Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
PLoS Genet ; 20(6): e1011127, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38829907

RESUMEN

The cell envelope fortifies bacterial cells against antibiotics and other insults. Species in the Mycobacteriales order have a complex envelope that includes an outer layer of mycolic acids called the mycomembrane (MM) and a cell wall composed of peptidoglycan and arabinogalactan. This envelope architecture is unique among bacteria and contributes significantly to the virulence of pathogenic Mycobacteriales like Mycobacterium tuberculosis. Characterization of pathways that govern envelope biogenesis in these organisms is therefore critical in understanding their biology and for identifying new antibiotic targets. To better understand MM biogenesis, we developed a cell sorting-based screen for mutants defective in the surface exposure of a porin normally embedded in the MM of the model organism Corynebacterium glutamicum. The results revealed a requirement for the conserved σD envelope stress response in porin export and identified MarP as the site-1 protease, respectively, that activate the response by cleaving the membrane-embedded anti-sigma factor. A reporter system revealed that the σD pathway responds to defects in mycolic acid and arabinogalactan biosynthesis, suggesting that the stress response has the unusual property of being induced by activating signals that arise from defects in the assembly of two distinct envelope layers. Our results thus provide new insights into how C. glutamicum and related bacteria monitor envelope integrity and suggest a potential role for members of the σD regulon in protein export to the MM.


Asunto(s)
Membrana Celular , Pared Celular , Corynebacterium glutamicum , Ácidos Micólicos , Factor sigma , Pared Celular/metabolismo , Pared Celular/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ácidos Micólicos/metabolismo , Factor sigma/metabolismo , Factor sigma/genética , Membrana Celular/metabolismo , Estrés Fisiológico , Porinas/metabolismo , Porinas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Galactanos/metabolismo , Regulación Bacteriana de la Expresión Génica , Peptidoglicano/metabolismo
2.
Nucleic Acids Res ; 52(14): 8609-8627, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38967005

RESUMEN

High spontaneous mutation rate is crucial for obtaining ideal phenotype and exploring the relationship between genes and phenotype. How to break the genetic stability of organisms and increase the mutation frequency has become a research hotspot. Here, we present a practical and controllable evolutionary tool (oMut-Cgts) based on dual genetic level modification engineering for Corynebacterium glutamicum. Firstly, the modification engineering of transcription and replication levels based on RNA polymerase α subunit and DNA helicase Cgl0854 as the 'dock' of cytidine deaminase (pmCDA1) significantly increased the mutation rate, proving that the localization of pmCDA1 around transient ssDNA is necessary for genome mutation. Then, the combined modification and optimization of engineering at dual genetic level achieved 1.02 × 104-fold increased mutation rate. The genome sequencing revealed that the oMut-Cgts perform uniform and efficient C:G→T:A transitions on a genome-wide scale. Furthermore, oMut-Cgts-mediated rapid evolution of C. glutamicum with stress (acid, oxidative and ethanol) tolerance proved that the tool has powerful functions in multi-dimensional biological engineering (rapid phenotype evolution, gene function mining and protein evolution). The strategies for rapid genome evolution provided in this study are expected to be applicable to a variety of applications in all prokaryotic cells.


Asunto(s)
Corynebacterium glutamicum , Genoma Bacteriano , Corynebacterium glutamicum/genética , Ingeniería Genética/métodos , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Tasa de Mutación , Evolución Molecular , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Replicación del ADN/genética , Mutación
3.
Nucleic Acids Res ; 52(8): 4604-4626, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38348908

RESUMEN

Bacteria have evolved structured RNAs that can associate with RNA polymerase (RNAP). Two of them have been known so far-6S RNA and Ms1 RNA but it is unclear if any other types of RNAs binding to RNAP exist in bacteria. To identify all RNAs interacting with RNAP and the primary σ factors, we have established and performed native RIP-seq in Bacillus subtilis, Corynebacterium glutamicum, Streptomyces coelicolor, Mycobacterium smegmatis and the pathogenic Mycobacterium tuberculosis. Besides known 6S RNAs in B. subtilis and Ms1 in M. smegmatis, we detected MTS2823, a homologue of Ms1, on RNAP in M. tuberculosis. In C. glutamicum, we discovered novel types of structured RNAs that associate with RNAP. Furthermore, we identified other species-specific RNAs including full-length mRNAs, revealing a previously unknown landscape of RNAs interacting with the bacterial transcription machinery.


Asunto(s)
Proteínas Bacterianas , ARN Polimerasas Dirigidas por ADN , ARN Bacteriano , Factor sigma , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Regulación Bacteriana de la Expresión Génica , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Conformación de Ácido Nucleico , ARN Bacteriano/metabolismo , ARN Bacteriano/genética , ARN no Traducido , Factor sigma/metabolismo , Factor sigma/genética , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Transcripción Genética
4.
Metab Eng ; 81: 238-248, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38160746

RESUMEN

Previously, a novel Corynebacterium glutamicum strain for the de novo biosynthesis of tailored poly-γ-glutamic acid (γ-PGA) has been constructed by our group. The strain was based on the γ-PGA synthetase complex, PgsBCA, which is the only polyprotein complex responsible for γ-PGA synthesis in Bacillus spp. In the present study, PgsBCA was reconstituted and overexpressed in C. glutamicum to further enhance γ-PGA synthesis. First, we confirmed that all the components (PgsB, PgsC, and PgsA) of γ-PGA synthetase derived from B. licheniformis are necessary for γ-PGA synthesis, and γ-PGA was detected only when PgsB, PgsC, and PgsA were expressed in combination in C. glutamicum. Next, the expression level of each pgsB, pgsC, and pgsA was tuned in order to explore the effect of expression of each of the γ-PGA synthetase subunits on γ-PGA production. Results showed that increasing the transcription levels of pgsB or pgsC and maintaining a medium-level transcription level of pgsA led to 35.44% and 76.53% increase in γ-PGA yield (γ-PGA yield-to-biomass), respectively. Notably, the expression level of pgsC had the greatest influence (accounting for 68.24%) on γ-PGA synthesis, followed by pgsB. Next, genes encoding for PgsC from four different sources (Bacillus subtilis, Bacillus anthracis, Bacillus methylotrophicus, and Bacillus amyloliquefaciens) were tested in order to identify the influence of PgsC-encoding orthologues on γ-PGA production, but results showed that in all cases the synthesis of γ-PGA was significantly inhibited. Similarly, we also explored the influence of gene orthologues encoding for PgsB on γ-PGA production, and found that the titer increased to 17.14 ± 0.62 g/L from 8.24 ± 0.10 g/L when PgsB derived from B. methylotrophicus replaced PgsB alone in PgsBCA from B. licheniformis. The resulting strain was chosen for further optimization, and we achieved a γ-PGA titer of 38.26 g/L in a 5 L fermentor by optimizing dissolved oxygen level. Subsequently, by supplementing glucose, γ-PGA titer increased to 50.2 g/L at 48 h. To the best of our knowledge, this study achieved the highest titer for de novo production of γ-PGA from glucose, without addition of L-glutamic acid, resulting in a novel strategy for enhancing γ-PGA production.


Asunto(s)
Corynebacterium glutamicum , Fermentación , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ácido Glutámico , Ácido Poliglutámico/genética , Ligasas/metabolismo , Glucosa/metabolismo
5.
Metab Eng ; 82: 225-237, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38369050

RESUMEN

Cis, cis-muconic acid (MA) is widely used as a key starting material in the synthesis of diverse polymers. The growing demand in these industries has led to an increased need for MA. Here, we constructed recombinant Corynebacterium glutamicum by systems metabolic engineering, which exhibit high efficiency in the production of MA. Firstly, the three major degradation pathways were disrupted in the MA production process. Subsequently, metabolic optimization strategies were predicted by computational design and the shikimate pathway was reconstructed, significantly enhancing its metabolic flux. Finally, through optimization and integration of key genes involved in MA production, the recombinant strain produced 88.2 g/L of MA with the yield of 0.30 mol/mol glucose in the 5 L bioreactor. This titer represents the highest reported titer achieved using glucose as the carbon source in current studies, and the yield is the highest reported for MA production from glucose in Corynebacterium glutamicum. Furthermore, to enable the utilization of more cost-effective glucose derived from corn straw hydrolysate, we subjected the strain to adaptive laboratory evolution in corn straw hydrolysate. Ultimately, we successfully achieved MA production in a high solid loading of corn straw hydrolysate (with the glucose concentration of 83.56 g/L), resulting in a titer of 19.9 g/L for MA, which is 4.1 times higher than that of the original strain. Additionally, the glucose yield was improved to 0.33 mol/mol. These provide possibilities for a greener and more sustainable production of MA.


Asunto(s)
Corynebacterium glutamicum , Ácido Sórbico/análogos & derivados , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Reactores Biológicos/microbiología , Glucosa/genética , Glucosa/metabolismo , Ácido Sórbico/metabolismo , Ingeniería Metabólica/métodos , Fermentación
6.
Metab Eng ; 84: 117-127, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38901555

RESUMEN

Effective utilization of glucose, xylose, and acetate, common carbon sources in lignocellulose hydrolysate, can boost biomanufacturing economics. However, carbon leaks into biomass biosynthesis pathways instead of the intended target product remain to be optimized. This study aimed to enhance α-carotene production by optimizing glucose, xylose, and acetate utilization in a high-efficiency Corynebacterium glutamicum cell factory. Heterologous xylose pathway expression in C. glutamicum resulted in strain m4, exhibiting a two-fold increase in α-carotene production from xylose compared to glucose. Xylose utilization was found to boost the biosynthesis of pyruvate and acetyl-CoA, essential precursors for carotenoid biosynthesis. Additionally, metabolic engineering including pck, pyc, ppc, and aceE deletion, completely disrupted the metabolic connection between glycolysis and the TCA cycle, further enhancing α-carotene production. This strategic intervention directed glucose and xylose primarily towards target chemical production, while acetate supplied essential metabolites for cell growth recovery. The engineered strain C. glutamicum m8 achieved 30 mg/g α-carotene, 67% higher than strain m4. In fed-batch fermentation, strain m8 produced 1802 mg/L of α-carotene, marking the highest titer reported to date in microbial fermentation. Moreover, it exhibited excellent performance in authentic lignocellulosic hydrolysate, producing 216 mg/L α-carotene, 1.45 times higher than the initial strain (m4). These labor-division strategies significantly contribute to the development of clean processes for producing various valuable chemicals from lignocellulosic resources.


Asunto(s)
Corynebacterium glutamicum , Ingeniería Metabólica , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/genética , Glucosa/metabolismo , Xilosa/metabolismo , Carotenoides/metabolismo , Carbono/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/biosíntesis
7.
Microb Cell Fact ; 23(1): 62, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402147

RESUMEN

BACKGROUND: 1,2-propanediol (1,2-PDO) is widely used in the cosmetic, food, and drug industries with a worldwide consumption of over 1.5 million metric tons per year. Although efforts have been made to engineer microbial hosts such as Corynebacterium glutamicum to produce 1,2-PDO from renewable resources, the performance of such strains is still improvable to be competitive with existing petrochemical production routes. RESULTS: In this study, we enabled 1,2-PDO production in the genome-reduced strain C. glutamicum PC2 by introducing previously described modifications. The resulting strain showed reduced product formation but secreted 50 ± 1 mM D-lactate as byproduct. C. glutamicum PC2 lacks the D-lactate dehydrogenase which pointed to a yet unknown pathway relevant for 1,2-PDO production. Further analysis indicated that in C. glutamicum methylglyoxal, the precursor for 1,2-PDO synthesis, is detoxified with the antioxidant native mycothiol (MSH) by a glyoxalase-like system to lactoylmycothiol and converted to D-lactate which is rerouted into the central carbon metabolism at the level of pyruvate. Metabolomics of cell extracts of the empty vector-carrying wildtype, a 1,2-PDO producer and its derivative with inactive D-lactate dehydrogenase identified major mass peaks characteristic for lactoylmycothiol and its precursors MSH and glucosaminyl-myo-inositol, whereas the respective mass peaks were absent in a production strain with inactivated MSH synthesis. Deletion of mshA, encoding MSH synthase, in the 1,2-PDO producing strain C. glutamicum ΔhdpAΔldh(pEKEx3-mgsA-yqhD-gldA) improved the product yield by 56% to 0.53 ± 0.01 mM1,2-PDO mMglucose-1 which is the highest value for C. glutamicum reported so far. CONCLUSIONS: Genome reduced-strains are a useful basis to unravel metabolic constraints for strain engineering and disclosed in this study the pathway to detoxify methylglyoxal which represents a precursor for 1,2-PDO production. Subsequent inactivation of the competing pathway significantly improved the 1,2-PDO yield.


Asunto(s)
Corynebacterium glutamicum , Propilenglicol , Glicoles de Propileno , Propilenglicol/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Piruvaldehído/metabolismo , Lactatos/metabolismo , Ingeniería Metabólica
8.
Microb Cell Fact ; 23(1): 147, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783320

RESUMEN

Aminopyrrolnitrin (APRN), a natural halogenated phenylpyrrole derivative (HPD), has strong antifungal and antiparasitic activities. Additionally, it showed 2.8-fold increased photostability compared to pyrrolnitrin, a commercially available HPD with antimicrobial activity. For microbial production of APRN, we first engineered anthranilate phosphoribosyltransferase encoded by trpD from Corynebacterium glutamicum, resulting in a TrpDA162D mutation that exhibits feedback-resistant against L-tryptophan and higher substrate affinity compared to wild-type TrpD. Plasmid-borne expression of trpDA162D in C. glutamicum TP851 strain with two copies of trpDA162D in the genome led to the production of 3.1 g/L L-tryptophan in flask culture. Subsequent step for L-tryptophan chlorination into 7-chloro-L-tryptophan was achieved by introducing diverse sources of genes encoding tryptophan 7-halogenase (PrnA or RebH) and flavin reductase (Fre, PrnF, or RebF). The combined expression of prnA from Serratia grimesii or Serratia plymuthica with flavin reductase gene from Escherichia coli, Pseudomonas fluorescens, or Lechevalieria aerocolonigenes yielded higher production of 7-chloro-L-tryptophan in comparison to other sets of two-component systems. In the next step, production of putative monodechloroaminopyrrolnitrin (MDAP) from 7-chloro-L-tryptophan was achieved through the expression of prnB encoding MDAP synthase from S. plymuthica or P. fluorescens. Finally, an artificial APRN biosynthetic pathway was constructed by simultaneously expressing genes coding for tryptophan 7-halogenase, flavin reductase, MDAP synthase, and MDAP halogenase (PrnC) from different microbial sources within the L-tryptophan-producing TP851 strain. As prnC from S. grimesii or S. plymuthica was introduced into the host strain, which carried plasmids expressing prnA from S. plymuthica, fre from E. coli, and prnB from S. plymuthica, APN3639 and APN3638 accumulated 29.5 mg/L and 28.1 mg/L of APRN in the culture broth. This study represents the first report on the fermentative APRN production by metabolically engineered C. glutamicum.


Asunto(s)
Corynebacterium glutamicum , Ingeniería Metabólica , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/genética , Ingeniería Metabólica/métodos , Pirrolnitrina/biosíntesis , Pirrolnitrina/metabolismo , Fermentación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Triptófano/biosíntesis , Triptófano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oxidorreductasas
9.
Microb Cell Fact ; 23(1): 230, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152436

RESUMEN

BACKGROUND: Non-conventional yeasts and bacteria gain significance in synthetic biology for their unique metabolic capabilities in converting low-cost renewable feedstocks into valuable products. Improving metabolic pathways and increasing bioproduct yields remain dependent on the strategically use of various promoters in these microbes. The development of broad-spectrum promoter libraries with varying strengths for different hosts is attractive for biosynthetic engineers. RESULTS: In this study, five Yarrowia lipolytica constitutive promoters (yl.hp4d, yl.FBA1in, yl.TEF1, yl.TDH1, yl.EXP1) and five Kluyveromyces marxianus constitutive promoters (km.PDC1, km.FBA1, km.TEF1, km.TDH3, km.ENO1) were selected to construct promoter-reporter vectors, utilizing α-amylase and red fluorescent protein (RFP) as reporter genes. The promoters' strengths were systematically characterized across Y. lipolytica, K. marxianus, Pichia pastoris, Escherichia coli, and Corynebacterium glutamicum. We discovered that five K. marxianus promoters can all express genes in Y. lipolytica and that five Y. lipolytica promoters can all express genes in K. marxianus with variable expression strengths. Significantly, the yl.TEF1 and km.TEF1 yeast promoters exhibited their adaptability in P. pastoris, E. coli, and C. glutamicum. In yeast P. pastoris, the yl.TEF1 promoter exhibited substantial expression of both amylase and RFP. In bacteria E. coli and C. glutamicum, the eukaryotic km.TEF1 promoter demonstrated robust expression of RFP. Significantly, in E. coli, The RFP expression strength of the km.TEF1 promoter reached ∼20% of the T7 promoter. CONCLUSION: Non-conventional yeast promoters with diverse and cross-domain applicability have great potential for developing innovative and dynamic regulated systems that can effectively manage carbon flux and enhance target bioproduct synthesis across diverse microbial hosts.


Asunto(s)
Escherichia coli , Vectores Genéticos , Kluyveromyces , Regiones Promotoras Genéticas , Yarrowia , Vectores Genéticos/genética , Yarrowia/genética , Yarrowia/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Proteína Fluorescente Roja , Genes Reporteros , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ingeniería Metabólica/métodos , alfa-Amilasas/genética , alfa-Amilasas/metabolismo , Saccharomycetales
10.
Appl Microbiol Biotechnol ; 108(1): 190, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305911

RESUMEN

Metabolic engineering frequently makes use of point mutation and saturation mutation library creation. At present, sequencing is the only reliable and direct technique to detect point mutation and screen saturation mutation library. In this study, mismatch amplification mutation assay (MAMA) PCR was used to detect point mutation and screen saturation mutation library. In order to fine-tune the expression of odhA encoding 2-oxoglutarate dehydrogenase E1 component, a saturating mutant library of the RBS of odhA was created in Corynebacterium glutamicum P12 based on the CRISPR-Cas2a genome editing system, which increased the L-proline production by 81.3%. MAMA PCR was used to filter out 42% of the non-mutant transformants in the mutant library, which effectively reduced the workload of the subsequent fermentation test and the number of sequenced samples. The rapid and sensitive MAMA-PCR method established in this study provides a general strategy for detecting point mutations and improving the efficiency of mutation library screening. KEY POINTS: • MAMA PCR was optimized and developed to detect point mutation. • MAMA PCR greatly improves the screening efficiency of point mutation. • Attenuation of odhA expression in P12 effectively improves proline production.


Asunto(s)
Corynebacterium glutamicum , Mutación Puntual , Mutación , Secuencia de Bases , Corynebacterium glutamicum/genética , Reacción en Cadena de la Polimerasa/métodos
11.
Curr Microbiol ; 81(6): 167, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727744

RESUMEN

Diabetes mellitus represents a persistent metabolic condition marked by heightened levels of blood glucose, presenting a considerable worldwide health concern, and finding targeted treatment for it is a crucial priority for global health. Gram-positive aerobic bacteria, predominantly inhabiting water and soil, are known carriers of various enzyme-encoding genetic material, which includes the malic enzyme gene that plays a role in insulin secretion. Corynebacterium glutamicum bacteria (ATCC 21799) were acquired from the Pasteur Institute and confirmed using microbiological and molecular tests, including DNA extraction. After identification, gene purification and cloning of the maeB gene were performed using the TA Cloning method. Additionally, the enhancement of enzyme expression was assessed using the expression vector pET-28a, and validation of simulation results was monitored through a real-time PCR analysis. Based on previous studies, the malic enzyme plays a pivotal role in maintaining glucose homeostasis, and increased expression of this enzyme has been associated with enhanced insulin sensitivity. However, the production of malic enzyme has encountered numerous challenges and difficulties. This study successfully isolated the malic enzyme genes via Corynebacterium glutamicum and introduced them into Escherichia coli for high-yield production. According to the results, the optimum temperature for the activity of enzymes has been identified as 39 °C.


Asunto(s)
Clonación Molecular , Corynebacterium glutamicum , Escherichia coli , Malato Deshidrogenasa , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular/métodos , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/enzimología , Diabetes Mellitus/genética , Escherichia coli/genética , Expresión Génica , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
12.
Artículo en Inglés | MEDLINE | ID: mdl-38944415

RESUMEN

Corynebacterium glutamicum ATCC 13032 is a promising microbial chassis for industrial production of valuable compounds, including aromatic amino acids derived from the shikimate pathway. In this work, we developed two whole-cell, transcription factor based fluorescent biosensors to track cis,cis-muconic acid (ccMA) and chorismate in C. glutamicum. Chorismate is a key intermediate in the shikimate pathway from which value-added chemicals can be produced, and a shunt from the shikimate pathway can divert carbon to ccMA, a high value chemical. We transferred a ccMA-inducible transcription factor, CatM, from Acinetobacter baylyi ADP1 into C. glutamicum and screened a promoter library to isolate variants with high sensitivity and dynamic range to ccMA by providing benzoate, which is converted to ccMA intracellularly. The biosensor also detected exogenously supplied ccMA, suggesting the presence of a putative ccMA transporter in C. glutamicum, though the external ccMA concentration threshold to elicit a response was 100-fold higher than the concentration of benzoate required to do so through intracellular ccMA production. We then developed a chorismate biosensor, in which a chorismate inducible promoter regulated by natively expressed QsuR was optimized to exhibit a dose-dependent response to exogenously supplemented quinate (a chorismate precursor). A chorismate-pyruvate lyase encoding gene, ubiC, was introduced into C. glutamicum to lower the intracellular chorismate pool, which resulted in loss of dose dependence to quinate. Further, a knockout strain that blocked the conversion of quinate to chorismate also resulted in absence of dose dependence to quinate, validating that the chorismate biosensor is specific to intracellular chorismate pool. The ccMA and chorismate biosensors were dually inserted into C. glutamicum to simultaneously detect intracellularly produced chorismate and ccMA. Biosensors, such as those developed in this study, can be applied in C. glutamicum for multiplex sensing to expedite pathway design and optimization through metabolic engineering in this promising chassis organism. ONE-SENTENCE SUMMARY: High-throughput screening of promoter libraries in Corynebacterium glutamicum to establish transcription factor based biosensors for key metabolic intermediates in shikimate and ß-ketoadipate pathways.


Asunto(s)
Técnicas Biosensibles , Ácido Corísmico , Corynebacterium glutamicum , Ácido Sórbico , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/genética , Técnicas Biosensibles/métodos , Ácido Sórbico/metabolismo , Ácido Sórbico/análogos & derivados , Ácido Corísmico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Acinetobacter/metabolismo , Acinetobacter/genética
13.
Artículo en Inglés | MEDLINE | ID: mdl-39013608

RESUMEN

The industrial amino acid production workhorse, Corynebacterium glutamicum naturally produces low levels of 2,3,5,6-tetramethylpyrazine (TMP), a valuable flavor, fragrance, and commodity chemical. Here, we demonstrate TMP production (∼0.8 g L-1) in C. glutamicum type strain ATCC13032 via overexpression of acetolactate synthase and/or α-acetolactate decarboxylase from Lactococcus lactis in CGXII minimal medium supplemented with 40 g L-1 glucose. This engineered strain also demonstrated growth and TMP production when the minimal medium was supplemented with up to 40% (v v-1) hydrolysates derived from ionic liquid-pretreated sorghum biomass. A key objective was to take the fully engineered strain developed in this study and interrogate medium parameters that influence the production of TMP, a critical post-strain engineering optimization. Design of experiments in a high-throughput plate format identified glucose, urea, and their ratio as significant components affecting TMP production. These two components were further optimized using response surface methodology. In the optimized CGXII medium, the engineered strain could produce up to 3.56 g L-1 TMP (4-fold enhancement in titers and 2-fold enhancement in yield, mol mol-1) from 80 g L-1 glucose and 11.9 g L-1 urea in shake flask batch cultivation. ONE-SENTENCE SUMMARY: Corynebacterium glutamicum was metabolically engineered to produce 2,3,5,6-tetramethylpyrazine followed by a design of experiments approach to optimize medium components for high-titer production.


Asunto(s)
Corynebacterium glutamicum , Medios de Cultivo , Glucosa , Ingeniería Metabólica , Pirazinas , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Pirazinas/metabolismo , Ingeniería Metabólica/métodos , Medios de Cultivo/química , Glucosa/metabolismo , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Lactococcus lactis/enzimología , Carboxiliasas/genética , Carboxiliasas/metabolismo , Urea/metabolismo
14.
Molecules ; 29(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38792114

RESUMEN

Flavonoids and stilbenoids, crucial secondary metabolites abundant in plants and fungi, display diverse biological and pharmaceutical activities, including potent antioxidant, anti-inflammatory, and antimicrobial effects. However, conventional production methods, such as chemical synthesis and plant extraction, face challenges in sustainability and yield. Hence, there is a notable shift towards biological production using microorganisms like Escherichia coli and yeast. Yet, the drawbacks of using E. coli and yeast as hosts for these compounds persist. For instance, yeast's complex glycosylation profile can lead to intricate protein production scenarios, including hyperglycosylation issues. Consequently, Corynebacterium glutamicum emerges as a promising alternative, given its adaptability and recent advances in metabolic engineering. Although extensively used in biotechnological applications, the potential production of flavonoid and stilbenoid in engineered C. glutamicum remains largely untapped compared to E. coli. This review explores the potential of metabolic engineering in C. glutamicum for biosynthesis, highlighting its versatility as a cell factory and assessing optimization strategies for these pathways. Additionally, various metabolic engineering methods, including genomic editing and biosensors, and cofactor regeneration are evaluated, with a focus on C. glutamicum. Through comprehensive discussion, the review offers insights into future perspectives in production, aiding researchers and industry professionals in the field.


Asunto(s)
Corynebacterium glutamicum , Flavonoides , Ingeniería Metabólica , Estilbenos , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/genética , Ingeniería Metabólica/métodos , Flavonoides/biosíntesis , Flavonoides/metabolismo , Estilbenos/metabolismo
15.
Molecules ; 29(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38930958

RESUMEN

The phosphoenol pyruvate-oxaloacetate-pyruvate-derived amino acids (POP-AAs) comprise native intermediates in cellular metabolism, within which the phosphoenol pyruvate-oxaloacetate-pyruvate (POP) node is the switch point among the major metabolic pathways existing in most living organisms. POP-AAs have widespread applications in the nutrition, food, and pharmaceutical industries. These amino acids have been predominantly produced in Escherichia coli and Corynebacterium glutamicum through microbial fermentation. With the rapid increase in market requirements, along with the global food shortage situation, the industrial production capacity of these two bacteria has encountered two bottlenecks: low product conversion efficiency and high cost of raw materials. Aiming to push forward the update and upgrade of engineered strains with higher yield and productivity, this paper presents a comprehensive summarization of the fundamental strategy of metabolic engineering techniques around phosphoenol pyruvate-oxaloacetate-pyruvate node for POP-AA production, including L-tryptophan, L-tyrosine, L-phenylalanine, L-valine, L-lysine, L-threonine, and L-isoleucine. Novel heterologous routes and regulation methods regarding the carbon flux redistribution in the POP node and the formation of amino acids should be taken into consideration to improve POP-AA production to approach maximum theoretical values. Furthermore, an outlook for future strategies of low-cost feedstock and energy utilization for developing amino acid overproducers is proposed.


Asunto(s)
Aminoácidos , Ingeniería Metabólica , Ingeniería Metabólica/métodos , Aminoácidos/metabolismo , Ácido Oxaloacético/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Fosfoenolpiruvato/metabolismo , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/genética , Ácido Pirúvico/metabolismo , Redes y Vías Metabólicas , Fermentación
16.
World J Microbiol Biotechnol ; 40(5): 154, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568465

RESUMEN

D-chiro-inositol (DCI) is a potential drug for the treatment of type II diabetes and polycystic ovary syndrome. In order to effectively synthesize DCI in Corynebacterium glutamicum, the genes related to inositol catabolism in clusters iol1 and iol2 were knocked out in C. glutamicum SN01 to generate the chassis strain DCI-1. DCI-1 did not grow in and catabolize myo-inositol (MI). Subsequently, different exogenous and endogenous inosose isomerases were expressed in DCI-1 and their conversion ability of DCI from MI were compared. After fermentation, the strain DCI-7 co-expressing inosose isomerase IolI2 and inositol dehydrogenase IolG was identified as the optimal strain. Its DCI titer reached 3.21 g/L in the presence of 20 g/L MI. On this basis, the pH, temperature and MI concentration during whole-cell conversion of DCI by strain DCI-7 were optimized. Finally, the optimal condition that achieved the highest DCI titer of 6.96 g/L were obtained at pH 8.0, 37 °C and addition of 40 g/L MI. To our knowledge, it is the highest DCI titer ever reported.


Asunto(s)
Corynebacterium glutamicum , Diabetes Mellitus Tipo 2 , Inositol/análogos & derivados , Femenino , Humanos , Corynebacterium glutamicum/genética , Ingeniería Metabólica
17.
World J Microbiol Biotechnol ; 40(5): 159, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607454

RESUMEN

Gamma-aminobutyric acid (GABA) is a non-protein amino acid which is widely applied in agriculture and pharmaceutical additive industries. GABA is synthesized from glutamate through irreversible α-decarboxylation by glutamate decarboxylase. Recently, microbial synthesis has become an inevitable trend to produce GABA due to its sustainable characteristics. Therefore, reasonable microbial platform design and metabolic engineering strategies for improving production of GABA are arousing a considerable attraction. The strategies concentrate on microbial platform optimization, fermentation process optimization, rational metabolic engineering as key metabolic pathway modification, promoter optimization, site-directed mutagenesis, modular transporter engineering, and dynamic switch systems application. In this review, the microbial producers for GABA were summarized, including lactic acid bacteria, Corynebacterium glutamicum, and Escherichia coli, as well as the efficient strategies for optimizing them to improve the production of GABA.


Asunto(s)
Corynebacterium glutamicum , Ácido gamma-Aminobutírico , Agricultura , Corynebacterium glutamicum/genética , Industria Farmacéutica , Ingeniería , Escherichia coli/genética
18.
World J Microbiol Biotechnol ; 40(9): 267, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004689

RESUMEN

As an efficient and safe industrial bacterium, Corynebacterium glutamicum has extensive application in amino acid production. However, it often faces oxidative stress induced by reactive oxygen species (ROS), leading to diminished production efficiency. To enhance the robustness of C. glutamicum, numerous studies have focused on elucidating its regulatory mechanisms under various stress conditions such as heat, acid, and sulfur stress. However, a comprehensive review of its defense mechanisms against oxidative stress is needed. This review offers an in-depth overview of the mechanisms C. glutamicum employs to manage oxidative stress. It covers both enzymatic and non-enzymatic systems, including antioxidant enzymes, regulatory protein families, sigma factors involved in transcription, and physiological redox reduction pathways. This review provides insights for advancing research on the antioxidant mechanisms of C. glutamicum and sheds light on its potential applications in industrial production.


Asunto(s)
Antioxidantes , Proteínas Bacterianas , Corynebacterium glutamicum , Regulación Bacteriana de la Expresión Génica , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno , Factor sigma , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/genética , Antioxidantes/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Especies Reactivas de Oxígeno/metabolismo , Factor sigma/metabolismo , Factor sigma/genética
19.
J Biosci Bioeng ; 137(5): 396-402, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38433040

RESUMEN

To improve the cell productivity of Corynebacterium glutamicum, its initial specific growth rate was improved by medium improvement using deep neural network (DNN)-assisted design with Bayesian optimization (BO) and a genetic algorithm (GA). To obtain training data for the DNN, experimental design with an orthogonal array was set up using a chemically defined basal medium (GC XII). Based on the cultivation results for the training data, specific growth rates were observed between 0.04 and 0.3/h. The resulting DNN model estimated the test data with high accuracy (R2test ≥ 0.98). According to the validation cultivation, specific growth rates in the optimal media components estimated by DNN-BO and DNN-GA increased from 0.242 to 0.355/h. Using the optimal media (UCB_3), the specific growth rate, along with other parameters, was evaluated in batch culture. The specific growth rate reached 0.371/h from 3 to 12 h, and the dry cell weight was 28.0 g/L at 22.5 h. From the cultivation, the cell yields against glucose, ammonium ion, phosphate ion, sulfate ion, potassium ion, and magnesium ion were calculated. The cell yield calculation was used to estimate the required amounts of each component, and magnesium was found to limit the cell growth. However, in the follow-up fed-batch cultivation, glucose and magnesium addition was required to achieve the high initial specific growth rate, while appropriate feeding of glucose and magnesium during cultivation resulted in maintaining the high specific growth rate, and obtaining a cell yield of 80 g/Lini.


Asunto(s)
Corynebacterium glutamicum , Aprendizaje Profundo , Corynebacterium glutamicum/genética , Teorema de Bayes , Magnesio , Glucosa , Recuento de Células
20.
Microb Biotechnol ; 17(1): e14400, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38206115

RESUMEN

Microbial synthetic consortia are a promising alternative to classical monoculture for biotechnological applications and fermentative processes. Their versatile use offers advantages in the degradation of complex substrates, the allocation of the metabolic burden between individual partners, or the division of labour in energy utilisation, substrate supply or product formation. Here, stable synthetic consortia between the two industrially relevant production hosts, Pseudomonas putida KT2440 and Corynebacterium glutamicum ATCC13032, were established for the first time. By applying arginine auxotrophy/overproduction and/or formamidase-based utilisation of the rare nitrogen source formamide, different types of interaction were realised, such as commensal relationships (+/0 and 0/+) and mutualistic cross-feeding (+/+). These consortia did not only show stable growth but could also be used for fermentative production of the γ-glutamylated amines theanine and γ-glutamyl-isopropylamide (GIPA). The consortia produced up to 2.8 g L-1 of GIPA and up to 2.6 g L-1 of theanine, a taste-enhancing constituent of green tea leaves. Thus, the advantageous approach of using synthetic microbial consortia for fermentative production of value-added compounds was successfully demonstrated.


Asunto(s)
Corynebacterium glutamicum , Glutamatos , Pseudomonas putida , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Pseudomonas putida/genética , Consorcios Microbianos , Ingeniería Metabólica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda