Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 728
Filtrar
1.
Cell ; 154(3): 518-29, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23911319

RESUMEN

Genes disrupted in schizophrenia may be revealed by de novo mutations in affected persons from otherwise healthy families. Furthermore, during normal brain development, genes are expressed in patterns specific to developmental stage and neuroanatomical structure. We identified de novo mutations in persons with schizophrenia and then mapped the responsible genes onto transcriptome profiles of normal human brain tissues from age 13 weeks gestation to adulthood. In the dorsolateral and ventrolateral prefrontal cortex during fetal development, genes harboring damaging de novo mutations in schizophrenia formed a network significantly enriched for transcriptional coexpression and protein interaction. The 50 genes in the network function in neuronal migration, synaptic transmission, signaling, transcriptional regulation, and transport. These results suggest that disruptions of fetal prefrontal cortical neurogenesis are critical to the pathophysiology of schizophrenia. These results also support the feasibility of integrating genomic and transcriptome analyses to map critical neurodevelopmental processes in time and space in the brain.


Asunto(s)
Redes Reguladoras de Genes , Mutación , Corteza Prefrontal/embriología , Mapas de Interacción de Proteínas , Esquizofrenia/genética , Esquizofrenia/metabolismo , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Análisis Mutacional de ADN , Bases de Datos Genéticas , Femenino , Humanos , Masculino , Neurogénesis , Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/metabolismo , Esquizofrenia/fisiopatología , Transcripción Genética , Transcriptoma
2.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34983868

RESUMEN

Human learning is supported by multiple neural mechanisms that maturate at different rates and interact in mostly cooperative but also sometimes competitive ways. We tested the hypothesis that mature cognitive mechanisms constrain implicit statistical learning mechanisms that contribute to early language acquisition. Specifically, we tested the prediction that depleting cognitive control mechanisms in adults enhances their implicit, auditory word-segmentation abilities. Young adults were exposed to continuous streams of syllables that repeated into hidden novel words while watching a silent film. Afterward, learning was measured in a forced-choice test that contrasted hidden words with nonwords. The participants also had to indicate whether they explicitly recalled the word or not in order to dissociate explicit versus implicit knowledge. We additionally measured electroencephalography during exposure to measure neural entrainment to the repeating words. Engagement of the cognitive mechanisms was manipulated by using two methods. In experiment 1 (n = 36), inhibitory theta-burst stimulation (TBS) was applied to the left dorsolateral prefrontal cortex or to a control region. In experiment 2 (n = 60), participants performed a dual working-memory task that induced high or low levels of cognitive fatigue. In both experiments, cognitive depletion enhanced word recognition, especially when participants reported low confidence in remembering the words (i.e., when their knowledge was implicit). TBS additionally modulated neural entrainment to the words and syllables. These findings suggest that cognitive depletion improves the acquisition of linguistic knowledge in adults by unlocking implicit statistical learning mechanisms and support the hypothesis that adult language learning is antagonized by higher cognitive mechanisms.


Asunto(s)
Cognición/fisiología , Aprendizaje/fisiología , Corteza Prefrontal/fisiología , Adolescente , Adulto , Electroencefalografía , Femenino , Humanos , Lenguaje , Desarrollo del Lenguaje , Lingüística , Masculino , Memoria a Corto Plazo/fisiología , Recuerdo Mental , Corteza Prefrontal/crecimiento & desarrollo , Estimulación Magnética Transcraneal , Adulto Joven
3.
Hum Brain Mapp ; 45(11): e26766, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39046072

RESUMEN

Mood variability, the day-to-day fluctuation in mood, differs between individuals and develops during adolescence. Because adolescents show higher mood variability and average mood than children and adults, puberty might be a potential biological mechanism underlying this increase. The goal of this preregistered developmental study was to examine the neural and hormonal underpinnings of adolescent-specific within-person changes in mood variability, with a specific focus on testosterone, cortisol, pubertal status, and resting-state functional brain connectivity. Data from two longitudinal cohorts were used: the L-CID twin study (aged 7-13, N at the first timepoint = 258) and the accelerated Leiden Self-Concept study (SC; aged 11-21, N at the first timepoint = 138). In both studies resting-state functional magnetic resonance imaging (rs-fMRI) data was collected, as well as daily mood. Additionally, in the SC study self-reported puberty testosterone and cortisol were collected. Random intercept cross-lagged panel models (RI-CLPM) were used to study the within-person relations between these biological measures and mood variability and average mood. Mood variability and average mood peaked in adolescence and testosterone levels and self-reported puberty also showed an increase. Connectivity between prefrontal cortex (dlPFC and vmPFC) and subcortical regions (caudate, amygdala) decreased across development. Moreover, higher testosterone predicted average negative mood at the next time point, but not vice versa. Further, stronger vmPFC-amygdala functional connectivity predicted decreases in mood variability. Here, we show that brain connectivity during development is an important within-person biological mechanism of the development of mood in adolescents. PRACTITIONER POINTS: Mood variability peaks in adolescence. Within-person changes in testosterone predict within-person changes in mood. Within-person changes in vmPFC-amygdala connectivity predict within-person changes in mood variability.


Asunto(s)
Afecto , Hidrocortisona , Imagen por Resonancia Magnética , Pubertad , Testosterona , Humanos , Adolescente , Niño , Masculino , Testosterona/sangre , Afecto/fisiología , Femenino , Hidrocortisona/sangre , Hidrocortisona/metabolismo , Estudios Longitudinales , Pubertad/fisiología , Adulto Joven , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Adulto , Conectoma , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiología , Corteza Prefrontal/crecimiento & desarrollo , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiología , Amígdala del Cerebelo/crecimiento & desarrollo , Desarrollo del Adolescente/fisiología
4.
J Neurosci ; 42(4): 601-618, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34844990

RESUMEN

Precise information flow from the hippocampus (HP) to prefrontal cortex (PFC) emerges during early development and accounts for cognitive processing throughout life. On flip side, this flow is selectively impaired in mental illness. In mouse models of psychiatric risk mediated by gene-environment interaction (GE), the prefrontal-hippocampal coupling is disrupted already shortly after birth. While this impairment relates to local miswiring in PFC and HP, it might be also because of abnormal connectivity between the two brain areas. Here, we test this hypothesis by combining in vivo electrophysiology and optogenetics with in-depth tracing of projections and monitor the morphology and function of hippocampal afferents in the PFC of control and GE mice of either sex throughout development. We show that projections from the hippocampal CA1 area preferentially target layer 5/6 pyramidal neurons and interneurons, and to a lesser extent layer 2/3 neurons of prelimbic cortex (PL), a subdivision of PFC. In neonatal GE mice, sparser axonal projections from CA1 pyramidal neurons with decreased release probability reach the PL. Their ability to entrain layer 5/6 oscillatory activity and firing is decreased. These structural and functional deficits of hippocampal-prelimbic connectivity persist, yet are less prominent in prejuvenile GE mice. Thus, besides local dysfunction of HP and PL, weaker connectivity between the two brain areas is present in GE mice throughout development.SIGNIFICANCE STATEMENT Poor cognitive performance in mental disorders comes along with prefrontal-hippocampal dysfunction. Recent data from mice that model the psychiatric risk mediated by gene-environment (GE) interaction identified the origin of deficits during early development, when the local circuits in both areas are compromised. Here, we show that sparser and less efficient connectivity as well as cellular dysfunction are the substrate of the weaker excitatory drive from hippocampus (HP) to prefrontal cortex (PFC) as well as of poorer oscillatory coupling between the two brain areas in these mice. While the structural and functional connectivity deficits persist during the entire development, their magnitude decreases with age. The results add experimental evidence for the developmental miswiring hypothesis of psychiatric disorders.


Asunto(s)
Interacción Gen-Ambiente , Hipocampo/crecimiento & desarrollo , Trastornos Mentales/genética , Trastornos Mentales/fisiopatología , Red Nerviosa/crecimiento & desarrollo , Corteza Prefrontal/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Hipocampo/química , Masculino , Trastornos Mentales/psicología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/química , Corteza Prefrontal/química , Factores de Riesgo
5.
Psychol Med ; 53(3): 759-770, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34105450

RESUMEN

BACKGROUND: Children born very preterm (VP) display altered growth in corticolimbic structures compared with full-term peers. Given the association between the cortiocolimbic system and anxiety, this study aimed to compare developmental trajectories of corticolimbic regions in VP children with and without anxiety diagnosis at 13 years. METHODS: MRI data from 124 VP children were used to calculate whole brain and corticolimbic region volumes at term-equivalent age (TEA), 7 and 13 years. The presence of an anxiety disorder was assessed at 13 years using a structured clinical interview. RESULTS: VP children who met criteria for an anxiety disorder at 13 years (n = 16) displayed altered trajectories for intracranial volume (ICV, p < 0.0001), total brain volume (TBV, p = 0.029), the right amygdala (p = 0.0009) and left hippocampus (p = 0.029) compared with VP children without anxiety (n = 108), with trends in the right hippocampus (p = 0.062) and left medial orbitofrontal cortex (p = 0.079). Altered trajectories predominantly reflected slower growth in early childhood (0-7 years) for ICV (ß = -0.461, p = 0.020), TBV (ß = -0.503, p = 0.021), left (ß = -0.518, p = 0.020) and right hippocampi (ß = -0.469, p = 0.020) and left medial orbitofrontal cortex (ß = -0.761, p = 0.020) and did not persist after adjusting for TBV and social risk. CONCLUSIONS: Region- and time-specific alterations in the development of the corticolimbic system in children born VP may help to explain an increase in anxiety disorders observed in this population.


Asunto(s)
Trastornos de Ansiedad , Recien Nacido Extremadamente Prematuro , Lóbulo Límbico , Corteza Prefrontal , Adolescente , Niño , Femenino , Humanos , Recién Nacido , Masculino , Trastornos de Ansiedad/diagnóstico , Trastornos de Ansiedad/epidemiología , Recien Nacido Extremadamente Prematuro/crecimiento & desarrollo , Entrevista Psicológica , Lóbulo Límbico/diagnóstico por imagen , Lóbulo Límbico/crecimiento & desarrollo , Imagen por Resonancia Magnética , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/crecimiento & desarrollo , Estudios Prospectivos , Estudios Longitudinales
6.
Proc Natl Acad Sci U S A ; 117(46): 28743-28753, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33139572

RESUMEN

Mammalian brain glycome remains a relatively poorly understood area compared to other large-scale "omics" studies, such as genomics and transcriptomics due to the inherent complexity and heterogeneity of glycan structure and properties. Here, we first performed spatial and temporal analysis of glycome expression patterns in the mammalian brain using a cutting-edge experimental tool based on liquid chromatography-mass spectrometry, with the ultimate aim to yield valuable implications on molecular events regarding brain functions and development. We observed an apparent diversity in the glycome expression patterns, which is spatially well-preserved among nine different brain regions in mouse. Next, we explored whether the glycome expression pattern changes temporally during postnatal brain development by examining the prefrontal cortex (PFC) at different time point across six postnatal stages in mouse. We found that glycan expression profiles were dynamically regulated during postnatal developments. A similar result was obtained in PFC samples from humans ranging in age from 39 d to 49 y. Novel glycans unique to the brain were also identified. Interestingly, changes primarily attributed to sialylated and fucosylated glycans were extensively observed during PFC development. Finally, based on the vast heterogeneity of glycans, we constructed a core glyco-synthesis map to delineate the glycosylation pathway responsible for the glycan diversity during the PFC development. Our findings reveal high levels of diversity in a glycosylation program underlying brain region specificity and age dependency, and may lead to new studies exploring the role of glycans in spatiotemporally diverse brain functions.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Polisacáridos/biosíntesis , Corteza Prefrontal/metabolismo , Adolescente , Adulto , Animales , Niño , Preescolar , Glicómica , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Corteza Prefrontal/crecimiento & desarrollo , Adulto Joven
7.
Proc Natl Acad Sci U S A ; 117(13): 7430-7436, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32170019

RESUMEN

Recent progress in deciphering mechanisms of human brain cortical folding leave unexplained whether spatially patterned genetic influences contribute to this folding. High-resolution in vivo brain MRI can be used to estimate genetic correlations (covariability due to shared genetic factors) in interregional cortical thickness, and biomechanical studies predict an influence of cortical thickness on folding patterns. However, progress has been hampered because shared genetic influences related to folding patterns likely operate at a scale that is much more local (<1 cm) than that addressed in prior imaging studies. Here, we develop methodological approaches to examine local genetic influences on cortical thickness and apply these methods to two large, independent samples. We find that such influences are markedly heterogeneous in strength, and in some cortical areas are notably stronger in specific orientations relative to gyri or sulci. The overall, phenotypic local correlation has a significant basis in shared genetic factors and is highly symmetric between left and right cortical hemispheres. Furthermore, the degree of local cortical folding relates systematically with the strength of local correlations, which tends to be higher in gyral crests and lower in sulcal fundi. The relationship between folding and local correlations is stronger in primary sensorimotor areas and weaker in association areas such as prefrontal cortex, consistent with reduced genetic constraints on the structural topology of association cortex. Collectively, our results suggest that patterned genetic influences on cortical thickness, measurable at the scale of in vivo MRI, may be a causal factor in the development of cortical folding.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/crecimiento & desarrollo , Corteza Prefrontal/crecimiento & desarrollo , Adulto , Anciano , Anciano de 80 o más Años , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Bases de Datos Factuales , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Corteza Prefrontal/anatomía & histología
8.
J Neurosci ; 41(2): 331-341, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33214318

RESUMEN

In complex everyday environments, action selection is critical for optimal goal-directed behavior. This refers to the process of choosing a proper action from the range of possible alternatives. The neural mechanisms underlying action selection and how these are affected by normal aging remain to be elucidated. In the present cross-sectional study, we studied processes of effector selection during a multilimb reaction time task in a lifespan sample of healthy human adults (N = 89; 20-75 years; 48 males, 41 females). Participants were instructed to react as quickly and accurately as possible to visually cued stimuli representing single-limb or combined upper and/or lower limb motions. Diffusion MRI was used to study structural connectivity between prefrontal and striatal regions as critical nodes for action selection. Behavioral findings revealed that increasing age was associated with slowing of action selection performance. At the neural level, aging had a negative impact on prefronto-striatal connectivity. Importantly, mediation analyses revealed that the negative association between action selection performance and age was mediated by prefronto-striatal connectivity, specifically the connections between left rostral medial frontal gyrus and left nucleus accumbens as well as right frontal pole and left caudate. These results highlight the potential role of prefronto-striatal white matter decline in poorer action selection performance of older adults.SIGNIFICANCE STATEMENT As a result of enhanced life expectancy, researchers have devoted increasing attention to the study of age-related alterations in cognitive and motor functions. Here we study associations between brain structure and behavior to reveal the impact of central neural white matter changes as a function of normal aging on action selection performance. We demonstrate the critical role of a reduction in prefronto-striatal structural connectivity in accounting for action selection performance deficits in healthy older adults. Preserving this cortico-subcortical pathway may be critical for behavioral flexibility and functional independence in older age.


Asunto(s)
Neostriado/anatomía & histología , Neostriado/fisiología , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Corteza Prefrontal/anatomía & histología , Corteza Prefrontal/fisiología , Adulto , Anciano , Envejecimiento/fisiología , Núcleo Caudado/fisiología , Estudios Transversales , Señales (Psicología) , Toma de Decisiones , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Movimiento/fisiología , Neostriado/crecimiento & desarrollo , Vías Nerviosas/crecimiento & desarrollo , Núcleo Accumbens/fisiología , Estimulación Luminosa , Corteza Prefrontal/crecimiento & desarrollo , Tiempo de Reacción/fisiología , Adulto Joven
9.
Cereb Cortex ; 31(2): 1240-1258, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33037815

RESUMEN

Disrupted-in-schizophrenia 1 (DISC1) gene represents an intracellular hub of developmental processes. When combined with early environmental stressors, such as maternal immune activation, but not in the absence of thereof, whole-brain DISC1 knock-down leads to memory and executive deficits as result of impaired prefrontal-hippocampal communication throughout development. While synaptic dysfunction in neonatal prefrontal cortex (PFC) has been recently identified as one source of abnormal long-range coupling, the contribution of hippocampus (HP) is still unknown. Here, we aim to fill this knowledge gap by combining in vivo electrophysiology and optogenetics with morphological and behavioral assessment of immune-challenged mice with DISC1 knock-down either in the whole brain (GE) or restricted to pyramidal neurons in hippocampal CA1 area (GHPE). We found abnormal network activity, sharp-waves, and neuronal firing in CA1 that complement the deficits in upper layer of PFC. Moreover, optogenetic activating CA1 pyramidal neurons fails to activate the prefrontal local circuits. These deficits that persist till prejuvenile age relate to dendrite sparsification and loss of spines of CA1 pyramidal neurons. As a long-term consequence, DISC1 knock-down in HP leads to poorer recognition memory at prejuvenile age. Thus, DISC1-controlled developmental processes in HP in immune-challenged mice are critical for circuit function and cognitive behavior.


Asunto(s)
Cognición/fisiología , Conducta Exploratoria/fisiología , Técnicas de Silenciamiento del Gen/métodos , Hipocampo/crecimiento & desarrollo , Proteínas del Tejido Nervioso/deficiencia , Corteza Prefrontal/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Femenino , Hipocampo/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/inmunología , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/inmunología , Corteza Prefrontal/inmunología , Embarazo , Células Piramidales/fisiología
10.
Cereb Cortex ; 31(2): 809-825, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-32930336

RESUMEN

While declines in inhibitory control, the capacity to suppress unwanted neurocognitive processes, represent a hallmark of healthy aging, whether this function is susceptible to training-induced plasticity in older populations remains largely unresolved. We addressed this question with a randomized controlled trial investigating the changes in behavior and electrical neuroimaging activity induced by a 3-week adaptive gamified Go/NoGo inhibitory control training (ICT). Performance improvements were accompanied by the development of more impulsive response strategies, but did not generalize to impulsivity traits nor quality of life. As compared with a 2-back working-memory training, the ICT in the older adults resulted in a purely quantitative reduction in the strength of the activity in a medial and ventrolateral prefrontal network over the 400 ms P3 inhibition-related event-related potentials component. However, as compared with young adults, the ICT induced distinct configurational modifications in older adults' 200 ms N2 conflict monitoring medial-frontal functional network. Hence, while older populations show preserved capacities for training-induced plasticity in executive control, aging interacts with the underlying plastic brain mechanisms. Training improves the efficiency of the inhibition process in older adults, but its effects differ from those in young adults at the level of the coping with inhibition demands.


Asunto(s)
Envejecimiento/fisiología , Función Ejecutiva/fisiología , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Corteza Prefrontal/fisiología , Adulto , Anciano , Potenciales Evocados , Femenino , Juegos Experimentales , Humanos , Inhibición Psicológica , Masculino , Memoria a Corto Plazo , Persona de Mediana Edad , Red Nerviosa/crecimiento & desarrollo , Red Nerviosa/fisiología , Práctica Psicológica , Corteza Prefrontal/crecimiento & desarrollo , Desempeño Psicomotor/fisiología , Adulto Joven
11.
Cereb Cortex ; 31(4): 2026-2037, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33279960

RESUMEN

Visuospatial working memory (vsWM) requires information transfer among multiple cortical regions, from primary visual (V1) to prefrontal (PFC) cortices. This information is conveyed via layer 3 glutamatergic neurons whose activity is regulated by gamma-aminobutyric acid (GABA)ergic interneurons. In layer 3 of adult human neocortex, molecular markers of glutamate neurotransmission were lowest in V1 and highest in PFC, whereas GABA markers had the reverse pattern. Here, we asked if these opposite V1-visual association cortex (V2)-posterior parietal cortex (PPC)-PFC gradients across the vsWM network are present in layer 3 of monkey neocortex, when they are established during postnatal development, and if they are specific to this layer. We quantified transcript levels of glutamate and GABA markers in layers 3 and 6 of four vsWM cortical regions in a postnatal developmental series of 30 macaque monkeys. In adult monkeys, glutamate transcript levels in layer 3 increased across V1-V2-PPC-PFC regions, whereas GABA transcripts showed the opposite V1-V2-PPC-PFC gradient. Glutamate transcripts established adult-like expression patterns earlier during postnatal development than GABA transcripts. These V1-V2-PPC-PFC gradients and developmental patterns were less evident in layer 6. These findings demonstrate that expression of glutamate and GABA transcripts differs across cortical regions and layers during postnatal development, revealing potential molecular substrates for vsWM functional maturation.


Asunto(s)
Ácido Glutámico/biosíntesis , Lóbulo Parietal/metabolismo , Corteza Prefrontal/metabolismo , Transcripción Genética/fisiología , Corteza Visual/metabolismo , Ácido gamma-Aminobutírico/biosíntesis , Factores de Edad , Animales , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Transportador 2 de Aminoácidos Excitadores/genética , Femenino , Neuronas GABAérgicas/metabolismo , Expresión Génica , Ácido Glutámico/genética , Macaca mulatta , Lóbulo Parietal/crecimiento & desarrollo , Corteza Prefrontal/crecimiento & desarrollo , Receptores de GABA-A/biosíntesis , Receptores de GABA-A/genética , Corteza Visual/crecimiento & desarrollo , Ácido gamma-Aminobutírico/genética
12.
J Neurosci ; 40(36): 6969-6977, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32788182

RESUMEN

Prenatal depression is common, underrecognized, and undertreated. It has negative consequences on child behavior and brain development, yet the relationships among prenatal depression, child behavior, and children's brain structure remain unclear. The aim of this study was to determine whether altered brain connectivity mediates relationships between prenatal maternal depressive symptoms and child behavior. This study included 54 human mother-child pairs. Mothers completed the Edinburgh Postnatal Depression Scale during the second and third trimesters of pregnancy and 3 months postpartum. Their children had diffusion MRI at age 4.1 ± 0.8 years, and children's behavior was assessed using the Child Behavior Checklist within 6 months of their MRI scan. Structural brain connectivity of the amygdala, fornix, uncinate fasciculus, and cingulum was assessed using fractional anisotropy and mean diffusivity and analyzed with maternal prenatal depressive symptoms as well as child behavior. Third trimester maternal Edinburgh Postnatal Depression Scale scores were positively associated with mean diffusivity in the amygdala-frontal tract and the cingulum, controlling for postpartum depression. Externalizing behavior had a sex interaction in the amygdala-frontal pathway; weaker connectivity (lower fractional anisotropy, higher mean diffusivity) was associated with worse behavior in boys. Amygdala-frontal connectivity mediated the relationship between third trimester depressive symptoms and child externalizing behavior in males. These findings suggest that altered brain structure is a mechanism via which prenatal depressive symptoms can impact child behavior, highlighting the importance of both recognition and intervention in prenatal depression.SIGNIFICANCE STATEMENT Understanding how prenatal maternal depression impacts child behavior is critical for appropriately treating prenatal maternal mental health problems and improving child outcomes. Here, we show white matter changes in young children exposed to maternal prenatal depressive symptoms. Children of mothers with worse depressive symptoms had weaker white matter connectivity between areas related to emotional processing. Furthermore, connectivity between the amygdala and prefrontal cortex mediated the relationship between maternal depressive symptoms and externalizing behavior in boys, showing that altered brain structure is a possible mechanism via which maternal prenatal depression impacts children's behavior. This provides important information for understanding why children of depressed mothers may be more vulnerable to depression themselves and may help shape future guidelines on maternal prenatal care.


Asunto(s)
Amígdala del Cerebelo/diagnóstico por imagen , Conducta Infantil , Conectoma , Depresión/psicología , Corteza Prefrontal/diagnóstico por imagen , Efectos Tardíos de la Exposición Prenatal/psicología , Amígdala del Cerebelo/crecimiento & desarrollo , Preescolar , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Corteza Prefrontal/crecimiento & desarrollo , Embarazo , Adulto Joven
13.
J Neurosci ; 40(25): 4881-4887, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32430298

RESUMEN

Understanding how disruption of prefrontal cortex (PFC) maturation during adolescence is crucial to reveal which neural processes could contribute to the onset of psychiatric disorders that display frontal cortical deficits. Of particular interest is the gain of GABAergic function in the PFC during adolescence and its susceptibility to the impact of transient blockade of NMDA receptor function. Here we assessed whether exposure to MK-801 during adolescence in male rats triggers a state of excitatory-inhibitory imbalance in the PFC that limits its functional capacity to regulate behavior in adulthood. Recordings from PFC brain slices revealed that MK-801 exposure during adolescence preferentially reduces the presynaptic functionality of GABAergic activity over that of excitatory synapses. As a result, an imbalance of excitatory-inhibitory synaptic activity emerges in the PFC that correlates linearly with the GABAergic deficit. Notably, the data also suggest that the diminished prefrontal GABAergic function could arise from a deficit in the recruitment of fast-spiking interneurons by excitatory inputs during adolescence. At the behavioral level, MK-801 exposure during adolescence did not disrupt the acquisition of trace fear conditioning, but markedly increased the level of freezing response during extinction testing. Infusion of the GABAA receptor-positive allosteric modulator Indiplon into the PFC before extinction testing reduced the level of freezing response in MK-801-treated rats to control levels. Collectively, the results indicate NMDA receptor signaling during adolescence enables the gain of prefrontal GABAergic function, which is required for maintaining proper excitatory-inhibitory balance in the PFC and its control of behavioral responses.SIGNIFICANCE STATEMENT A developmental disruption of prefrontal cortex maturation has been implicated in the pathophysiology of cognitive deficits in psychiatric disorders. Of particular interest is the susceptibility of the local GABAergic circuit to the impact of transient disruption of NMDA receptors. Here we found that NMDA receptor signaling is critical to enable the gain of prefrontal GABAergic transmission during adolescence for maintaining proper levels of excitatory-inhibitory balance in the PFC and its control of behavior.


Asunto(s)
Miedo/fisiología , Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/fisiología , Animales , Maleato de Dizocilpina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Extinción Psicológica/fisiología , Miedo/efectos de los fármacos , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Masculino , Corteza Prefrontal/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/efectos de los fármacos
14.
J Neurochem ; 157(3): 479-493, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33190236

RESUMEN

Immune system components also regulate synapse formation and refinement in neurodevelopment. The complement pathway, associated with cell lysis and phagocytosis, is implicated in synaptic elimination. Aberrant adolescent synaptic pruning may underpin schizophrenia onset; thus, changes in cortical complement activity during human development are of major interest. Complement is genetically linked to schizophrenia via increased C4 copy number variants, but the developmental trajectory of complement expression in the human brain is undetermined. As complement increases during periods of active synaptic engulfment in rodents, we hypothesized that complement expression would increase during postnatal development in humans, particularly during adolescence. Using human postmortem prefrontal cortex, we observed that complement activator (C1QB and C3) transcripts peaked in early neurodevelopment, and were highest in toddlers, declining in teenagers (all ANCOVAs between F = 2.41 -3.325, p = .01-0.05). We found that C4 protein was higher at 1-5 years (H = 16.378, p = .012), whereas C3 protein levels were unchanged with age. The microglial complement receptor subunit CD11b increased in mRNA early in life and peaked in the toddler brain (ANCOVA: pH, F = 4.186, p = .003). Complement inhibitors (CD46 and CD55) increased at school age, but failed to decrease like complement activators (both ANCOVAs, F > 4.4, p < .01). These data suggest the activation of complement in the human prefrontal cortex occurs between 1 and 5 years. We did not find evidence of induction of complement factors during adolescence and instead found increased or sustained levels of complement inhibitor mRNA at maturation. Dysregulation of these typical patterns of complement may predispose the brain to neurodevelopmental disorders such as autism or schizophrenia.


Asunto(s)
Envejecimiento/metabolismo , Química Encefálica/fisiología , Encéfalo/crecimiento & desarrollo , Proteínas del Sistema Complemento/metabolismo , Adolescente , Adulto , Antígeno CD11b/biosíntesis , Antígeno CD11b/genética , Antígeno CD56/genética , Antígeno CD56/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Niño , Preescolar , Vía Clásica del Complemento/genética , ADN/biosíntesis , ADN/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Recién Nacido , Masculino , Proteína Cofactora de Membrana/genética , Proteína Cofactora de Membrana/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Adulto Joven
15.
Neurobiol Learn Mem ; 179: 107388, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33482320

RESUMEN

The article reviews our studies of contextual fear conditioning (CFC) in rats during a period of development---Postnatal Day (PND) 17-33---that represents the late-infant, juvenile, and early-adolescent stages. These studies seek to acquire 'systems level' knowledge of brain and memory development and apply it to a rodent model of Fetal Alcohol Spectrum Disorder (FASD). This rodent model focuses on alcohol exposure from PND4-9, a period of brain development equivalent to the human third trimester, when neocortex, hippocampus, and cerebellum are especially vulnerable to adverse effects of alcohol. Our research emphasizes a variant of CFC, termed the Context Preexposure Facilitation Effect (CPFE, Fanselow, 1990), in which context representations incidentally learned on one occasion are retrieved and associated with immediate shock on a subsequent occasion. These representations can be encoded at the earliest developmental stage but seem not to be retained or retrieved until the juvenile period. This is associated with developmental differences in context-elicited expression, in prefrontal cortex, hippocampus, and amygdala, of immediate early genes (IEGs) that are implicated in long-term memory. Loss-of-function studies establish a functional role for these regions as soon as the CPFE emerges during ontogeny. In our rodent model of FASD, the CPFE is much more sensitive to alcohol dose than other commonly used cognitive tasks. This impairment can be reversed by acute administration during behavioral testing of drugs that enhance cholinergic function. This effect is associated with normalized IEG expression in prefrontal cortex during incidental context learning. In summary, our findings suggest that long-term memory of incidentally-learned context representations depends on prefrontal-hippocampal circuitry that is important both for the normative development of context conditioning and for its disruption by developmental alcohol exposure.


Asunto(s)
Conducta Animal/fisiología , Encéfalo/crecimiento & desarrollo , Condicionamiento Clásico/fisiología , Trastornos del Espectro Alcohólico Fetal/fisiopatología , Memoria , Aprendizaje Espacial/fisiología , Animales , Encéfalo/fisiología , Modelos Animales de Enfermedad , Miedo , Trastornos del Espectro Alcohólico Fetal/genética , Regulación del Desarrollo de la Expresión Génica , Genes Inmediatos-Precoces/genética , Crecimiento y Desarrollo , Hipocampo/crecimiento & desarrollo , Hipocampo/fisiología , Aprendizaje , Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/fisiología , Ratas
16.
Nat Rev Neurosci ; 17(5): 323-32, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27040907

RESUMEN

Language-processing functions follow heterogeneous developmental trajectories. The human embryo can already distinguish vowels in utero, but grammatical complexity is usually not fully mastered until at least 7 years of age. Examining the current literature, we propose that the ontogeny of the cortical language network can be roughly subdivided into two main developmental stages. In the first stage extending over the first 3 years of life, the infant rapidly acquires bottom-up processing capacities, which are primarily implemented bilaterally in the temporal cortices. In the second stage continuing into adolescence, top-down processes emerge gradually with the increasing functional selectivity and structural connectivity of the left inferior frontal cortex.


Asunto(s)
Lenguaje , Red Nerviosa/crecimiento & desarrollo , Corteza Prefrontal/crecimiento & desarrollo , Mapeo Encefálico/métodos , Niño , Desarrollo Infantil/fisiología , Preescolar , Humanos , Vías Nerviosas/crecimiento & desarrollo
17.
Mol Psychiatry ; 25(11): 2952-2969, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-30089790

RESUMEN

Lipids are essential to brain functions, yet they remain largely unexplored. Here we investigated the lipidome composition of prefrontal cortex gray matter in 396 cognitively healthy individuals with ages spanning 100 years, as well as 67 adult individuals diagnosed with autism (ASD), schizophrenia (SZ), and Down syndrome (DS). Of the 5024 detected lipids, 95% showed significant age-dependent concentration differences clustering into four temporal stages, and resulting in a gradual increase in membrane fluidity in individuals ranging from newborn to nonagenarian. Aging affects 14% of the brain lipidome with late-life changes starting predominantly at 50-55 years of age-a period of general metabolic transition. All three diseases alter the brain lipidome composition, leading-among other things-to a concentration decrease in glycerophospholipid metabolism and endocannabinoid signaling pathways. Lipid concentration decreases in SZ were further linked to genetic variants associated with disease, indicating the relevance of the lipidome changes to disease progression.


Asunto(s)
Envejecimiento/metabolismo , Disfunción Cognitiva/metabolismo , Lipidómica , Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Cognición , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Adulto Joven
18.
Cereb Cortex ; 30(3): 1548-1558, 2020 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-31670797

RESUMEN

Significant improvements in cognitive control occur from childhood through adolescence, supported by the maturation of prefrontal systems. However, less is known about the neural basis of refinements in cognitive control proceeding from adolescence to adulthood. Accumulating evidence indicates that integration between hippocampus (HPC) and prefrontal cortex (PFC) supports flexible cognition and has a protracted neural maturation. Using a longitudinal design (487 scans), we characterized developmental changes from 8 to 32 years of age in HPC-PFC functional connectivity at rest and its associations with cognitive development. Results indicated significant increases in functional connectivity between HPC and ventromedial PFC (vmPFC), but not dorsolateral PFC. Importantly, HPC-vmPFC connectivity exclusively predicted performance on the Stockings of Cambridge task, which probes problem solving and future planning. These data provide evidence that maturation of high-level cognition into adulthood is supported by increased functional integration across the HPC and vmPFC through adolescence.


Asunto(s)
Cognición/fisiología , Hipocampo/crecimiento & desarrollo , Vías Nerviosas/crecimiento & desarrollo , Corteza Prefrontal/crecimiento & desarrollo , Adolescente , Adulto , Mapeo Encefálico , Niño , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Adulto Joven
19.
Cereb Cortex ; 30(8): 4689-4707, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32249896

RESUMEN

Parvalbumin (PV)-expressing basket interneurons in the prefrontal cortex (PFC) regulate pyramidal cell firing, synchrony, and network oscillations. Yet, it is unclear how their perisomatic inputs to pyramidal neurons are integrated into neural circuitry and adjusted postnatally. Neural cell adhesion molecule NCAM is expressed in a variety of cells in the PFC and cooperates with EphrinA/EphAs to regulate inhibitory synapse density. Here, analysis of a novel parvalbumin (PV)-Cre: NCAM F/F mouse mutant revealed that NCAM functions presynaptically in PV+ basket interneurons to regulate postnatal elimination of perisomatic synapses. Mutant mice exhibited an increased density of PV+ perisomatic puncta in PFC layer 2/3, while live imaging in mutant brain slices revealed fewer puncta that were dynamically eliminated. Furthermore, EphrinA5-induced growth cone collapse in PV+ interneurons in culture depended on NCAM expression. Electrophysiological recording from layer 2/3 pyramidal cells in mutant PFC slices showed a slower rise time of inhibitory synaptic currents. PV-Cre: NCAM F/F mice exhibited impairments in working memory and social behavior that may be impacted by altered PFC circuitry. These findings suggest that the density of perisomatic synapses of PV+ basket interneurons is regulated postnatally by NCAM, likely through EphrinA-dependent elimination, which is important for appropriate PFC network function and behavior.


Asunto(s)
Interneuronas/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neurogénesis/fisiología , Corteza Prefrontal/metabolismo , Sinapsis/fisiología , Animales , Conducta Animal , Femenino , Masculino , Memoria a Corto Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , Corteza Prefrontal/crecimiento & desarrollo
20.
Cereb Cortex ; 30(7): 4140-4157, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32108219

RESUMEN

We used functional magnetic resonance imaging (fMRI) to map the neural systems involved in reading Chinese in 125 participants 6-74 years old to examine two theoretical issues: how brain structure and function are related in the context of the lifetime neural development of human cognition and whether the neural network for reading is universal or different across languages. Our findings showed that a common network of left frontal and occipital regions typically involved in reading Chinese was recruited across all participants. Crucially, activation in left mid-inferior frontal regions, fusiform and striate-extrastriate sites, premotor cortex, right inferior frontal gyrus, bilateral insula, and supplementary motor area all showed linearly decreasing changes with age. These findings differ from previous findings on alphabetic reading development and suggest that early readers at age 6-7 are already using the same cortical network to process printed words as adults, though the connections among these regions are modulated by reading proficiency, and cortical regions for reading are tuned by experience toward reduced and more focused activation. This fMRI study has demonstrated, for the first time, the neurodevelopment of reading across the lifespan and suggests that learning experience, instead of pre-existing brain structures, determines reading acquisition.


Asunto(s)
Encéfalo/diagnóstico por imagen , Cognición , Lenguaje , Lectura , Adolescente , Adulto , Anciano , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Niño , Femenino , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Frontal/crecimiento & desarrollo , Lóbulo Frontal/fisiología , Neuroimagen Funcional , Humanos , Corteza Insular/diagnóstico por imagen , Corteza Insular/crecimiento & desarrollo , Corteza Insular/fisiología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Motora/diagnóstico por imagen , Corteza Motora/crecimiento & desarrollo , Corteza Motora/fisiología , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/fisiología , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/crecimiento & desarrollo , Lóbulo Temporal/fisiología , Corteza Visual/diagnóstico por imagen , Corteza Visual/crecimiento & desarrollo , Corteza Visual/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda