presence of additional inorganic nutrients. The oil-only additions led to a marked increase in the expression of phages, prophages, transposable elements, and plasmids (PPTEPs), suggesting that aspects of microbial community response to oil are driven by the "mobilome," potentially through viral-associated regulation of metabolic pathways in ciliates and flagellates that would otherwise throttle the microbial community through grazing.IMPORTANCEMicrocosm experiments simulated the April 2010 Deepwater Horizon oil spill by applying oil and synthetic dispersants (Corexit EC9500A and EC9527A) to deep ocean water samples. The exposure regime revealed severe negative alterations in the treatments' heterotrophic microbial activity and hydrocarbon oxidation rates. We expanded these findings by exploring metatranscriptomic signatures of the microbial communities during the chemical amendments in the microcosm experiments. Here we report how dominant organisms were uniquely associated with treatment- and time-dependent trajectories during the exposure regimes; nutrient availability was a significant factor in driving changes in metatranscriptomic responses. Remarkable signals associated with PPTEPs showed the potential role of mobilome and viral-associated survival responses. These insights underscore the time-dependent environmental perturbations of fragile marine environments under oil and anthropogenic stress.
Asunto(s)
Microbiota , Contaminación por Petróleo , Petróleo , Agua de Mar , Tensoactivos , Microbiota/efectos de los fármacos , Agua de Mar/microbiología , Agua de Mar/química , Tensoactivos/metabolismo , Tensoactivos/farmacología , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Transcriptoma , Hidrocarburos/metabolismo , Contaminantes Químicos del Agua/metabolismoRESUMEN
In the present study, we applied forensic geochemistry to investigate the origin and fate of spilled oils like tarballs stranded at the beaches of Bahia, in northeastern Brazil, in September 2023, based on their fingerprints. Saturated and aromatic compounds were assessed by gas chromatography, and the oceanic surface circulation patterns were deciphered to determine the geographic origin of the spill. Contamination by petroleum represents an enormous threat to the unique, species-rich ecosystems of the study area. The geochemical fingerprint of the oil spilled in 2023 did not correlate with those of previous events, including the one in 2019, the one in early 2022 in Ceará, and an extensive spill across the Brazilian Northeast in late 2022. However, the fingerprint did correlate with crude oils produced by Middle Eastern countries, most likely Kuwait. The oil of the 2023 spill had a carbonate marine origin from early mature source rocks. These findings, together with the moderate weathering of the 2023 tarballs and the ocean circulation patterns at the time of the event, indicate that the oil was discharged close to the shore of Brazil, to the east or southeast of Salvador, by a tanker on an international route in the South Atlantic.
Asunto(s)
Contaminación por Petróleo , Navíos , Brasil , Monitoreo del Ambiente , Petróleo , Contaminantes Químicos del Agua/análisisRESUMEN
Polymeric foamed materials are among the most widely utilized technologies for oil spill accidents and releases of oil-contaminated wastewater oil due to their porosity to absorb and separate oil/water effectively. However, a major limitation of traditional polymeric foams is their reliance on an ad/absorption mechanism as the sole method of oil capture, leading to potential oil leakage once their saturation point is exceeded. Tri-block polymer styrene-ethylene-butylene-styrene (SEBS) is a fascinating absorbent material that can bypass this limitation by both capturing oil and providing a sealing mechanism via gelation to prevent oil leakage due to its unique chemical structure. SEBS foams are produced via simultaneous crosslinking and foaming that results in an impressive expansion ratio of up to 15.2 with over 93% porosity. Most importantly, the SEBS foams show great potential as oil absorbents in spill remediation, demonstrating rapid and efficient oil absorption coupled with superhydrophobic properties. Moreover, the unique interaction between the oil and SEBS enables the formation of a physical gel, acting as an effective barrier against oil leakage. These findings indicate the potential for commercializing SEBS foam as a viable option for geotextiles to mitigate oil spill concerns from infrastructures.
Asunto(s)
Elastómeros , Geles , Contaminación por Petróleo , Geles/química , Elastómeros/química , Restauración y Remediación Ambiental/métodos , Porosidad , Interacciones Hidrofóbicas e HidrofílicasRESUMEN
Despite a multi-decade decrease in cardiovascular disease, geographic disparities have widened, with excess mortality concentrated within the United States (U.S.) South. Petroleum production and refining, a major contributor to climate change, is concentrated within the U.S. South and emits multiple classes of atherogenic pollutants. We investigated whether residential exposure to oil refineries could explain variation in self-reported coronary heart disease (CHD) prevalence among adults in southern states for the year 2018, where the majority of oil refinery activity occurs (Alabama, Mississippi, Louisiana, Arkansas, Texas, New Mexico, and Oklahoma). We examined census tract-level association between oil refineries and CHD prevalence. We used a double matching method to adjust for measured and unmeasured spatial confounders: one-to-n distance matching and one-to-one generalized propensity score matching. Exposure metrics were constructed based on proximity to refineries, activities of refineries, and wind speed/direction. For all census tracts within 10 km of refineries, self-reported CHD prevalence ranged from 1.2% to 17.6%. Compared to census tracts located at ≥5 km and <10 km, one standard deviation increase in the exposure within 5 km of refineries was associated with a 0.33 (95% confidence interval: 0.04, 0.63) percentage point increase in the prevalence. A total of 1119.0 (123.5, 2114.2) prevalent cases or 1.6% (0.2, 3.1) of CHD prevalence in areas within 5 km from refineries were potentially explained by exposure to oil refineries. At the census tract-level, the prevalence of CHD explained by exposure to oil refineries ranged from 0.02% (0.00, 0.05) to 47.4% (5.2, 89.5). Thus, although we cannot rule out potential confounding by other personal risk factors, CHD prevalence was found to be higher in populations living nearer to oil refineries, which may suggest that exposure to oil refineries can increase CHD risk, warranting further investigation.
Asunto(s)
Enfermedad Coronaria , Contaminación por Petróleo , Petróleo , Adulto , Humanos , Estados Unidos , Industria del Petróleo y Gas , Factores de Riesgo , Enfermedad Coronaria/inducido químicamente , Enfermedad Coronaria/epidemiología , Contaminación por Petróleo/efectos adversosRESUMEN
The accidental spill of petroleum asphalt cement (PAC) in São Raimundo (SR Harbor, located on the Rio Negro (Manaus, Amazonas, Brazil) was monitored through the analysis of polyciclic aromatic hydrocarbons (PAHs) in water and a set of biomarkers in fishes (exposure biomarkes: PAHs-type metabolites concentrations in bile; the activities of ethoxyresorufin-O-deethylase (EROD), glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in liver. Effect biomarkers: lipid peroxidation concentration (LPO) in liver, acetylcholinesterase activity in brain, and genotoxic DNA damage in erythrocytes). Two fish species, Acarichthys heckelii and Satanoperca jurupari, were collected 10, 45, and 90 days after the PAC spill in São Raimundo. At the same time, fish were collected from the Tupé Sustainable Development Reserve (Tupé) which served as a reference area. The sampling periods were related to the rising waters of the natural flood pulse of the Rio Negro. Higher concentrations of PAHs in water were observed at 10 and 45 days and returned to the values of TP 90 days after the PAC spill, a period in which harbor waters rose about 0.2 m. Unlike the PAHs in water, biomarker responses in both fish species significantly increased following the PAC spill in SR. Hepatic ethoxyresorufin-O-deethylase (EROD), PAH-like metabolites in bile, and erythrocyte DNA damage increases, together with inhibition of acetylcholinesterase (AChE) activity in the brain were the most evident responses for both fish species. The calculated pyrolytic index showed mixed sources of PAHs (petrogenic and pyrolytic). The applied PCA-FA indicated important relationships between dissolved organic carbon (DOC) and PAHs concentrations in water, where DOC and PAHs concentrations contributed to biomarkers responses for both fish species in all collection periods.
Asunto(s)
Biomarcadores , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Brasil , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis , Biomarcadores/metabolismo , Contaminación por Petróleo/efectos adversos , Citocromo P-450 CYP1A1/metabolismo , Daño del ADN/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Glutatión Transferasa/metabolismo , Monitoreo del Ambiente , Peces/metabolismo , Acetilcolinesterasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Bilis/química , Bilis/metabolismoRESUMEN
Global warming-induced sea ice loss in the Canadian Northwest Passage (NWP) will result in more shipping traffic, increasing the risk of oil spills. Microorganisms inhabiting NWP beach sediments may degrade hydrocarbons, offering a potential bioremediation strategy. In this study, the characterization and genomic analyses of 22 hydrocarbon-biodegradative bacterial isolates revealed that they contained a diverse range of key alkane and aromatic hydrocarbon-degradative genes, as well as cold and salt tolerance genes indicating they are highly adapted to the extreme Arctic environment. Some isolates successfully degraded Ultra Low Sulfur Fuel Oil (ULSFO) at temperatures as low as -5 °C and high salinities (3%-10%). Three isolates were grown in liquid medium containing ULSFO as sole carbon source over 3 months and variation of hydrocarbon concentration was measured at three time points to determine their rate of hydrocarbon biodegradation. Our results demonstrate that two isolates (Rhodococcus sp. R1B_2T and Pseudarthrobacter sp. R2D_1T) possess complete degradation pathways and can grow on alkane and aromatic components of ULSFO under Arctic conditions. Overall, these results demonstrate that diverse hydrocarbon-degrading microorganisms exist in the NWP beach sediments, offering a potential bioremediation strategy in the events of a marine fuel spill reaching the shores of the NWP.
Asunto(s)
Bacterias , Biodegradación Ambiental , Sedimentos Geológicos , Hidrocarburos , Sedimentos Geológicos/microbiología , Hidrocarburos/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Regiones Árticas , Canadá , Contaminación por Petróleo , Filogenia , Agua de Mar/microbiologíaRESUMEN
The Deepwater Horizon disaster of April 2010 was the largest oil spill in U.S. history and exerted catastrophic effects on several ecologically important fish species in the Gulf of Mexico (GoM). Within fish, the microbiome plays a key symbiotic role in maintaining host health and aids in acquiring nutrients, supporting immune function, and modulating behavior. The aim of this study was to examine if exposure to weathered oil might produce significant shifts in fish gut-associated microbial communities as determined from taxa and genes known for hydrocarbon degradation, and whether foraging behavior was affected. The gut microbiome (16S rRNA and shotgun metagenomics) of sheepshead minnow (Cyprinodon variegatus) was characterized after fish were exposed to oil in High Energy Water Accommodated Fractions (HEWAF; tPAH = 81.1 ± 12.4 µg/L) for 7 days. A foraging behavioral assay was used to determine feeding efficiency before and after oil exposure. The fish gut microbiome was not significantly altered in alpha or beta diversity. None of the most abundant taxa produced any significant shifts as a result of oil exposure, with only rare taxa showing significant shifts in abundance between treatments. However, several bioindicator taxa known for hydrocarbon degradation were detected in the oil treatment, primarily Sphingomonas and Acinetobacter. Notably, the genus Stenotrophomonas was detected in high abundance in 16S data, which previously was not described as a core member of fish gut microbiomes. Data also demonstrated that behavior was not significantly affected by oil exposure. Potential low bioavailability of the oil may have been a factor in our observation of minor shifts in taxa and no behavioral effects. This study lays a foundation for understanding the microbiome of captive sheepshead minnows and indicates the need for further research to elucidate the responses of the fish gut-microbiome under oil spill conditions.
Asunto(s)
Cyprinidae , Microbioma Gastrointestinal , Peces Killi , Microbiota , Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Peces Killi/genética , Petróleo/toxicidad , Contaminación por Petróleo/efectos adversos , ARN Ribosómico 16S , Hidrocarburos , Golfo de México , Contaminantes Químicos del Agua/toxicidadRESUMEN
Heavy metal poisoning of soil from oil spills causes serious environmental problems worldwide. Various causes and effects of heavy metal pollution in the soil environment are discussed in this article. In addition, this study explores new approaches to cleaning up soil that has been contaminated with heavy metals as a result of oil spills. Furthermore, it provides a thorough analysis of recent developments in remediation methods, such as novel nano-based approaches, chemical amendments, bioremediation, and phytoremediation. The objective of this review is to provide a comprehensive overview of the removal of heavy metals from oil-contaminated soils. This review emphasizes on the integration of various approaches and the development of hybrid approaches that combine various remediation techniques in a synergistic way to improve sustainability and efficacy. The study places a strong emphasis on each remediation strategy that can be applied in the real-world circumstances while critically evaluating its effectiveness, drawbacks, and environmental repercussions. Additionally, it discusses the processes that reduce heavy metal toxicity and improve soil health, taking into account elements like interactions between plants and microbes, bioavailability, and pollutant uptake pathways. Furthermore, the current study suggests that more research and development is needed in this area, particularly to overcome current barriers, improve our understanding of underlying mechanisms, and investigate cutting-edge ideas that have the potential to completely transform the heavy metal clean up industry.
Asunto(s)
Biodegradación Ambiental , Metales Pesados , Contaminación por Petróleo , Contaminantes del Suelo , Restauración y Remediación Ambiental/métodos , Suelo/químicaRESUMEN
Nowadays, petroleum hydrocarbon pollution is one of the most widespread types of contamination that poses a serious threat to both public health and the environment. Among various physicochemical methods, bioremediation is an eco-friendly and cost-effective way to eliminate petroleum hydrocarbon pollutants. The successful degradation of all hydrocarbon components and the achievement of optimal efficiency are necessary for the success of this process. Using potential microbial consortia with rich metabolic networks is a promising strategy for addressing these challenges. Mixed microbial communities, comprising both fungi and bacteria, exhibit diverse synergistic mechanisms to degrade complex hydrocarbon contaminants, including the dissemination of bacteria by fungal hyphae, enhancement of enzyme and secondary metabolites production, and co-metabolism of pollutants. Compared to pure cultures or consortia of either fungi or bacteria, different studies have shown increased bioremediation of particular contaminants when combined fungal-bacterial treatments are applied. However, antagonistic interactions, like microbial competition, and the production of inhibitors or toxins can observed between members. Furthermore, optimizing environmental factors (pH, temperature, moisture, and initial contaminant concentration) is essential for consortium performance. With the advancements in synthetic biology and gene editing tools, it is now feasible to design stable and robust artificial microbial consortia systems. This review presents an overview of using microbial communities for the removal of petroleum pollutants by focusing on microbial degradation pathways, and their interactions. It also highlights the new strategies for constructing optimal microbial consortia, as well as the challenges currently faced and future perspectives of applying fungal-bacterial communities for bioremediation.
Asunto(s)
Bacterias , Biodegradación Ambiental , Hongos , Hidrocarburos , Consorcios Microbianos , Petróleo , Contaminantes del Suelo , Bacterias/metabolismo , Hongos/metabolismo , Hidrocarburos/metabolismo , Petróleo/metabolismo , Contaminación por Petróleo , Contaminantes del Suelo/metabolismoRESUMEN
The environmental impact of oil spills is a critical concern, particularly pertaining to low sulfur marine diesel (LSMD) and high sulfur fuel oil (HSFO) that are commonly involved in coastal spills. Although transcriptomic biomonitoring of sentinel animals can be a powerful tool for assessing biological effects, conventional methods utilize lethal sampling to examine the liver. As a non-lethal alternative, we have previously shown salmonid caudal fin cyp1a1 is significantly responsive to LSMD-derived toxicants. The present study further investigated the transcriptomic biomonitoring potential of coho salmon smolt caudal fin in comparison to liver tissue in the context of LSMD and HSFO seawater accommodated fraction (seaWAF) exposure in cold-water marine environments. Assessing the toxicity of these seaWAFs involved quantifying polycyclic aromatic hydrocarbon (tPAH50) concentrations and generating gene expression profiles. Initial qPCR analyses revealed significant cyp1a1 response in both liver and caudal fin tissues of both genetic sexes to all seaWAF exposures. RNA-Seq analysis, focusing on the highest LSMD and HSFO seaWAF concentrations (28.4±1.8 and 645.08±146.3⯵g/L tPAH50, respectively), revealed distinct tissue-specific and genetic sex-independent transcriptomic responses with an overall enrichment of oxidative stress, cell adhesion, and morphogenesis-related pathways. Remarkably, the caudal fin tissue exhibited transcriptomic response patterns comparable to liver tissue, particularly consistent differential expression of 33 gene transcripts in the liver (independent of sex and oil type) and 44 in the caudal fin. The present work underscores the viability of using the caudal fin as a non-lethal alternative to liver sampling for assessing and tracking oil spill exposure in marine environments.
Asunto(s)
Aletas de Animales , Citocromo P-450 CYP1A1 , Aceites Combustibles , Hígado , Contaminación por Petróleo , Transcriptoma , Contaminantes Químicos del Agua , Animales , Hígado/efectos de los fármacos , Hígado/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminación por Petróleo/efectos adversos , Aletas de Animales/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Masculino , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Aceites Combustibles/toxicidad , Femenino , Azufre , Monitoreo del Ambiente/métodos , Oncorhynchus kisutch/genética , Gasolina/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis , Agua de Mar/químicaRESUMEN
While evidence indicates that exposure to oil spill incidents can affect mental health, it is unclear whether the mental health effects result from the incident itself or from exposure to associated chemicals. Oil contains chemicals that can impact mental health and these chemicals may have long-term effects due to their persistence in the environment. To address the gap in current knowledge, we conducted cross-sectional and prospective analyses of data from adults who participated in the Health Effects of the Hebei Spirit Oil Spill study. To assess chemical exposure from oil spills, we used indirect exposure indicators such as distance from the contaminated oil band to residences and duration of clean-up work, along with direct exposure indicators such as urine metabolite concentrations of volatile organic compounds and polycyclic aromatic hydrocarbons. Mental health assessments covered posttraumatic stress disorder (PTSD), depression, state anxiety, and trait anxiety. In the cross-sectional analyses, all four mental health issues were found to be associated with proximity to the oil band (p-value<0.05) and showed a positive association with clean-up work duration (p-value<0.05). Cox regression analysis revealed that higher urinary t, t-muconic acid levels were associated with an increased risk of depression (Hazard Ratio [HR] = 1.55, 95â¯% Confidence Interval [CI] = 1.05-2.28), and elevated 1-hydroxypyrene levels increased the risk of PTSD (HR = 1.60, 95â¯% CI = 1.03-2.48). Additionally, higher urinary 2-naphthol levels were associated with increased state anxiety (HR = 1.39, 95â¯% CI = 1.00-1.93) and trait anxiety (HR = 1.64, 95â¯% CI = 1.15-2.32). These associations persisted even after controlling for distance and duration variables related to psychosocial exposure. Our findings suggest that environmental disaster response plans should prioritize minimizing chemical exposure while also considering the duration and nature of the mental health impacts.
Asunto(s)
Exposición a Riesgos Ambientales , Salud Mental , Contaminación por Petróleo , Hidrocarburos Policíclicos Aromáticos , Humanos , Masculino , Estudios Transversales , Femenino , Adulto , Persona de Mediana Edad , Hidrocarburos Policíclicos Aromáticos/orina , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Exposición a Riesgos Ambientales/estadística & datos numéricos , Estudios Prospectivos , Trastornos por Estrés Postraumático/orina , Depresión/inducido químicamente , Compuestos Orgánicos Volátiles/orina , Compuestos Orgánicos Volátiles/análisis , Ansiedad/inducido químicamente , Ácido Sórbico/análogos & derivadosRESUMEN
Mercury (Hg) concentrations and their associated toxicological effects in terrestrial ecosystems of the Gulf of Mexico are largely unknown. Compounding this uncertainty, a large input of organic matter from the 2010 Deepwater Horizon oil spill may have altered Hg cycling and bioaccumulation dynamics. To test this idea, we quantified blood concentrations of total mercury (THg) in Seaside Sparrows (Ammospiza maritima) and Marsh Rice Rats (Oryzomys palustris) in marshes west and east of the Mississippi River in 2015 and 2016. We also tested for a difference in THg concentrations between oiled and non-oiled sites. To address the potential confounding effect of diet variation on Hg transfer, we used stable nitrogen (δ15N) and carbon (δ13C) isotope values as proxies of trophic position and the source of primary production, respectively. Our results revealed that five to six years after the spill, THg concentrations were not higher in sites oiled by the spill compared to non-oiled sites. In both species, THg was higher at sites east of the Mississippi River compared to control and oiled sites, located west. In Seaside Sparrows but not in Marsh Rice Rats, THg increased with δ15N values, suggesting Hg trophic biomagnification. Overall, even in sites with the most elevated THg, concentrations were generally low. In Seaside Sparrows, THg concentrations were also lower than previously reported in this and other closely related passerines, with only 7% of tested birds exceeding the lowest observed effect concentration associated with toxic effects across bird species (0.2 µg/g ww). The factors associated with geographic heterogeneity in Hg exposure remain uncertain. Clarification could inform risk assessment and future restoration and management actions in a region facing vast anthropogenic changes.
Asunto(s)
Monitoreo del Ambiente , Estuarios , Mercurio , Gorriones , Contaminantes Químicos del Agua , Animales , Sigmodontinae , Humedales , Ríos/química , Golfo de México , Contaminación por PetróleoRESUMEN
Crude oil spills imperil aquatic ecosystems globally, prompting innovative solutions such as microalgae-based bioremediation. This study explores the potential of Chlorella vulgaris and Scenedesmus quadricauda, for crude oil spill phycoremediation under mixotrophic conditions and varying crude oil concentrations (0.5-2%). C. vulgaris demonstrated notable resilience, thriving up to 1% crude oil exposure, while S. quadricauda adapted to lower concentrations. Optimal growth for both was observed at 0.5% exposure. Chlorophyll a content in C. vulgaris increases at 0.5% exposure but declines above 1%, while a decline was noticeable in chlorophyll b in treatment groups above 1%. Carotenoid levels varied, displaying the highest levels at higher concentrations above 1.5%. Similarly, S. quadricauda showed increased chlorophyll a content at 0.5% exposure, with stable carotenoid levels and a decline in chlorophyll b content at higher concentrations. GC/MS analyses indicated C. vulgaris efficiently degraded aliphatic compounds like decane and tridecane, surpassing S. quadricauda in degrading both aliphatic and aromatic hydrocarbons. Growth kinetics was best represented by the modified Gompertz and logistic models. These findings highlight the species-specific adaptability and optimal concentration for microalgae to degrade crude oil effectively, advancing phycoremediation processes and strategies critical for environmental restoration.
This study marks the first exploration of both Chlorella vulgaris and the previously unexplored Scenedesmus quadricauda for crude oil phycoremediation potential under mixotrophic conditions. Additionally, it pioneers the modeling and study of algae growth kinetics in response to crude oil exposure. Notably, this research demonstrated the adaptability and efficiency of C. vulgaris in degrading crude oil components under mixotrophic conditions up to a level of 1%, while S. quadricauda showed similar capabilities at a concentration of 0.5%.
Asunto(s)
Biodegradación Ambiental , Chlorella vulgaris , Hidrocarburos , Petróleo , Scenedesmus , Contaminantes Químicos del Agua , Chlorella vulgaris/metabolismo , Scenedesmus/metabolismo , Petróleo/metabolismo , Contaminantes Químicos del Agua/metabolismo , Hidrocarburos/metabolismo , Cinética , Contaminación por Petróleo , Clorofila A/metabolismo , Clorofila/metabolismo , Microalgas/metabolismoRESUMEN
This study proposed an improved full-scale aggregated MobileUNet (FA-MobileUNet) model to achieve more complete detection results of oil spill areas using synthetic aperture radar (SAR) images. The convolutional block attention module (CBAM) in the FA-MobileUNet was modified based on morphological concepts. By introducing the morphological attention module (MAM), the improved FA-MobileUNet model can reduce the fragments and holes in the detection results, providing complete oil spill areas which were more suitable for describing the location and scope of oil pollution incidents. In addition, to overcome the inherent category imbalance of the dataset, label smoothing was applied in model training to reduce the model's overconfidence in majority class samples while improving the model's generalization ability. The detection performance of the improved FA-MobileUNet model reached an mIoU (mean intersection over union) of 84.55%, which was 17.15% higher than that of the original U-Net model. The effectiveness of the proposed model was then verified using the oil pollution incidents that significantly impacted Taiwan's marine environment. Experimental results showed that the extent of the detected oil spill was consistent with the oil pollution area recorded in the incident reports.
Asunto(s)
Monitoreo del Ambiente , Contaminación por Petróleo , Radar , Contaminación por Petróleo/análisis , Monitoreo del Ambiente/métodos , Taiwán , AlgoritmosRESUMEN
Offshore oil exploration and production in deepwater are associated with environmental risks to marine ecosystems. This research introduces DWOSM (Deep Water Oil Spill Model), a three-dimensional Lagrangian model, which is developed to simulate the transport and fate of oil spills resulting from subsea blowouts. DWOSM comprises three interconnected modules: DWOSM-DSD, which predicts the oil droplet size distribution from a blowout release; DWOSM-NearField, simulating plume dynamics and tracking oil droplets within the plume region; and DWOSM-FarField, modeling the evolution of dispersed oil beyond the near-field. Compared to other oil spill models, this integrated approach improves the transition between near and far fields using a near-field particle tracking algorithm. It also employs the thermodynamic models to enable the prediction of oil properties under varying deep water pressure and temperature. To gauge the reliability and efficacy of DWOSM, a hypothetical case situated within a North American context is employed for model testing. The DWOSM and its each module are juxtaposed with other established oil spill models. The outcomes indicate that DWOSM yields comparable results to these models by providing reasonable predictions of a deepwater blowout. The model's verification through case scenario testing and comparison underscores its potential as a decision tool for assessing and managing the potential environmental impacts of offshore petroleum activities.
Asunto(s)
Contaminación por Petróleo , Modelos Teóricos , PetróleoRESUMEN
Oil dispersion, a crucial process in oil transport, involves the detachment of oil droplets from slicks and their introduction into the water column, influencing subsequent oil migration and transformation. This study examines oil dispersion, considering characteristics, stability, and mechanisms, while evaluating the impact of dispersants and salinity. Results show the significant role of surfactant type in dispersants on oil dispersion characteristics, with anionic surfactants exhibiting higher sensitivity to salinity changes compared to nonionic surfactants. The dispersion efficiency varies with salinity, with anionic surfactants performing better in low salinity (<20) and nonionic surfactants showing superior performance at 30-35 salinities. Rheological analysis illustrates the breakup and coalescence of oil droplets within the shear rates of breaking waves. An increase in interfacial film rigidity impedes the coalescence of oil droplets, contributing to the dynamic stability of the oil-water hybrid system. The use of GM-2, a nonionic dispersant, results in the formation of a solid-like interface, characterized by increased elastic modulus, notably at 20 salinity. However, stable droplet size distribution (DSD) at 35 salinity for 60 h suggests droplets can remain dispersed in seawater. The enhancement of stability of oil dispersion is interpreted as the result of two mechanisms: stabilizing DSD and developing the strength of viscoelastic interfacial film. These findings offer insights into oil dispersion dynamics, highlighting the importance of surfactant selection and salinity in governing dispersion behavior, and elucidating mechanisms underlying dispersion stability.
Asunto(s)
Tensoactivos , Tensoactivos/química , Contaminación por Petróleo , Salinidad , Reología , Petróleo , Agua de Mar/químicaRESUMEN
The rise in oil trade and transportation has led to a continuous increase in the risk of oil spills, posing a serious worldwide concern. However, there is a lack of numerical models for predicting oil spill transport in freshwater, especially under icy conditions. To tackle this challenge, we developed a prediction system for oil with ice modeling by coupling the General NOAA Operational Modeling Environment (GNOME) model with the Great Lakes Operational Forecast System (GLOFS) model. Taking Lake Erie as a pilot study, we used observed drifter data to evaluate the performance of the coupled model. Additionally, we developed six hypothetical oil spill cases in Lake Erie, considering both with and without ice conditions during the freezing, stable, and melting seasons spanning from 2018 to 2022, to investigate the impacts of ice cover on oil spill processes. The results showed the effective performance of the coupled model system in capturing the movements of a deployed drifter. Through ensemble simulations, it was observed that the stable season with high-concentration ice had the most significant impact on limiting oil transport compared to the freezing and melting seasons, resulting in an oil-affected open water area of 49 km2 on day 5 with ice cover, while without ice cover it reached 183 km2. The stable season with high-concentration ice showed a notable reduction in the probability of oil presence in the risk map, whereas this reduction effect was less prominent during the freezing and melting seasons. Moreover, negative correlations between initial ice concentration and oil-affected open water area were consistent, especially on day 1 with a linear regression R-squared value of 0.94, potentially enabling rapid prediction. Overall, the coupled model system serves as a useful tool for simulating oil spills in the world's largest freshwater system, particularly under icy conditions, thus enhancing the formulation of effective emergency response strategies.