Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 3.274
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Cell ; 163(1): 24-6, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26406365

RESUMEN

Prescott et al. take a step forward in studying primate morphological evolution by a cellular anthropology approach. Through epigenomic profiling of in-vitro-derived cells, the authors identify and characterize candidate cis-regulatory elements underlying divergence in facial morphology between human and chimp, shedding new light on what makes us (look) human.


Asunto(s)
Epigenómica/métodos , Evolución Molecular , Mejoramiento Genético , Cresta Neural/citología , Pan troglodytes/genética , Animales , Humanos
2.
Cell ; 163(1): 68-83, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26365491

RESUMEN

cis-regulatory changes play a central role in morphological divergence, yet the regulatory principles underlying emergence of human traits remain poorly understood. Here, we use epigenomic profiling from human and chimpanzee cranial neural crest cells to systematically and quantitatively annotate divergence of craniofacial cis-regulatory landscapes. Epigenomic divergence is often attributable to genetic variation within TF motifs at orthologous enhancers, with a novel motif being most predictive of activity biases. We explore properties of this cis-regulatory change, revealing the role of particular retroelements, uncovering broad clusters of species-biased enhancers near genes associated with human facial variation, and demonstrating that cis-regulatory divergence is linked to quantitative expression differences of crucial neural crest regulators. Our work provides a wealth of candidates for future evolutionary studies and demonstrates the value of "cellular anthropology," a strategy of using in-vitro-derived embryonic cell types to elucidate both fundamental and evolving mechanisms underlying morphological variation in higher primates.


Asunto(s)
Epigenómica/métodos , Evolución Molecular , Mejoramiento Genético , Cresta Neural/citología , Pan troglodytes/genética , Animales , Embrión de Mamíferos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Transgénicos , Cresta Neural/metabolismo , Especificidad de la Especie
3.
Nature ; 628(8007): 391-399, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408487

RESUMEN

The human nervous system is a highly complex but organized organ. The foundation of its complexity and organization is laid down during regional patterning of the neural tube, the embryonic precursor to the human nervous system. Historically, studies of neural tube patterning have relied on animal models to uncover underlying principles. Recently, models of neurodevelopment based on human pluripotent stem cells, including neural organoids1-5 and bioengineered neural tube development models6-10, have emerged. However, such models fail to recapitulate neural patterning along both rostral-caudal and dorsal-ventral axes in a three-dimensional tubular geometry, a hallmark of neural tube development. Here we report a human pluripotent stem cell-based, microfluidic neural tube-like structure, the development of which recapitulates several crucial aspects of neural patterning in brain and spinal cord regions and along rostral-caudal and dorsal-ventral axes. This structure was utilized for studying neuronal lineage development, which revealed pre-patterning of axial identities of neural crest progenitors and functional roles of neuromesodermal progenitors and the caudal gene CDX2 in spinal cord and trunk neural crest development. We further developed dorsal-ventral patterned microfluidic forebrain-like structures with spatially segregated dorsal and ventral regions and layered apicobasal cellular organizations that mimic development of the human forebrain pallium and subpallium, respectively. Together, these microfluidics-based neurodevelopment models provide three-dimensional lumenal tissue architectures with in vivo-like spatiotemporal cell differentiation and organization, which will facilitate the study of human neurodevelopment and disease.


Asunto(s)
Tipificación del Cuerpo , Microfluídica , Tubo Neural , Humanos , Técnicas de Cultivo Tridimensional de Células , Diferenciación Celular , Cresta Neural/citología , Cresta Neural/embriología , Tubo Neural/citología , Tubo Neural/embriología , Células Madre Pluripotentes/citología , Prosencéfalo/citología , Prosencéfalo/embriología , Médula Espinal/citología , Médula Espinal/embriología
4.
Nature ; 629(8010): 121-126, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632395

RESUMEN

The neural crest is an embryonic stem cell population unique to vertebrates1 whose expansion and diversification are thought to have promoted vertebrate evolution by enabling emergence of new cell types and structures such as jaws and peripheral ganglia2. Although jawless vertebrates have sensory ganglia, convention has it that trunk sympathetic chain ganglia arose only in jawed vertebrates3-8. Here, by contrast, we report the presence of trunk sympathetic neurons in the sea lamprey, Petromyzon marinus, an extant jawless vertebrate. These neurons arise from sympathoblasts near the dorsal aorta that undergo noradrenergic specification through a transcriptional program homologous to that described in gnathostomes. Lamprey sympathoblasts populate the extracardiac space and extend along the length of the trunk in bilateral streams, expressing the catecholamine biosynthetic pathway enzymes tyrosine hydroxylase and dopamine ß-hydroxylase. CM-DiI lineage tracing analysis further confirmed that these cells derive from the trunk neural crest. RNA sequencing of isolated ammocoete trunk sympathoblasts revealed gene profiles characteristic of sympathetic neuron function. Our findings challenge the prevailing dogma that posits that sympathetic ganglia are a gnathostome innovation, instead suggesting that a late-developing rudimentary sympathetic nervous system may have been characteristic of the earliest vertebrates.


Asunto(s)
Evolución Biológica , Linaje de la Célula , Cresta Neural , Neuronas , Sistema Nervioso Simpático , Vertebrados , Animales , Dopamina beta-Hidroxilasa/metabolismo , Dopamina beta-Hidroxilasa/genética , Ganglios Simpáticos/citología , Ganglios Simpáticos/metabolismo , Cresta Neural/citología , Cresta Neural/metabolismo , Neuronas/citología , Neuronas/metabolismo , Petromyzon/anatomía & histología , Petromyzon/embriología , Petromyzon/genética , Sistema Nervioso Simpático/citología , Sistema Nervioso Simpático/fisiología , Tirosina 3-Monooxigenasa/metabolismo , Tirosina 3-Monooxigenasa/genética , Vertebrados/anatomía & histología , Vertebrados/embriología , Vertebrados/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Aorta/anatomía & histología , Aorta/embriología , Catecolaminas/biosíntesis , Catecolaminas/metabolismo , Vías Biosintéticas
5.
Genes Dev ; 35(11-12): 847-869, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34016693

RESUMEN

ASCL1 is a neuroendocrine lineage-specific oncogenic driver of small cell lung cancer (SCLC), highly expressed in a significant fraction of tumors. However, ∼25% of human SCLC are ASCL1-low and associated with low neuroendocrine fate and high MYC expression. Using genetically engineered mouse models (GEMMs), we show that alterations in Rb1/Trp53/Myc in the mouse lung induce an ASCL1+ state of SCLC in multiple cells of origin. Genetic depletion of ASCL1 in MYC-driven SCLC dramatically inhibits tumor initiation and progression to the NEUROD1+ subtype of SCLC. Surprisingly, ASCL1 loss promotes a SOX9+ mesenchymal/neural crest stem-like state and the emergence of osteosarcoma and chondroid tumors, whose propensity is impacted by cell of origin. ASCL1 is critical for expression of key lineage-related transcription factors NKX2-1, FOXA2, and INSM1 and represses genes involved in the Hippo/Wnt/Notch developmental pathways in vivo. Importantly, ASCL1 represses a SOX9/RUNX1/RUNX2 program in vivo and SOX9 expression in human SCLC cells, suggesting a conserved function for ASCL1. Together, in a MYC-driven SCLC model, ASCL1 promotes neuroendocrine fate and represses the emergence of a SOX9+ nonendodermal stem-like fate that resembles neural crest.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factor de Transcripción SOX9/genética , Carcinoma Pulmonar de Células Pequeñas/genética , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Ratones , Cresta Neural/citología , Carcinoma Pulmonar de Células Pequeñas/fisiopatología , Células Madre/citología
6.
Nature ; 612(7941): 732-738, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36517595

RESUMEN

Our understanding of human early development is severely hampered by limited access to embryonic tissues. Due to their close evolutionary relationship with humans, nonhuman primates are often used as surrogates to understand human development but currently suffer from a lack of in vivo datasets, especially from gastrulation to early organogenesis during which the major embryonic cell types are dynamically specified. To fill this gap, we collected six Carnegie stage 8-11 cynomolgus monkey (Macaca fascicularis) embryos and performed in-depth transcriptomic analyses of 56,636 single cells. Our analyses show transcriptomic features of major perigastrulation cell types, which help shed light on morphogenetic events including primitive streak development, somitogenesis, gut tube formation, neural tube patterning and neural crest differentiation in primates. In addition, comparative analyses with mouse embryos and human embryoids uncovered conserved and divergent features of perigastrulation development across species-for example, species-specific dependency on Hippo signalling during presomitic mesoderm differentiation-and provide an initial assessment of relevant stem cell models of human early organogenesis. This comprehensive single-cell transcriptome atlas not only fills the knowledge gap in the nonhuman primate research field but also serves as an invaluable resource for understanding human embryogenesis and developmental disorders.


Asunto(s)
Gastrulación , Macaca fascicularis , Organogénesis , Análisis de la Célula Individual , Animales , Humanos , Ratones , Gastrulación/genética , Macaca fascicularis/embriología , Macaca fascicularis/genética , Organogénesis/genética , Cuerpos Embrioides , Perfilación de la Expresión Génica , Línea Primitiva/citología , Línea Primitiva/embriología , Tubo Neural/citología , Tubo Neural/embriología , Cresta Neural/citología , Cresta Neural/embriología , Vía de Señalización Hippo , Mesodermo/citología , Mesodermo/embriología , Células Madre
7.
Genes Dev ; 34(23-24): 1735-1752, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33184218

RESUMEN

FGFs are key developmental regulators that engage a signal transduction cascade through receptor tyrosine kinases, prominently engaging ERK1/2 but also other pathways. However, it remains unknown whether all FGF activities depend on this canonical signal transduction cascade. To address this question, we generated allelic series of knock-in Fgfr1 and Fgfr2 mouse strains, carrying point mutations that disrupt binding of signaling effectors, and a kinase dead allele of Fgfr2 that broadly phenocopies the null mutant. When interrogated in cranial neural crest cells, we identified discrete functions for signaling pathways in specific craniofacial contexts, but point mutations, even when combined, failed to recapitulate the single or double null mutant phenotypes. Furthermore, the signaling mutations abrogated established FGF-induced signal transduction pathways, yet FGF functions such as cell-matrix and cell-cell adhesion remained unaffected, though these activities did require FGFR kinase activity. Our studies establish combinatorial roles of Fgfr1 and Fgfr2 in development and uncouple novel FGFR kinase-dependent cell adhesion properties from canonical intracellular signaling.


Asunto(s)
Factores de Crecimiento de Fibroblastos/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Transducción de Señal/genética , Animales , Adhesión Celular/genética , Muerte Celular/genética , Células Cultivadas , Ratones , Mutación , Cresta Neural/citología , Proteínas Quinasas/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo
8.
Development ; 151(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38940470

RESUMEN

SoxB1 transcription factors (Sox2/3) are well known for their role in early neural fate specification in the embryo, but little is known about functional roles for SoxB1 factors in non-neural ectodermal cell types, such as the neural plate border (NPB). Using Xenopus laevis, we set out to determine whether SoxB1 transcription factors have a regulatory function in NPB formation. Here, we show that SoxB1 factors are necessary for NPB formation, and that prolonged SoxB1 factor activity blocks the transition from a NPB to a neural crest state. Using ChIP-seq, we demonstrate that Sox3 is enriched upstream of NPB genes in early NPB cells and in blastula stem cells. Depletion of SoxB1 factors in blastula stem cells results in downregulation of NPB genes. Finally, we identify Pou5f3 factors as potential Sox3 partners in regulating the formation of the NPB and show that their combined activity is needed for normal NPB gene expression. Together, these data identify a role for SoxB1 factors in the establishment and maintenance of the NPB, in part through partnership with Pou5f3 factors.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Cresta Neural , Placa Neural , Factores de Transcripción SOXB1 , Proteínas de Xenopus , Xenopus laevis , Animales , Placa Neural/metabolismo , Placa Neural/embriología , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXB1/genética , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética , Cresta Neural/metabolismo , Cresta Neural/citología , Blástula/metabolismo , Embrión no Mamífero/metabolismo
9.
Development ; 151(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38884356

RESUMEN

Neural crest cells are a stem cell population unique to vertebrate embryos that retains broad multi-germ layer developmental potential through neurulation. Much remains to be learned about the genetic and epigenetic mechanisms that control the potency of neural crest cells. Here, we examine the role that epigenetic readers of the BET (bromodomain and extra terminal) family play in controlling the potential of pluripotent blastula and neural crest cells. We find that inhibiting BET activity leads to loss of pluripotency at blastula stages and a loss of neural crest at neurula stages. We compare the effects of HDAC (an eraser of acetylation marks) and BET (a reader of acetylation) inhibition and find that they lead to similar cellular outcomes through distinct effects on the transcriptome. Interestingly, loss of BET activity in cells undergoing lineage restriction is coupled to increased expression of genes linked to pluripotency and prolongs the competence of initially pluripotent cells to transit to a neural progenitor state. Together these findings advance our understanding of the epigenetic control of pluripotency and the formation of the vertebrate neural crest.


Asunto(s)
Cresta Neural , Animales , Cresta Neural/citología , Cresta Neural/metabolismo , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/embriología , Blástula/metabolismo , Blástula/citología , Diferenciación Celular , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Transcriptoma/genética
10.
Development ; 151(19)2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39250350

RESUMEN

Dorsal neural tube-derived retinoic acid promotes the end of neural crest production and transition into a definitive roof plate. Here, we analyze how this impacts the segregation of central and peripheral lineages, a process essential for tissue patterning and function. Localized in ovo inhibition in quail embryos of retinoic acid activity followed by single-cell transcriptomics unraveled a comprehensive list of differentially expressed genes relevant to these processes. Importantly, progenitors co-expressed neural crest, roof plate and dI1 interneuron markers, indicating a failure in proper lineage segregation. Furthermore, separation between roof plate and dI1 interneurons is mediated by Notch activity downstream of retinoic acid, highlighting their crucial role in establishing the roof plate-dI1 boundary. Within the peripheral branch, where absence of retinoic acid resulted in neural crest production and emigration extending into the roof plate stage, sensory progenitors failed to separate from melanocytes, leading to formation of a common glia-melanocyte cell with aberrant migratory patterns. In summary, the implementation of single-cell RNA sequencing facilitated the discovery and characterization of a molecular mechanism responsible for the segregation of dorsal neural fates during development.


Asunto(s)
Cresta Neural , Tretinoina , Animales , Tretinoina/metabolismo , Tretinoina/farmacología , Cresta Neural/metabolismo , Cresta Neural/citología , Regulación del Desarrollo de la Expresión Génica , Codorniz/embriología , Movimiento Celular , Receptores Notch/metabolismo , Linaje de la Célula , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/efectos de los fármacos , Placa Neural/metabolismo , Placa Neural/embriología , Interneuronas/metabolismo , Interneuronas/citología , Análisis de la Célula Individual , Tubo Neural/embriología , Tubo Neural/metabolismo , Diferenciación Celular , Melanocitos/metabolismo , Melanocitos/citología
11.
Development ; 151(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39109637

RESUMEN

Vertebrate calcitonin-producing cells (C-cells) are neuroendocrine cells that secrete the small peptide hormone calcitonin in response to elevated blood calcium levels. Whereas mouse C-cells reside within the thyroid gland and derive from pharyngeal endoderm, avian C-cells are located within ultimobranchial glands and have been reported to derive from the neural crest. We use a comparative cell lineage tracing approach in a range of vertebrate model systems to resolve the ancestral embryonic origin of vertebrate C-cells. We find, contrary to previous studies, that chick C-cells derive from pharyngeal endoderm, with neural crest-derived cells instead contributing to connective tissue intimately associated with C-cells in the ultimobranchial gland. This endodermal origin of C-cells is conserved in a ray-finned bony fish (zebrafish) and a cartilaginous fish (the little skate, Leucoraja erinacea). Furthermore, we discover putative C-cell homologs within the endodermally-derived pharyngeal epithelium of the ascidian Ciona intestinalis and the amphioxus Branchiostoma lanceolatum, two invertebrate chordates that lack neural crest cells. Our findings point to a conserved endodermal origin of C-cells across vertebrates and to a pre-vertebrate origin of this cell type along the chordate stem.


Asunto(s)
Calcitonina , Linaje de la Célula , Ciona intestinalis , Endodermo , Cresta Neural , Células Neuroendocrinas , Animales , Endodermo/metabolismo , Endodermo/citología , Calcitonina/metabolismo , Células Neuroendocrinas/metabolismo , Células Neuroendocrinas/citología , Ciona intestinalis/metabolismo , Ciona intestinalis/embriología , Cresta Neural/metabolismo , Cresta Neural/citología , Embrión de Pollo , Ratones , Vertebrados/embriología , Vertebrados/metabolismo , Pez Cebra/embriología , Anfioxos/embriología , Anfioxos/metabolismo , Anfioxos/genética , Cuerpo Ultimobranquial/metabolismo
12.
PLoS Biol ; 22(7): e3002074, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39038054

RESUMEN

While interactions between neural crest and placode cells are critical for the proper formation of the trigeminal ganglion, the mechanisms underlying this process remain largely uncharacterized. Here, by using chick embryos, we show that the microRNA (miR)-203, whose epigenetic repression is required for neural crest migration, is reactivated in coalescing and condensing trigeminal ganglion cells. Overexpression of miR-203 induces ectopic coalescence of neural crest cells and increases ganglion size. By employing cell-specific electroporations for either miR-203 sponging or genomic editing using CRISPR/Cas9, we elucidated that neural crest cells serve as the source, while placode cells serve as the site of action for miR-203 in trigeminal ganglion condensation. Demonstrating intercellular communication, overexpression of miR-203 in the neural crest in vitro or in vivo represses an miR-responsive sensor in placode cells. Moreover, neural crest-secreted extracellular vesicles (EVs), visualized using pHluorin-CD63 vector, become incorporated into the cytoplasm of placode cells. Finally, RT-PCR analysis shows that small EVs isolated from condensing trigeminal ganglia are selectively loaded with miR-203. Together, our findings reveal a critical role in vivo for neural crest-placode communication mediated by sEVs and their selective microRNA cargo for proper trigeminal ganglion formation.


Asunto(s)
Comunicación Celular , Vesículas Extracelulares , MicroARNs , Cresta Neural , Ganglio del Trigémino , Cresta Neural/metabolismo , Cresta Neural/embriología , Cresta Neural/citología , Animales , MicroARNs/metabolismo , MicroARNs/genética , Ganglio del Trigémino/metabolismo , Ganglio del Trigémino/embriología , Ganglio del Trigémino/citología , Vesículas Extracelulares/metabolismo , Embrión de Pollo , Comunicación Celular/genética , Movimiento Celular/genética , Regulación del Desarrollo de la Expresión Génica
13.
PLoS Biol ; 22(4): e3002590, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683849

RESUMEN

Brain pericytes are one of the critical cell types that regulate endothelial barrier function and activity, thus ensuring adequate blood flow to the brain. The genetic pathways guiding undifferentiated cells into mature pericytes are not well understood. We show here that pericyte precursor populations from both neural crest and head mesoderm of zebrafish express the transcription factor nkx3.1 develop into brain pericytes. We identify the gene signature of these precursors and show that an nkx3.1-, foxf2a-, and cxcl12b-expressing pericyte precursor population is present around the basilar artery prior to artery formation and pericyte recruitment. The precursors later spread throughout the brain and differentiate to express canonical pericyte markers. Cxcl12b-Cxcr4 signaling is required for pericyte attachment and differentiation. Further, both nkx3.1 and cxcl12b are necessary and sufficient in regulating pericyte number as loss inhibits and gain increases pericyte number. Through genetic experiments, we have defined a precursor population for brain pericytes and identified genes critical for their differentiation.


Asunto(s)
Encéfalo , Pericitos , Factores de Transcripción , Proteínas de Pez Cebra , Animales , Encéfalo/metabolismo , Encéfalo/embriología , Diferenciación Celular , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Mesodermo/metabolismo , Mesodermo/citología , Cresta Neural/metabolismo , Cresta Neural/citología , Pericitos/metabolismo , Pericitos/citología , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Transducción de Señal , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
14.
Nature ; 600(7890): 690-694, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34880503

RESUMEN

Collective cell migration underlies morphogenesis, wound healing and cancer invasion1,2. Most directed migration in vivo has been attributed to chemotaxis, whereby cells follow a chemical gradient3-5. Cells can also follow a stiffness gradient in vitro, a process called durotaxis3,4,6-8, but evidence for durotaxis in vivo is lacking6. Here we show that in Xenopus laevis the neural crest-an embryonic cell population-self-generates a stiffness gradient in the adjacent placodal tissue, and follows this gradient by durotaxis. The gradient moves with the neural crest, which is continually pursuing a retreating region of high substrate stiffness. Mechanistically, the neural crest induces the gradient due to N-cadherin interactions with the placodes and senses the gradient through cell-matrix adhesions, resulting in polarized Rac activity and actomyosin contractility, which coordinates durotaxis. Durotaxis synergizes with chemotaxis, cooperatively polarizing actomyosin machinery of the cell group to prompt efficient directional collective cell migration in vivo. These results show that durotaxis and dynamic stiffness gradients exist in vivo, and gradients of chemical and mechanical signals cooperate to achieve efficient directional cell migration.


Asunto(s)
Movimiento Celular , Cresta Neural/citología , Docilidad , Actomiosina/metabolismo , Animales , Polaridad Celular , Quimiotaxis , Femenino , Dureza , Xenopus laevis/embriología , Proteínas de Unión al GTP rac/metabolismo
15.
Proc Natl Acad Sci U S A ; 121(19): e2311685121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38683994

RESUMEN

Neural crest cells exemplify cellular diversification from a multipotent progenitor population. However, the full sequence of early molecular choices orchestrating the emergence of neural crest heterogeneity from the embryonic ectoderm remains elusive. Gene-regulatory-networks (GRN) govern early development and cell specification toward definitive neural crest. Here, we combine ultradense single-cell transcriptomes with machine-learning and large-scale transcriptomic and epigenomic experimental validation of selected trajectories, to provide the general principles and highlight specific features of the GRN underlying neural crest fate diversification from induction to early migration stages using Xenopus frog embryos as a model. During gastrulation, a transient neural border zone state precedes the choice between neural crest and placodes which includes multiple converging gene programs. During neurulation, transcription factor connectome, and bifurcation analyses demonstrate the early emergence of neural crest fates at the neural plate stage, alongside an unbiased multipotent-like lineage persisting until epithelial-mesenchymal transition stage. We also decipher circuits driving cranial and vagal neural crest formation and provide a broadly applicable high-throughput validation strategy for investigating single-cell transcriptomes in vertebrate GRNs in development, evolution, and disease.


Asunto(s)
Cresta Neural , Análisis de la Célula Individual , Xenopus laevis , Animales , Cresta Neural/citología , Cresta Neural/metabolismo , Análisis de la Célula Individual/métodos , Xenopus laevis/embriología , Regulación del Desarrollo de la Expresión Génica , Movimiento Celular , Redes Reguladoras de Genes , Transcriptoma , Gastrulación , Placa Neural/metabolismo , Placa Neural/embriología , Placa Neural/citología , Transición Epitelial-Mesenquimal/genética , Embrión no Mamífero/metabolismo , Embrión no Mamífero/citología , Neurulación/genética , Neurulación/fisiología , Diferenciación Celular
16.
Annu Rev Genet ; 52: 43-63, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30476447

RESUMEN

Neural crest cells are a transient embryonic cell population that migrate collectively to various locations throughout the embryo to contribute a number of cell types to several organs. After induction, the neural crest delaminates and undergoes an epithelial-to-mesenchymal transition before migrating through intricate yet characteristic paths. The neural crest exhibits a variety of migratory behaviors ranging from sheet-like mass migration in the cephalic regions to chain migration in the trunk. During their journey, neural crest cells rely on a range of signals both from their environment and within the migrating population for navigating through the embryo as a collective. Here we review these interactions and mechanisms, including chemotactic cues of neural crest cells' migration.


Asunto(s)
Movimiento Celular/genética , Quimiotaxis/genética , Desarrollo Embrionario/genética , Cresta Neural/crecimiento & desarrollo , Animales , Linaje de la Célula/genética , Cresta Neural/citología
17.
Nat Rev Neurosci ; 22(10): 616-626, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34471282

RESUMEN

In their seminal 1983 paper, Gans and Northcutt proposed that evolution of the vertebrate 'new head' was made possible by the advent of the neural crest and cranial placodes. The neural crest is a stem cell population that arises adjacent to the forming CNS and contributes to important cell types, including components of the peripheral nervous system and craniofacial skeleton and elements of the cardiovascular system. In the past few years, the new head hypothesis has been challenged by the discovery in invertebrate chordates of cells with some, but not all, characteristics of vertebrate neural crest cells. Here, we discuss recent findings regarding how neural crest cells may have evolved during the course of deuterostome evolution. The results suggest that there was progressive addition of cell types to the repertoire of neural crest derivatives throughout vertebrate evolution. Novel genomic tools have enabled higher resolution insight into neural crest evolution, from both a cellular and a gene regulatory perspective. Together, these data provide clues regarding the ancestral neural crest state and how the neural crest continues to evolve to contribute to the success of vertebrates as efficient predators.


Asunto(s)
Evolución Biológica , Regulación del Desarrollo de la Expresión Génica/fisiología , Cresta Neural/crecimiento & desarrollo , Cráneo/crecimiento & desarrollo , Animales , Humanos , Cresta Neural/citología , Cráneo/citología , Vertebrados
18.
Nature ; 585(7826): 563-568, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32939088

RESUMEN

Neural crest cells (NCCs) are migratory, multipotent embryonic cells that are unique to vertebrates and form an array of clade-defining adult features. The evolution of NCCs has been linked to various genomic events, including the evolution of new gene-regulatory networks1,2, the de novo evolution of genes3 and the proliferation of paralogous genes during genome-wide duplication events4. However, conclusive functional evidence linking new and/or duplicated genes to NCC evolution is lacking. Endothelin ligands (Edns) and endothelin receptors (Ednrs) are unique to vertebrates3,5,6, and regulate multiple aspects of NCC development in jawed vertebrates7-10. Here, to test whether the evolution of Edn signalling was a driver of NCC evolution, we used CRISPR-Cas9 mutagenesis11 to disrupt edn, ednr and dlx genes in the sea lamprey, Petromyzon marinus. Lampreys are jawless fishes that last shared a common ancestor with modern jawed vertebrates around 500 million years ago12. Thus, comparisons between lampreys and gnathostomes can identify deeply conserved and evolutionarily flexible features of vertebrate development. Using the frog Xenopus laevis to expand gnathostome phylogenetic representation and facilitate side-by-side analyses, we identify ancient and lineage-specific roles for Edn signalling. These findings suggest that Edn signalling was activated in NCCs before duplication of the vertebrate genome. Then, after one or more genome-wide duplications in the vertebrate stem, paralogous Edn pathways functionally diverged, resulting in NCC subpopulations with different Edn signalling requirements. We posit that this new developmental modularity facilitated the independent evolution of NCC derivatives in stem vertebrates. Consistent with this, differences in Edn pathway targets are associated with differences in the oropharyngeal skeleton and autonomic nervous system of lampreys and modern gnathostomes. In summary, our work provides functional genetic evidence linking the origin and duplication of new vertebrate genes with the stepwise evolution of a defining vertebrate novelty.


Asunto(s)
Endotelinas/metabolismo , Evolución Molecular , Cresta Neural/citología , Petromyzon/metabolismo , Transducción de Señal , Xenopus/metabolismo , Animales , Desarrollo Óseo , Huesos/citología , Huesos/metabolismo , Linaje de la Célula , Endotelinas/genética , Femenino , Cabeza/crecimiento & desarrollo , Corazón/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Ligandos , Masculino , Petromyzon/genética , Petromyzon/crecimiento & desarrollo , Receptores de Endotelina/deficiencia , Receptores de Endotelina/genética , Receptores de Endotelina/metabolismo , Xenopus/genética , Xenopus/crecimiento & desarrollo
19.
PLoS Genet ; 19(11): e1011030, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37948459

RESUMEN

Hirschsprung disease (HSCR) is associated with deficiency of the receptor tyrosine kinase RET, resulting in loss of cells of the enteric nervous system (ENS) during fetal gut development. The major contribution to HSCR risk is from common sequence variants in RET enhancers with additional risk from rare coding variants in many genes. Here, we demonstrate that these RET enhancer variants specifically alter the human fetal gut development program through significant decreases in gene expression of RET, members of the RET-EDNRB gene regulatory network (GRN), other HSCR genes, with an altered transcriptome of 2,382 differentially expressed genes across diverse neuronal and mesenchymal functions. A parsimonious hypothesis for these results is that beyond RET's direct effect on its GRN, it also has a major role in enteric neural crest-derived cell (ENCDC) precursor proliferation, its deficiency reducing ENCDCs with relative expansion of non-ENCDC cells. Thus, genes reducing RET proliferative activity can potentially cause HSCR. One such class is the 23 RET-dependent transcription factors enriched in early gut development. We show that their knockdown in human neuroblastoma SK-N-SH cells reduces RET and/or EDNRB gene expression, expanding the RET-EDNRB GRN. The human embryos we studied had major remodeling of the gut transcriptome but were unlikely to have had HSCR: thus, genetic or epigenetic changes in addition to those in RET are required for aganglionosis.


Asunto(s)
Elementos de Facilitación Genéticos , Tracto Gastrointestinal , Proteínas Proto-Oncogénicas c-ret , Haplotipos , Humanos , Proteínas Proto-Oncogénicas c-ret/genética , Neuroblastoma , Línea Celular Tumoral , Enfermedad de Hirschsprung/genética , Feto , Tracto Gastrointestinal/embriología , Cresta Neural/citología , Sistema Nervioso Entérico/embriología , Análisis de Expresión Génica de una Sola Célula , Regulación del Desarrollo de la Expresión Génica
20.
J Neurosci ; 44(28)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38830761

RESUMEN

The vagal ganglia, comprised of the superior (jugular) and inferior (nodose) ganglia of the vagus nerve, receive somatosensory information from the head and neck or viscerosensory information from the inner organs, respectively. Developmentally, the cranial neural crest gives rise to all vagal glial cells and to neurons of the jugular ganglia, while the epibranchial placode gives rise to neurons of the nodose ganglia. Crest-derived nodose glial progenitors can additionally generate autonomic neurons in the peripheral nervous system, but how these progenitors generate neurons is unknown. Here, we found that some Sox10+ neural crest-derived cells in, and surrounding, the nodose ganglion transiently expressed Phox2b, a master regulator of autonomic nervous system development, during early embryonic life. Our genetic lineage-tracing analysis in mice of either sex revealed that despite their common developmental origin and extreme spatial proximity, a substantial proportion of glial cells in the nodose, but not in the neighboring jugular ganglia, have a history of Phox2b expression. We used single-cell RNA-sequencing to demonstrate that these progenitors give rise to all major glial subtypes in the nodose ganglia, including Schwann cells, satellite glia, and glial precursors, and mapped their spatial distribution by in situ hybridization. Lastly, integration analysis revealed transcriptomic similarities between nodose and dorsal root ganglia glial subtypes and revealed immature nodose glial subtypes. Our work demonstrates that these crest-derived nodose glial progenitors transiently express Phox2b, give rise to the entire complement of nodose glial cells, and display a transcriptional program that may underlie their bipotent nature.


Asunto(s)
Proteínas de Homeodominio , Cresta Neural , Neuroglía , Ganglio Nudoso , Factores de Transcripción , Animales , Ganglio Nudoso/citología , Ganglio Nudoso/metabolismo , Ratones , Neuroglía/metabolismo , Neuroglía/citología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cresta Neural/citología , Cresta Neural/metabolismo , Femenino , Masculino , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda