Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 8.778
Filtrar
Más filtros

Publication year range
1.
Annu Rev Biochem ; 88: 59-83, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30830799

RESUMEN

Directional transport of protons across an energy transducing membrane-proton pumping-is ubiquitous in biology. Bacteriorhodopsin (bR) is a light-driven proton pump that is activated by a buried all-trans retinal chromophore being photoisomerized to a 13-cis conformation. The mechanism by which photoisomerization initiates directional proton transport against a proton concentration gradient has been studied by a myriad of biochemical, biophysical, and structural techniques. X-ray free electron lasers (XFELs) have created new opportunities to probe the structural dynamics of bR at room temperature on timescales from femtoseconds to milliseconds using time-resolved serial femtosecond crystallography (TR-SFX). Wereview these recent developments and highlight where XFEL studies reveal new details concerning the structural mechanism of retinal photoisomerization and proton pumping. We also discuss the extent to which these insights were anticipated by earlier intermediate trapping studies using synchrotron radiation. TR-SFX will open up the field for dynamical studies of other proteins that are not naturally light-sensitive.


Asunto(s)
Bacteriorodopsinas/ultraestructura , Rayos Láser , Protones , Retinaldehído/química , Difracción de Rayos X/métodos , Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Cristalografía/instrumentación , Cristalografía/métodos , Halobacterium salinarum/química , Halobacterium salinarum/metabolismo , Transporte Iónico , Modelos Moleculares , Conformación Proteica , Retinaldehído/metabolismo , Sincrotrones/instrumentación , Rayos X
2.
Annu Rev Biochem ; 88: 409-431, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30633550

RESUMEN

Aerobic life is possible because the molecular structure of oxygen (O2) makes direct reaction with most organic materials at ambient temperatures an exceptionally slow process. Of course, these reactions are inherently very favorable, and they occur rapidly with the release of a great deal of energy at high temperature. Nature has been able to tap this sequestered reservoir of energy with great spatial and temporal selectivity at ambient temperatures through the evolution of oxidase and oxygenase enzymes. One mechanism used by these enzymes for O2 activation has been studied in detail for the soluble form of the enzyme methane monooxygenase. These studies have revealed the step-by-step process of O2 activation and insertion into the ultimately stable C-H bond of methane. Additionally, an elegant regulatory mechanism has been defined that enlists size selection and quantum tunneling to allow methane oxidation to occur specifically in the presence of more easily oxidized substrates.


Asunto(s)
Bacterias/enzimología , Metano/metabolismo , Oxígeno/metabolismo , Oxigenasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía , Cinética , Methylococcus capsulatus/enzimología , Methylosinus trichosporium/enzimología , Oxigenasas/química , Conformación Proteica
3.
Cell ; 179(2): 485-497.e18, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31543266

RESUMEN

Niemann-Pick type C (NPC) proteins are essential for sterol homeostasis, believed to drive sterol integration into the lysosomal membrane before redistribution to other cellular membranes. Here, using a combination of crystallography, cryo-electron microscopy, and biochemical and in vivo studies on the Saccharomyces cerevisiae NPC system (NCR1 and NPC2), we present a framework for sterol membrane integration. Sterols are transferred between hydrophobic pockets of vacuolar NPC2 and membrane-protein NCR1. NCR1 has its N-terminal domain (NTD) positioned to deliver a sterol to a tunnel connecting NTD to the luminal membrane leaflet 50 Å away. A sterol is caught inside this tunnel during transport, and a proton-relay network of charged residues in the transmembrane region is linked to this tunnel supporting a proton-driven transport mechanism. We propose a model for sterol integration that clarifies the role of NPC proteins in this essential eukaryotic pathway and that rationalizes mutations in patients with Niemann-Pick disease type C.


Asunto(s)
Proteínas Portadoras/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Esteroles/metabolismo , Proteínas de Transporte Vesicular/química , Transporte Biológico , Microscopía por Crioelectrón , Cristalografía , Membranas Intracelulares/metabolismo , Lisosomas/metabolismo , Dominios Proteicos , Vacuolas/metabolismo
4.
Cell ; 167(1): 133-144.e13, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27662086

RESUMEN

In bacterial translational initiation, three initiation factors (IFs 1-3) enable the selection of initiator tRNA and the start codon in the P site of the 30S ribosomal subunit. Here, we report 11 single-particle cryo-electron microscopy (cryoEM) reconstructions of the complex of bacterial 30S subunit with initiator tRNA, mRNA, and IFs 1-3, representing different steps along the initiation pathway. IF1 provides key anchoring points for IF2 and IF3, thereby enhancing their activities. IF2 positions a domain in an extended conformation appropriate for capturing the formylmethionyl moiety charged on tRNA. IF3 and tRNA undergo large conformational changes to facilitate the accommodation of the formylmethionyl-tRNA (fMet-tRNA(fMet)) into the P site for start codon recognition.


Asunto(s)
Codón Iniciador , Iniciación de la Cadena Peptídica Traduccional , Factor 3 Procariótico de Iniciación/química , ARN Mensajero/química , ARN de Transferencia de Metionina/química , Subunidades Ribosómicas Pequeñas Bacterianas/química , Thermus thermophilus/metabolismo , Microscopía por Crioelectrón , Cristalografía , Conformación Proteica , Thermus thermophilus/genética
5.
Nature ; 626(8000): 905-911, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38355794

RESUMEN

High-intensity femtosecond pulses from an X-ray free-electron laser enable pump-probe experiments for the investigation of electronic and nuclear changes during light-induced reactions. On timescales ranging from femtoseconds to milliseconds and for a variety of biological systems, time-resolved serial femtosecond crystallography (TR-SFX) has provided detailed structural data for light-induced isomerization, breakage or formation of chemical bonds and electron transfer1,2. However, all ultrafast TR-SFX studies to date have employed such high pump laser energies that nominally several photons were absorbed per chromophore3-17. As multiphoton absorption may force the protein response into non-physiological pathways, it is of great concern18,19 whether this experimental approach20 allows valid conclusions to be drawn vis-à-vis biologically relevant single-photon-induced reactions18,19. Here we describe ultrafast pump-probe SFX experiments on the photodissociation of carboxymyoglobin, showing that different pump laser fluences yield markedly different results. In particular, the dynamics of structural changes and observed indicators of the mechanistically important coherent oscillations of the Fe-CO bond distance (predicted by recent quantum wavepacket dynamics21) are seen to depend strongly on pump laser energy, in line with quantum chemical analysis. Our results confirm both the feasibility and necessity of performing ultrafast TR-SFX pump-probe experiments in the linear photoexcitation regime. We consider this to be a starting point for reassessing both the design and the interpretation of ultrafast TR-SFX pump-probe experiments20 such that mechanistically relevant insight emerges.


Asunto(s)
Artefactos , Rayos Láser , Mioglobina , Cristalografía/instrumentación , Cristalografía/métodos , Electrones , Mioglobina/química , Mioglobina/metabolismo , Mioglobina/efectos de la radiación , Fotones , Conformación Proteica/efectos de la radiación , Teoría Cuántica , Rayos X
6.
Nature ; 626(7999): 670-677, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297122

RESUMEN

Photosystem II (PSII) catalyses the oxidation of water through a four-step cycle of Si states (i = 0-4) at the Mn4CaO5 cluster1-3, during which an extra oxygen (O6) is incorporated at the S3 state to form a possible dioxygen4-7. Structural changes of the metal cluster and its environment during the S-state transitions have been studied on the microsecond timescale. Here we use pump-probe serial femtosecond crystallography to reveal the structural dynamics of PSII from nanoseconds to milliseconds after illumination with one flash (1F) or two flashes (2F). YZ, a tyrosine residue that connects the reaction centre P680 and the Mn4CaO5 cluster, showed structural changes on a nanosecond timescale, as did its surrounding amino acid residues and water molecules, reflecting the fast transfer of electrons and protons after flash illumination. Notably, one water molecule emerged in the vicinity of Glu189 of the D1 subunit of PSII (D1-E189), and was bound to the Ca2+ ion on a sub-microsecond timescale after 2F illumination. This water molecule disappeared later with the concomitant increase of O6, suggesting that it is the origin of O6. We also observed concerted movements of water molecules in the O1, O4 and Cl-1 channels and their surrounding amino acid residues to complete the sequence of electron transfer, proton release and substrate water delivery. These results provide crucial insights into the structural dynamics of PSII during S-state transitions as well as O-O bond formation.


Asunto(s)
Oxígeno , Complejo de Proteína del Fotosistema II , Biocatálisis/efectos de la radiación , Calcio/metabolismo , Cristalografía , Transporte de Electrón/efectos de la radiación , Electrones , Manganeso/metabolismo , Oxidación-Reducción/efectos de la radiación , Oxígeno/química , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/efectos de la radiación , Protones , Factores de Tiempo , Tirosina/metabolismo , Agua/química , Agua/metabolismo
7.
Nature ; 615(7954): 939-944, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36949205

RESUMEN

Vision is initiated by the rhodopsin family of light-sensitive G protein-coupled receptors (GPCRs)1. A photon is absorbed by the 11-cis retinal chromophore of rhodopsin, which isomerizes within 200 femtoseconds to the all-trans conformation2, thereby initiating the cellular signal transduction processes that ultimately lead to vision. However, the intramolecular mechanism by which the photoactivated retinal induces the activation events inside rhodopsin remains experimentally unclear. Here we use ultrafast time-resolved crystallography at room temperature3 to determine how an isomerized twisted all-trans retinal stores the photon energy that is required to initiate the protein conformational changes associated with the formation of the G protein-binding signalling state. The distorted retinal at a 1-ps time delay after photoactivation has pulled away from half of its numerous interactions with its binding pocket, and the excess of the photon energy is released through an anisotropic protein breathing motion in the direction of the extracellular space. Notably, the very early structural motions in the protein side chains of rhodopsin appear in regions that are involved in later stages of the conserved class A GPCR activation mechanism. Our study sheds light on the earliest stages of vision in vertebrates and points to fundamental aspects of the molecular mechanisms of agonist-mediated GPCR activation.


Asunto(s)
Rodopsina , Visión Ocular , Animales , Sitios de Unión/efectos de la radiación , Cristalografía , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Isomerismo , Fotones , Unión Proteica/efectos de la radiación , Conformación Proteica/efectos de la radiación , Retinaldehído/química , Retinaldehído/metabolismo , Retinaldehído/efectos de la radiación , Rodopsina/química , Rodopsina/metabolismo , Rodopsina/efectos de la radiación , Factores de Tiempo , Visión Ocular/fisiología , Visión Ocular/efectos de la radiación
8.
Mol Cell ; 81(20): 4176-4190.e6, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34529927

RESUMEN

Of the eight distinct polyubiquitin (polyUb) linkages that can be assembled, the roles of K48-linked polyUb (K48-polyUb) are the most established, with K48-polyUb modified proteins being targeted for degradation. MINDY1 and MINDY2 are members of the MINDY family of deubiquitinases (DUBs) that have exquisite specificity for cleaving K48-polyUb, yet we have a poor understanding of their catalytic mechanism. Here, we analyze the crystal structures of MINDY1 and MINDY2 alone and in complex with monoUb, di-, and penta-K48-polyUb, identifying 5 distinct Ub binding sites in the catalytic domain that explain how these DUBs sense both Ub chain length and linkage type to cleave K48-polyUb chains. The activity of MINDY1/2 is inhibited by the Cys-loop, and we find that substrate interaction relieves autoinhibition to activate these DUBs. We also find that MINDY1/2 use a non-canonical catalytic triad composed of Cys-His-Thr. Our findings highlight multiple layers of regulation modulating DUB activity in MINDY1 and MINDY2.


Asunto(s)
Enzimas Desubicuitinizantes/metabolismo , Poliubiquitina/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía , Enzimas Desubicuitinizantes/genética , Activación Enzimática , Humanos , Cinética , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Dispersión del Ángulo Pequeño , Relación Estructura-Actividad , Ubiquitina Tiolesterasa/genética , Ubiquitinación
9.
Nat Methods ; 21(1): 110-116, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38036854

RESUMEN

Artificial intelligence-based protein structure prediction methods such as AlphaFold have revolutionized structural biology. The accuracies of these predictions vary, however, and they do not take into account ligands, covalent modifications or other environmental factors. Here, we evaluate how well AlphaFold predictions can be expected to describe the structure of a protein by comparing predictions directly with experimental crystallographic maps. In many cases, AlphaFold predictions matched experimental maps remarkably closely. In other cases, even very high-confidence predictions differed from experimental maps on a global scale through distortion and domain orientation, and on a local scale in backbone and side-chain conformation. We suggest considering AlphaFold predictions as exceptionally useful hypotheses. We further suggest that it is important to consider the confidence in prediction when interpreting AlphaFold predictions and to carry out experimental structure determination to verify structural details, particularly those that involve interactions not included in the prediction.


Asunto(s)
Inteligencia Artificial , Procesos Mentales , Cristalografía , Conformación Proteica
10.
Nature ; 591(7851): 677-681, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658720

RESUMEN

The human glycine transporter 1 (GlyT1) regulates glycine-mediated neuronal excitation and inhibition through the sodium- and chloride-dependent reuptake of glycine1-3. Inhibition of GlyT1 prolongs neurotransmitter signalling, and has long been a key strategy in the development of therapies for a broad range of disorders of the central nervous system, including schizophrenia and cognitive impairments4. Here, using a synthetic single-domain antibody (sybody) and serial synchrotron crystallography, we have determined the structure of GlyT1 in complex with a benzoylpiperazine chemotype inhibitor at 3.4 Å resolution. We find that the inhibitor locks GlyT1 in an inward-open conformation and binds at the intracellular gate of the release pathway, overlapping with the glycine-release site. The inhibitor is likely to reach GlyT1 from the cytoplasmic leaflet of the plasma membrane. Our results define the mechanism of inhibition and enable the rational design of new, clinically efficacious GlyT1 inhibitors.


Asunto(s)
Proteínas de Transporte de Glicina en la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Glicina en la Membrana Plasmática/química , Glicina/metabolismo , Sitios de Unión , Transporte Biológico/efectos de los fármacos , Cristalografía , Humanos , Modelos Moleculares , Piperazinas/química , Piperazinas/farmacología , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Anticuerpos de Dominio Único , Sulfonas/química , Sulfonas/farmacología , Sincrotrones
11.
Nature ; 589(7841): 310-314, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33268896

RESUMEN

Photosynthetic reaction centres harvest the energy content of sunlight by transporting electrons across an energy-transducing biological membrane. Here we use time-resolved serial femtosecond crystallography1 using an X-ray free-electron laser2 to observe light-induced structural changes in the photosynthetic reaction centre of Blastochloris viridis on a timescale of picoseconds. Structural perturbations first occur at the special pair of chlorophyll molecules of the photosynthetic reaction centre that are photo-oxidized by light. Electron transfer to the menaquinone acceptor on the opposite side of the membrane induces a movement of this cofactor together with lower amplitude protein rearrangements. These observations reveal how proteins use conformational dynamics to stabilize the charge-separation steps of electron-transfer reactions.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Bacterioclorofilas/metabolismo , Sitios de Unión/efectos de los fármacos , Clorofila/metabolismo , Clorofila/efectos de la radiación , Cristalografía , Citoplasma/metabolismo , Transporte de Electrón/efectos de los fármacos , Electrones , Hyphomicrobiaceae/enzimología , Hyphomicrobiaceae/metabolismo , Rayos Láser , Modelos Moleculares , Oxidación-Reducción/efectos de la radiación , Feofitinas/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de la radiación , Protones , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Vitamina K 2/metabolismo
12.
Mol Cell ; 73(4): 763-774.e10, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30661980

RESUMEN

The biosynthesis of coenzyme Q presents a paradigm for how cells surmount hydrophobic barriers in lipid biology. In eukaryotes, CoQ precursors-among nature's most hydrophobic molecules-must somehow be presented to a series of enzymes peripherally associated with the mitochondrial inner membrane. Here, we reveal that this process relies on custom lipid-binding properties of COQ9. We show that COQ9 repurposes the bacterial TetR fold to bind aromatic isoprenes with high specificity, including CoQ intermediates that likely reside entirely within the bilayer. We reveal a process by which COQ9 associates with cardiolipin-rich membranes and warps the membrane surface to access this cargo. Finally, we identify a molecular interface between COQ9 and the hydroxylase COQ7, motivating a model whereby COQ9 presents intermediates directly to CoQ enzymes. Overall, our results provide a mechanism for how a lipid-binding protein might access, select, and deliver specific cargo from a membrane to promote biosynthesis.


Asunto(s)
Lípidos de la Membrana/metabolismo , Membranas Mitocondriales/enzimología , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Ubiquinona/biosíntesis , Sitios de Unión , Cardiolipinas/metabolismo , Cristalografía , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad , Triptófano , Ubiquinona/química , Ubiquinona/genética
13.
Proc Natl Acad Sci U S A ; 121(11): e2312596121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437555

RESUMEN

Self-assembled DNA crystals offer a precise chemical platform at the ångström-scale for DNA nanotechnology, holding enormous potential in material separation, catalysis, and DNA data storage. However, accurately controlling the crystallization kinetics of such DNA crystals remains challenging. Herein, we found that atomic-level 5-methylcytosine (5mC) modification can regulate the crystallization kinetics of DNA crystal by tuning the hybridization rates of DNA motifs. We discovered that by manipulating the axial and combination of 5mC modification on the sticky ends of DNA tensegrity triangle motifs, we can obtain a series of DNA crystals with controllable morphological features. Through DNA-PAINT and FRET-labeled DNA strand displacement experiments, we elucidate that atomic-level 5mC modification enhances the affinity constant of DNA hybridization at both the single-molecule and macroscopic scales. This enhancement can be harnessed for kinetic-driven control of the preferential growth direction of DNA crystals. The 5mC modification strategy can overcome the limitations of DNA sequence design imposed by limited nucleobase numbers in various DNA hybridization reactions. This strategy provides a new avenue for the manipulation of DNA crystal structure, valuable for the advancement of DNA and biomacromolecular crystallography.


Asunto(s)
5-Metilcitosina , ADN , Cristalización , Catálisis , Cristalografía
14.
Nature ; 583(7815): 314-318, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32499654

RESUMEN

Light-driven sodium pumps actively transport small cations across cellular membranes1. These pumps are used by microorganisms to convert light into membrane potential and have become useful optogenetic tools with applications in neuroscience. Although the resting state structures of the prototypical sodium pump Krokinobacter eikastus rhodopsin 2 (KR2) have been solved2,3, it is unclear how structural alterations over time allow sodium to be translocated against a concentration gradient. Here, using the Swiss X-ray Free Electron Laser4, we have collected serial crystallographic data at ten pump-probe delays from femtoseconds to milliseconds. High-resolution structural snapshots throughout the KR2 photocycle show how retinal isomerization is completed on the femtosecond timescale and changes the local structure of the binding pocket in the early nanoseconds. Subsequent rearrangements and deprotonation of the retinal Schiff base open an electrostatic gate in microseconds. Structural and spectroscopic data, in combination with quantum chemical calculations, indicate that a sodium ion binds transiently close to the retinal within one millisecond. In the last structural intermediate, at 20 milliseconds after activation, we identified a potential second sodium-binding site close to the extracellular exit. These results provide direct molecular insight into the dynamics of active cation transport across biological membranes.


Asunto(s)
Flavobacteriaceae/química , Rodopsinas Microbianas/química , Rodopsinas Microbianas/efectos de la radiación , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/efectos de la radiación , Sitios de Unión , Cristalografía , Electrones , Transporte Iónico , Isomerismo , Rayos Láser , Protones , Teoría Cuántica , Retinaldehído/química , Retinaldehído/metabolismo , Bases de Schiff/química , Sodio/metabolismo , Análisis Espectral , Electricidad Estática , Factores de Tiempo
15.
Proc Natl Acad Sci U S A ; 120(2): e2212931120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36598939

RESUMEN

The nonstructural protein 3 (NSP3) of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) contains a conserved macrodomain enzyme (Mac1) that is critical for pathogenesis and lethality. While small-molecule inhibitors of Mac1 have great therapeutic potential, at the outset of the COVID-19 pandemic, there were no well-validated inhibitors for this protein nor, indeed, the macrodomain enzyme family, making this target a pharmacological orphan. Here, we report the structure-based discovery and development of several different chemical scaffolds exhibiting low- to sub-micromolar affinity for Mac1 through iterations of computer-aided design, structural characterization by ultra-high-resolution protein crystallography, and binding evaluation. Potent scaffolds were designed with in silico fragment linkage and by ultra-large library docking of over 450 million molecules. Both techniques leverage the computational exploration of tangible chemical space and are applicable to other pharmacological orphans. Overall, 160 ligands in 119 different scaffolds were discovered, and 153 Mac1-ligand complex crystal structures were determined, typically to 1 Å resolution or better. Our analyses discovered selective and cell-permeable molecules, unexpected ligand-mediated conformational changes within the active site, and key inhibitor motifs that will template future drug development against Mac1.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Cristalografía , Pandemias , Ligandos , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , Antivirales/farmacología , Antivirales/química
16.
PLoS Comput Biol ; 20(2): e1011519, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38324587

RESUMEN

ASPP2 and iASPP bind to p53 through their conserved ANK-SH3 domains to respectively promote and inhibit p53-dependent cell apoptosis. While crystallography has indicated that these two proteins employ distinct surfaces of their ANK-SH3 domains to bind to p53, solution NMR data has suggested similar surfaces. In this study, we employed multi-scale molecular dynamics (MD) simulations combined with free energy calculations to reconcile the discrepancy in the binding modes. We demonstrated that the binding mode based solely on a single crystal structure does not enable iASPP's RT loop to engage with p53's C-terminal linker-a verified interaction. Instead, an ensemble of simulated iASPP-p53 complexes facilitates this interaction. We showed that the ensemble-average inter-protein contacting residues and NMR-detected interfacial residues qualitatively overlap on ASPP proteins, and the ensemble-average binding free energies better match experimental KD values compared to single crystallgarphy-determined binding mode. For iASPP, the sampled ensemble complexes can be grouped into two classes, resembling the binding modes determined by crystallography and solution NMR. We thus propose that crystal packing shifts the equilibrium of binding modes towards the crystallography-determined one. Lastly, we showed that the ensemble binding complexes are sensitive to p53's intrinsically disordered regions (IDRs), attesting to experimental observations that these IDRs contribute to biological functions. Our results provide a dynamic and ensemble perspective for scrutinizing these important cancer-related protein-protein interactions (PPIs).


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Proteína p53 Supresora de Tumor , Proteínas Reguladoras de la Apoptosis/química , Proteína p53 Supresora de Tumor/química , Cristalografía , Unión Proteica , Apoptosis
17.
Mol Cell ; 65(4): 644-658.e5, 2017 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-28212750

RESUMEN

Protein function originates from a cooperation of structural rigidity, dynamics at different timescales, and allostery. However, how these three pillars of protein function are integrated is still only poorly understood. Here we show how these pillars are connected in Protein Tyrosine Phosphatase 1B (PTP1B), a drug target for diabetes and cancer that catalyzes the dephosphorylation of numerous substrates in essential signaling pathways. By combining new experimental and computational data on WT-PTP1B and ≥10 PTP1B variants in multiple states, we discovered a fundamental and evolutionarily conserved CH/π switch that is critical for positioning the catalytically important WPD loop. Furthermore, our data show that PTP1B uses conformational and dynamic allostery to regulate its activity. This shows that both conformational rigidity and dynamics are essential for controlling protein activity. This connection between rigidity and dynamics at different timescales is likely a hallmark of all enzyme function.


Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Dominio Catalítico , Secuencia Conservada , Cristalografía , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Genotipo , Humanos , Cinética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación , Resonancia Magnética Nuclear Biomolecular , Fenotipo , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 1/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Relación Estructura-Actividad
18.
Proc Natl Acad Sci U S A ; 119(48): e2205043119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36417443

RESUMEN

As honeybees build their nests in preexisting tree cavities, they must deal with the presence of geometric constraints, resulting in nonregular hexagons and topological defects in the comb. In this work, we study how bees adapt to their environment in order to regulate the comb structure. Specifically, we identify the irregularities in honeycomb structure in the presence of various geometric frustrations. We 3D-print experimental frames with a variety of constraints imposed on the imprinted foundations. The combs constructed by the bees show clear evidence of recurring patterns in response to specific geometric frustrations on these starter frames. Furthermore, using an experimental-modeling framework, we demonstrate that these patterns can be successfully modeled and replicated through a simulated annealing process, in which the minimized potential is a variation of the Lennard-Jones potential that considers only first-neighbor interactions according to a Delaunay triangulation. Our simulation results not only confirm the connection between honeycomb structures and other crystal systems such as graphene, but also show that irregularities in the honeycomb structure can be explained as the result of analogous interactions between cells and their immediate surroundings, leading to emergent global order. Additionally, our computational model can be used as a first step to describe specific strategies that bees use to effectively solve geometric mismatches while minimizing cost of comb building.


Asunto(s)
Abejas , Frustación , Animales , Simulación por Computador , Cristalografía , Alimentos
19.
Proc Natl Acad Sci U S A ; 119(52): e2211285119, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36534796

RESUMEN

The outstanding mechanical and chemical properties of dental enamel emerge from its complex hierarchical architecture. An accurate, detailed multiscale model of the structure and composition of enamel is important for understanding lesion formation in tooth decay (dental caries), enamel development (amelogenesis) and associated pathologies (e.g., amelogenesis imperfecta or molar hypomineralization), and minimally invasive dentistry. Although features at length scales smaller than 100 nm (individual crystallites) and greater than 50 µm (multiple rods) are well understood, competing field of view and sampling considerations have hindered exploration of mesoscale features, i.e., at the level of single enamel rods and the interrod enamel (1 to 10 µm). Here, we combine synchrotron X-ray diffraction at submicrometer resolution, analysis of crystallite orientation distribution, and unsupervised machine learning to show that crystallographic parameters differ between rod head and rod tail/interrod enamel. This variation strongly suggests that crystallites in different microarchitectural domains also differ in their composition. Thus, we use a dilute linear model to predict the concentrations of minority ions in hydroxylapatite (Mg2+ and CO32-/Na+) that plausibly explain the observed lattice parameter variations. While differences within samples are highly significant and of similar magnitude, absolute values and the sign of the effect for some crystallographic parameters show interindividual variation that warrants further investigation. By revealing additional complexity at the rod/interrod level of human enamel and leaving open the possibility of modulation across larger length scales, these results inform future investigations into mechanisms governing amelogenesis and introduce another feature to consider when modeling the mechanical and chemical performance of enamel.


Asunto(s)
Amelogénesis Imperfecta , Caries Dental , Humanos , Cristalografía , Amelogénesis , Esmalte Dental
20.
Proc Natl Acad Sci U S A ; 119(21): e2114277119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35594395

RESUMEN

It is impossible to optimize a process for a target drug product with the desired profile without a proper understanding of the interplay among the material attributes, the process parameters, and the attributes of the drug product. There is a particular need to bridge the micro- and mesoscale events that occur during this process. Here, we propose а molecular engineering methodology for the continuous cocrystallization process, based on Raman spectra measured experimentally with a probe and from quantum mechanical calculations. Using molecular dynamics simulations, the theoretical Raman spectra were calculated from first principles for local mixture structures under an external shear force at various temperatures. A proof of concept is developed to build the process design space from the computed data. We show that the determined process design space provides valuable insight for optimizing the cocrystallization process at the nanoscale, where experimental measurements are difficult and/or inapplicable. The results suggest that our method may be used to target cocrystallization processes at the molecular scale for improved pharmaceutical synthesis.


Asunto(s)
Solubilidad , Cristalización , Cristalografía , Preparaciones Farmacéuticas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda