Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Cell ; 155(1): 15-6, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24074855

RESUMEN

Insulators drive nuclear organization by blocking or facilitating interactions between DNA regulatory elements. Ong et al. show that poly(ADP-ribosyl)ation of insulator binding proteins modulates their ability to physically interact with distant regulatory elements, implicating posttranslational modifications of nonhistone proteins in genome architecture.


Asunto(s)
Cromosomas de Insectos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Elementos Aisladores , Poli Adenosina Difosfato Ribosa/metabolismo , Animales
2.
Cell ; 155(1): 148-59, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24055367

RESUMEN

Insulators mediate inter- and intrachromosomal contacts to regulate enhancer-promoter interactions and establish chromosome domains. The mechanisms by which insulator activity can be regulated to orchestrate changes in the function and three-dimensional arrangement of the genome remain elusive. Here, we demonstrate that Drosophila insulator proteins are poly(ADP-ribosyl)ated and that mutation of the poly(ADP-ribose) polymerase (Parp) gene impairs their function. This modification is not essential for DNA occupancy of insulator DNA-binding proteins dCTCF and Su(Hw). However, poly(ADP-ribosyl)ation of K566 in CP190 promotes protein-protein interactions with other insulator proteins, association with the nuclear lamina, and insulator activity in vivo. Consistent with these findings, the nuclear clustering of CP190 complexes is disrupted in Parp mutant cells. Importantly, poly(ADP-ribosyl)ation facilitates intrachromosomal interactions between insulator sites measured by 4C. These data suggest that the role of insulators in organizing the three-dimensional architecture of the genome may be modulated by poly(ADP-ribosyl)ation.


Asunto(s)
Cromosomas de Insectos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Elementos Aisladores , Poli Adenosina Difosfato Ribosa/metabolismo , Animales , Diferenciación Celular , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Mutación , Matriz Nuclear/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Cromosomas Politénicos/metabolismo
3.
Nature ; 593(7858): 289-293, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33854237

RESUMEN

Fundamental features of 3D genome organization are established de novo in the early embryo, including clustering of pericentromeric regions, the folding of chromosome arms and the segregation of chromosomes into active (A-) and inactive (B-) compartments. However, the molecular mechanisms that drive de novo organization remain unknown1,2. Here, by combining chromosome conformation capture (Hi-C), chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq), 3D DNA fluorescence in situ hybridization (3D DNA FISH) and polymer simulations, we show that heterochromatin protein 1a (HP1a) is essential for de novo 3D genome organization during Drosophila early development. The binding of HP1a at pericentromeric heterochromatin is required to establish clustering of pericentromeric regions. Moreover, HP1a binding within chromosome arms is responsible for overall chromosome folding and has an important role in the formation of B-compartment regions. However, depletion of HP1a does not affect the A-compartment, which suggests that a different molecular mechanism segregates active chromosome regions. Our work identifies HP1a as an epigenetic regulator that is involved in establishing the global structure of the genome in the early embryo.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Posicionamiento de Cromosoma , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero/metabolismo , Genoma de los Insectos/genética , Conformación Molecular , Animales , Inmunoprecipitación de Cromatina , Cromosomas de Insectos/química , Cromosomas de Insectos/genética , Cromosomas de Insectos/metabolismo , Drosophila melanogaster/citología , Embrión no Mamífero/citología , Desarrollo Embrionario/genética , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , Hibridación Fluorescente in Situ
4.
Proc Natl Acad Sci U S A ; 121(20): e2317373121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38722810

RESUMEN

In many organisms, most notably Drosophila, homologous chromosomes associate in somatic cells, a phenomenon known as somatic pairing, which takes place without double strand breaks or strand invasion, thus requiring some other mechanism for homologs to recognize each other. Several studies have suggested a "specific button" model, in which a series of distinct regions in the genome, known as buttons, can associate with each other, mediated by different proteins that bind to these different regions. Here, we use computational modeling to evaluate an alternative "button barcode" model, in which there is only one type of recognition site or adhesion button, present in many copies in the genome, each of which can associate with any of the others with equal affinity. In this model, buttons are nonuniformly distributed, such that alignment of a chromosome with its correct homolog, compared with a nonhomolog, is energetically favored; since to achieve nonhomologous alignment, chromosomes would be required to mechanically deform in order to bring their buttons into mutual register. By simulating randomly generated nonuniform button distributions, many highly effective button barcodes can be easily found, some of which achieve virtually perfect pairing fidelity. This model is consistent with existing literature on the effect of translocations of different sizes on homolog pairing. We conclude that a button barcode model can attain highly specific homolog recognition, comparable to that seen in actual cells undergoing somatic homolog pairing, without the need for specific interactions. This model may have implications for how meiotic pairing is achieved.


Asunto(s)
Modelos Genéticos , Animales , Emparejamiento Cromosómico , Drosophila melanogaster/genética , Cromosomas , Drosophila/genética , Simulación por Computador , Cromosomas de Insectos/genética , Cromosomas de Insectos/metabolismo
5.
Genes Dev ; 30(2): 191-207, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26773003

RESUMEN

Many long noncoding RNAs (lncRNAs) can regulate chromatin states, but the evolutionary origin and dynamics driving lncRNA-genome interactions are unclear. We adapted an integrative strategy that identifies lncRNA orthologs in different species despite limited sequence similarity, which is applicable to mammalian and insect lncRNAs. Analysis of the roX lncRNAs, which are essential for dosage compensation of the single X chromosome in Drosophila males, revealed 47 new roX orthologs in diverse Drosophilid species across ∼40 million years of evolution. Genetic rescue by roX orthologs and engineered synthetic lncRNAs showed that altering the number of focal, repetitive RNA structures determines roX ortholog function. Genomic occupancy maps of roX RNAs in four species revealed conserved targeting of X chromosome neighborhoods but rapid turnover of individual binding sites. Many new roX-binding sites evolved from DNA encoding a pre-existing RNA splicing signal, effectively linking dosage compensation to transcribed genes. Thus, dynamic change in lncRNAs and their genomic targets underlies conserved and essential lncRNA-genome interactions.


Asunto(s)
Evolución Biológica , Drosophila melanogaster/fisiología , Genoma de los Insectos/genética , ARN Largo no Codificante/metabolismo , Animales , Sitios de Unión , Cromosomas de Insectos/genética , Cromosomas de Insectos/metabolismo , Compensación de Dosificación (Genética)/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Masculino , Unión Proteica
6.
PLoS Biol ; 17(2): e3000016, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30794535

RESUMEN

Studying aneuploidy during organism development has strong limitations because chronic mitotic perturbations used to generate aneuploidy usually result in lethality. We developed a genetic tool to induce aneuploidy in an acute and time-controlled manner during Drosophila development. This is achieved by reversible depletion of cohesin, a key molecule controlling mitotic fidelity. Larvae challenged with aneuploidy hatch into adults with severe motor defects shortening their life span. Neural stem cells, despite being aneuploid, display a delayed stress response and continue proliferating, resulting in the rapid appearance of chromosomal instability, a complex array of karyotypes, and cellular abnormalities. Notably, when other brain-cell lineages are forced to self-renew, aneuploidy-associated stress response is significantly delayed. Protecting only the developing brain from induced aneuploidy is sufficient to rescue motor defects and adult life span, suggesting that neural tissue is the most ill-equipped to deal with developmental aneuploidy.


Asunto(s)
Aneuploidia , Drosophila melanogaster/fisiología , Longevidad/fisiología , Células-Madre Neurales/fisiología , Estrés Fisiológico , Animales , Encéfalo/fisiología , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Autorrenovación de las Células , Inestabilidad Cromosómica , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas de Insectos/metabolismo , Cariotipo , Cinética , Larva/fisiología , Mitosis , Células-Madre Neurales/citología , Factores de Tiempo , Alas de Animales/fisiología , Cohesinas
7.
Mol Cell ; 49(4): 759-71, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23438860

RESUMEN

Chromatin governs gene regulation and genome maintenance, yet a substantial fraction of the chromatin proteome is still unexplored. Moreover, a global model of the chromatin protein network is lacking. By screening >100 candidates we identify 42 Drosophila proteins that were not previously associated with chromatin, which all display specific genomic binding patterns. Bayesian network modeling of the binding profiles of these and 70 known chromatin components yields a detailed blueprint of the in vivo chromatin protein network. We demonstrate functional compartmentalization of this network, and predict functions for most of the previously unknown chromatin proteins, including roles in DNA replication and repair, and gene activation and repression.


Asunto(s)
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Nucleares/metabolismo , Animales , Teorema de Bayes , Sitios de Unión , Línea Celular , Cromosomas de Insectos/metabolismo , Reparación del ADN , Replicación del ADN , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Modelos Biológicos , Anotación de Secuencia Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Análisis de Componente Principal , Unión Proteica , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional
8.
Proc Natl Acad Sci U S A ; 115(41): E9610-E9619, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30266792

RESUMEN

Chromosomal rearrangements (e.g., fusions/fissions) have the potential to drive speciation. However, their accumulation in a population is generally viewed as unlikely, because chromosomal heterozygosity should lead to meiotic problems and aneuploid gametes. Canonical meiosis involves segregation of homologous chromosomes in meiosis I and sister chromatid segregation during meiosis II. In organisms with holocentric chromosomes, which are characterized by kinetic activity distributed along almost the entire chromosome length, this order may be inverted depending on their metaphase I orientation. Here we analyzed the evolutionary role of this intrinsic versatility of holocentric chromosomes, which is not available to monocentric ones, by studying F1 to F4 hybrids between two chromosomal races of the Wood White butterfly (Leptidea sinapis), separated by at least 24 chromosomal fusions/fissions. We found that these chromosomal rearrangements resulted in multiple meiotic multivalents, and, contrary to the theoretical prediction, the hybrids displayed relatively high reproductive fitness (42% of that of the control lines) and regular behavior of meiotic chromosomes. In the hybrids, we also discovered inverted meiosis, in which the first and critical stage of chromosome number reduction was replaced by the less risky stage of sister chromatid separation. We hypothesize that the ability to invert the order of the main meiotic events facilitates proper chromosome segregation and hence rescues fertility and viability in chromosomal hybrids, potentially promoting dynamic karyotype evolution and chromosomal speciation.


Asunto(s)
Mariposas Diurnas , Quimera , Cromátides , Metafase/fisiología , Animales , Mariposas Diurnas/genética , Mariposas Diurnas/metabolismo , Quimera/genética , Quimera/metabolismo , Cromátides/genética , Cromátides/metabolismo , Cromosomas de Insectos/genética , Cromosomas de Insectos/metabolismo
9.
Chromosoma ; 128(4): 533-545, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31410566

RESUMEN

Moths and butterflies (Lepidoptera) are the most species-rich group of animals with female heterogamety, females mostly having a WZ, males a ZZ sex chromosome constitution. We studied chromatin conformation, activity, and inactivity of the sex chromosomes in the flour moth Ephestia kuehniella and the silkworm Bombyx mori, using immunostaining with anti-H3K9me2/3, anti-RNA polymerase II, and fluoro-uridine (FU) labelling of nascent transcripts, with conventional widefield fluorescence microscopy and 'spatial structured illumination microscopy' (3D-SIM). The Z chromosome is euchromatic in somatic cells and throughout meiosis. It is transcriptionally active in somatic cells and in the postpachaytene stage of meiosis. The W chromosome in contrast is heterochromatic in somatic cells as well as in meiotic cells at pachytene, but euchromatic and transcriptionally active like all other chromosomes at postpachytene. As the W chromosomes are apparently devoid of protein-coding genes, their transcripts must be non-coding. We found no indication of 'meiotic sex chromosome inactivation' (MSCI) in the two species.


Asunto(s)
Cromatina/metabolismo , Mariposas Nocturnas/genética , Cromosomas Sexuales/metabolismo , Animales , Bombyx/genética , Bombyx/metabolismo , Cromosomas de Insectos/metabolismo , Meiosis , Mariposas Nocturnas/metabolismo
10.
Annu Rev Genet ; 46: 561-89, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22994356

RESUMEN

The first genes composing the Polycomb group (PcG) were identified 50 years ago in Drosophila melanogaster as essential developmental functions that regulate the correct segmental expression of homeotic selector genes. In the past two decades, what was initially described as a large family of chromatin-associated proteins involved in the maintenance of transcriptional repression to maintain cellular memory of homeotic genes turned out to be a highly conserved and sophisticated network of epigenetic regulators that play key roles in multiple aspects of cell physiology and identity, including regulation of all developmental genes, cell differentiation, stem and somatic cell reprogramming and response to environmental stimuli. These myriad phenotypes further spread interest for the contribution that PcG proteins revealed in the pathogenesis and progression of cancer and other complex diseases. Recent novel insights have increasingly clarified the molecular regulatory mechanisms at the basis of PcG-mediated epigenetic silencing and opened new visions about PcG functions in cells. In this review, we focus on the multiple modes of action of the PcG complexes and describe their biological roles.


Asunto(s)
Proteínas de Drosophila/metabolismo , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Animales , Ensamble y Desensamble de Cromatina , Cromosomas de Insectos/genética , Cromosomas de Insectos/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Activación Enzimática , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas del Grupo Polycomb/genética , Mapeo de Interacción de Proteínas , ARN no Traducido/genética , ARN no Traducido/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transcripción Genética , Ubiquitinación
11.
Nature ; 512(7512): 96-100, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25043061

RESUMEN

Developmental enhancers initiate transcription and are fundamental to our understanding of developmental networks, evolution and disease. Despite their importance, the properties governing enhancer-promoter interactions and their dynamics during embryogenesis remain unclear. At the ß-globin locus, enhancer-promoter interactions appear dynamic and cell-type specific, whereas at the HoxD locus they are stable and ubiquitous, being present in tissues where the target genes are not expressed. The extent to which preformed enhancer-promoter conformations exist at other, more typical, loci and how transcription is eventually triggered is unclear. Here we generated a high-resolution map of enhancer three-dimensional contacts during Drosophila embryogenesis, covering two developmental stages and tissue contexts, at unprecedented resolution. Although local regulatory interactions are common, long-range interactions are highly prevalent within the compact Drosophila genome. Each enhancer contacts multiple enhancers, and promoters with similar expression, suggesting a role in their co-regulation. Notably, most interactions appear unchanged between tissue context and across development, arising before gene activation, and are frequently associated with paused RNA polymerase. Our results indicate that the general topology governing enhancer contacts is conserved from flies to humans and suggest that transcription initiates from preformed enhancer-promoter loops through release of paused polymerase.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Desarrollo Embrionario/genética , Elementos de Facilitación Genéticos/genética , Regiones Promotoras Genéticas/genética , Animales , Sitios de Unión , Cromosomas de Insectos/genética , Cromosomas de Insectos/metabolismo , Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Sitios Genéticos/genética , Genoma de los Insectos/genética , Humanos , Iniciación de la Transcripción Genética , Activación Transcripcional
12.
Proc Natl Acad Sci U S A ; 114(49): 12988-12993, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29158400

RESUMEN

Proper segregation of chromosomes in meiosis is essential to prevent miscarriages and birth defects. This requires that sister chromatids maintain cohesion at the centromere as cohesion is released on the chromatid arms when the homologs segregate at anaphase I. The Shugoshin proteins preserve centromere cohesion by protecting the cohesin complex from cleavage, and this has been shown in yeasts to be mediated by recruitment of the protein phosphatase 2A B' (PP2A B'). In metazoans, delineation of the role of PP2A B' in meiosis has been hindered by its myriad of other essential roles. The Drosophila Shugoshin MEI-S332 can bind directly to both of the B' regulatory subunits of PP2A, Wdb and Wrd, in yeast two-hybrid experiments. Exploiting experimental advantages of Drosophila spermatogenesis, we found that the Wdb subunit localizes first along chromosomes in meiosis I, becoming restricted to the centromere region as MEI-S332 binds. Wdb and MEI-S332 show colocalization at the centromere region until release of sister-chromatid cohesion at the metaphase II/anaphase II transition. MEI-S332 is necessary for Wdb localization, but, additionally, both Wdb and Wrd are required for MEI-S332 localization. Thus, rather than MEI-S332 being hierarchical to PP2A B', these proteins reciprocally ensure centromere localization of the complex. We analyzed functional relationships between MEI-S332 and the two forms of PP2A by quantifying meiotic chromosome segregation defects in double or triple mutants. These studies revealed that both Wdb and Wrd contribute to MEI-S332's ability to ensure accurate segregation of sister chromatids, but, as in centromere localization, they do not act solely downstream of MEI-S332.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/enzimología , Proteína Fosfatasa 2/fisiología , Animales , Segregación Cromosómica , Cromosomas de Insectos/genética , Cromosomas de Insectos/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Masculino , Meiosis , No Disyunción Genética , Transporte de Proteínas , Cromosomas Sexuales/genética , Cromosomas Sexuales/metabolismo
13.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019537

RESUMEN

Awd, the Drosophila homologue of NME1/2 metastasis suppressors, plays key roles in many signaling pathways. Mosaic analysis of the null awdJ2A4 allele showed that loss of awd gene function blocks Notch signaling and the expression of its target genes including the Wingless (Wg/Wnt1) morphogen. We also showed that RNA interference (RNAi)-mediated awd silencing (awdi) in larval wing disc leads to chromosomal instability (CIN) and to Jun amino-terminal kinases (JNK)-mediated cell death. Here we show that this cell death is independent of p53 activity. Based on our previous finding showing that forced survival of awdi-CIN cells leads to aneuploidy without the hyperproliferative effect, we investigated the Wg expression in awdi wing disc cells. Interestingly, the Wg protein is expressed in its correct dorso-ventral domain but shows an altered cellular distribution which impairs its signaling. Further, we show that RNAi-mediated knock down of awd in wing discs does not affect Notch signaling. Thus, our analysis of the hypomorphic phenotype arising from awd downregulation uncovers a dose-dependent effect of Awd in Notch and Wg signaling.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Nucleósido Difosfato Quinasas NM23/genética , Nucleósido-Difosfato Quinasa/genética , Alas de Animales/metabolismo , Vía de Señalización Wnt/genética , Proteína Wnt1/genética , Animales , Muerte Celular , Inestabilidad Cromosómica , Cromosomas de Insectos/química , Cromosomas de Insectos/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Larva/citología , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Masculino , Nucleósido Difosfato Quinasas NM23/metabolismo , Nucleósido-Difosfato Quinasa/antagonistas & inhibidores , Nucleósido-Difosfato Quinasa/metabolismo , Fenotipo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Alas de Animales/citología , Alas de Animales/crecimiento & desarrollo , Proteína Wnt1/metabolismo
14.
J Cell Biochem ; 120(3): 4494-4503, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30260021

RESUMEN

Chromosomes in many organisms, including Drosophila and mammals, are folded into topologically associating domains (TADs). Increasing evidence suggests that TAD folding is hierarchical, wherein subdomains combine to form larger superdomains, instead of a sequence of nonoverlapping domains. Here, we studied the hierarchical structure of TADs in Drosophila. We show that the boundaries of TADs of different hierarchical levels are characterized by the presence of different portions of active chromatin, but do not vary in the binding of architectural proteins, such as CCCTC binding factor or cohesin. The apparent hierarchy of TADs in Drosophila chromosomes is not likely to have functional importance but rather reflects various options of long-range chromatin folding directed by the distribution of active and inactive chromatin segments and may represent population average.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Cromatina/metabolismo , Cromosomas de Insectos/metabolismo , Proteínas de Drosophila/metabolismo , Animales , Factor de Unión a CCCTC/genética , Cromatina/genética , Cromosomas de Insectos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster
15.
PLoS Comput Biol ; 14(5): e1006159, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29813054

RESUMEN

The 3D organization of chromosomes is crucial for regulating gene expression and cell function. Many experimental and polymer modeling efforts are dedicated to deciphering the mechanistic principles behind chromosome folding. Chromosomes are long and densely packed-topologically constrained-polymers. The main challenges are therefore to develop adequate models and simulation methods to investigate properly the multi spatio-temporal scales of such macromolecules. Here, we proposed a generic strategy to develop efficient coarse-grained models for self-avoiding polymers on a lattice. Accounting accurately for the polymer entanglement length and the volumic density, we show that our simulation scheme not only captures the steady-state structural and dynamical properties of the system but also tracks the same dynamics at different coarse-graining. This strategy allows a strong power-law gain in numerical efficiency and offers a systematic way to define reliable coarse-grained null models for chromosomes and to go beyond the current limitations by studying long chromosomes during an extended time period with good statistics. We use our formalism to investigate in details the time evolution of the 3D organization of chromosome 3R (20 Mbp) in drosophila during one cell cycle (20 hours). We show that a combination of our coarse-graining strategy with a one-parameter block copolymer model integrating epigenomic-driven interactions quantitatively reproduce experimental data at the chromosome-scale and predict that chromatin motion is very dynamic during the cell cycle.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina , Epigénesis Genética , Modelos Genéticos , Animales , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Cromosomas de Insectos/química , Cromosomas de Insectos/genética , Cromosomas de Insectos/metabolismo , Biología Computacional , Drosophila/genética , Epigénesis Genética/genética , Epigénesis Genética/fisiología , Epigenómica , Simulación de Dinámica Molecular
16.
Nucleic Acids Res ; 44(17): 8261-71, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27353331

RESUMEN

Small interfering RNAs (siRNAs) defend the organism against harmful transcripts from exogenous (e.g. viral) or endogenous (e.g. transposons) sources. Recent publications describe the production of siRNAs induced by DNA double-strand breaks (DSB) in Neurospora crassa, Arabidopsis thaliana, Drosophila melanogaster and human cells, which suggests a conserved function. A current hypothesis is that break-induced small RNAs ensure efficient homologous recombination (HR). However, biogenesis of siRNAs is often intertwined with other small RNA species, such as microRNAs (miRNAs), which complicates interpretation of experimental results. In Drosophila, siRNAs are produced by Dcr-2 while miRNAs are processed by Dcr-1. Thus, it is possible to probe siRNA function without miRNA deregulation. We therefore examined DNA double-strand break repair after perturbation of siRNA biogenesis in cultured Drosophila cells as well as mutant flies. Our assays comprised reporters for the single-strand annealing pathway, homologous recombination and sensitivity to the DSB-inducing drug camptothecin. We could not detect any repair defects caused by the lack of siRNAs derived from the broken DNA locus. Since production of these siRNAs depends on local transcription, they may thus participate in RNA metabolism-an established function of siRNAs-rather than DNA repair.


Asunto(s)
Drosophila melanogaster/genética , ARN Interferente Pequeño/metabolismo , Reparación del ADN por Recombinación , Animales , Proteínas Argonautas/metabolismo , Camptotecina/farmacología , Cromosomas de Insectos/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efectos de los fármacos , Edición Génica , Técnicas de Silenciamiento del Gen , Genes Reporteros , Mutación/genética , Reparación del ADN por Recombinación/efectos de los fármacos , Cigoto/metabolismo
17.
PLoS Genet ; 11(6): e1005260, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26110638

RESUMEN

Drosophila telomeres are sequence-independent structures that are maintained by transposition to chromosome ends of three specialized retroelements (HeT-A, TART and TAHRE; collectively designated as HTT) rather than telomerase activity. Fly telomeres are protected by the terminin complex (HOAP-HipHop-Moi-Ver) that localizes and functions exclusively at telomeres and by non-terminin proteins that do not serve telomere-specific functions. Although all Drosophila telomeres terminate with HTT arrays and are capped by terminin, they differ in the type of subtelomeric chromatin; the Y, XR, and 4L HTT are juxtaposed to constitutive heterochromatin, while the XL, 2L, 2R, 3L and 3R HTT are linked to the TAS repetitive sequences; the 4R HTT is associated with a chromatin that has features common to both euchromatin and heterochromatin. Here we show that mutations in pendolino (peo) cause telomeric fusions (TFs). The analysis of several peo mutant combinations showed that these TFs preferentially involve the Y, XR and 4th chromosome telomeres, a TF pattern never observed in the other 10 telomere-capping mutants so far characterized. peo encodes a non-terminin protein homologous to the E2 variant ubiquitin-conjugating enzymes. The Peo protein directly interacts with the terminin components, but peo mutations do not affect telomeric localization of HOAP, Moi, Ver and HP1a, suggesting that the peo-dependent telomere fusion phenotype is not due to loss of terminin from chromosome ends. peo mutants are also defective in DNA replication and PCNA recruitment. However, our results suggest that general defects in DNA replication are unable to induce TFs in Drosophila cells. We thus hypothesize that DNA replication in Peo-depleted cells results in specific fusigenic lesions concentrated in heterochromatin-associated telomeres. Alternatively, it is possible that Peo plays a dual function being independently required for DNA replication and telomere capping.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Nucleares/genética , Telómero/genética , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Cromosomas de Insectos/genética , Cromosomas de Insectos/metabolismo , Replicación del ADN , Proteínas de Drosophila/metabolismo , Heterocromatina/metabolismo , Mutación , Proteínas Nucleares/metabolismo , Polimorfismo de Nucleótido Simple , Antígeno Nuclear de Célula en Proliferación/metabolismo , Telómero/metabolismo , Cromosoma Y/genética , Cromosoma Y/metabolismo
18.
Chromosoma ; 125(3): 405-11, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26490169

RESUMEN

Telomerase is an enzyme that adds repeats of DNA sequences to the ends of chromosomes, thereby preventing their shortening. Telomerase activity is associated with proliferative status of cells, organismal development, and aging. We report an analysis of telomerase activity and telomere length in the honeybee, Apis mellifera. Telomerase activity was found to be regulated in a development and caste-specific manner. During the development of somatic tissues of larval drones and workers, telomerase activity declined to 10 % of its level in embryos and remained low during pupal and adult stages but was upregulated in testes of late pupae, where it reached 70 % of the embryo level. Upregulation of telomerase activity was observed in the ovaries of late pupal queens, reaching 160 % of the level in embryos. Compared to workers and drones, queens displayed higher levels of telomerase activity. In the third larval instar of queens, telomerase activity reached the embryo level, and an enormous increase was observed in adult brains of queens, showing a 70-fold increase compared to a brain of an adult worker. Southern hybridization of terminal TTAGG fragments revealed a high variability of telomeric length between different individuals, although the same pattern of hybridization signals was observed in different tissues of each individual.


Asunto(s)
Abejas/metabolismo , Cromosomas de Insectos/metabolismo , Proteínas de Insectos/metabolismo , Telomerasa/metabolismo , Homeostasis del Telómero/fisiología , Telómero/metabolismo , Animales , Abejas/genética , Cromosomas de Insectos/genética , Proteínas de Insectos/genética , Telomerasa/genética , Telómero/genética
19.
Nature ; 471(7336): 115-8, 2011 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-21368835

RESUMEN

The evolution of sex chromosomes has resulted in numerous species in which females inherit two X chromosomes but males have a single X, thus requiring dosage compensation. MSL (Male-specific lethal) complex increases transcription on the single X chromosome of Drosophila males to equalize expression of X-linked genes between the sexes. The biochemical mechanisms used for dosage compensation must function over a wide dynamic range of transcription levels and differential expression patterns. It has been proposed that the MSL complex regulates transcriptional elongation to control dosage compensation, a model subsequently supported by mapping of the MSL complex and MSL-dependent histone 4 lysine 16 acetylation to the bodies of X-linked genes in males, with a bias towards 3' ends. However, experimental analysis of MSL function at the mechanistic level has been challenging owing to the small magnitude of the chromosome-wide effect and the lack of an in vitro system for biochemical analysis. Here we use global run-on sequencing (GRO-seq) to examine the specific effect of the MSL complex on RNA Polymerase II (RNAP II) on a genome-wide level. Results indicate that the MSL complex enhances transcription by facilitating the progression of RNAP II across the bodies of active X-linked genes. Improving transcriptional output downstream of typical gene-specific controls may explain how dosage compensation can be imposed on the diverse set of genes along an entire chromosome.


Asunto(s)
Cromosomas de Insectos/genética , Compensación de Dosificación (Genética)/genética , Drosophila melanogaster/genética , Transcripción Genética , Cromosoma X/genética , Acetilación , Animales , Línea Celular , Cromosomas de Insectos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Genes de Insecto/genética , Genes Ligados a X/genética , Histonas/química , Histonas/metabolismo , Masculino , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , ARN Polimerasa II/metabolismo , Análisis de Secuencia de ADN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Cromosoma X/metabolismo
20.
Nucleic Acids Res ; 43(14): 6959-68, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26117547

RESUMEN

Chromatin immunoprecipitation (ChIP) is widely used to identify chromosomal binding sites. Chromatin proteins are cross-linked to their target sequences in living cells. The purified chromatin is sheared and the relevant protein is enriched by immunoprecipitation with specific antibodies. The co-purifying genomic DNA is then determined by massive parallel sequencing (ChIP-seq).We applied ChIP-seq to map the chromosomal binding sites for two ISWI-containing nucleosome remodeling factors, ACF and RSF, in Drosophila embryos. Employing several polyclonal and monoclonal antibodies directed against their signature subunits, ACF1 and RSF-1, robust profiles were obtained indicating that both remodelers co-occupied a large set of active promoters.Further validation included controls using chromatin of mutant embryos that do not express ACF1 or RSF-1. Surprisingly, the ChIP-seq profiles were unchanged, suggesting that they were not due to specific immunoprecipitation. Conservative analysis lists about 3000 chromosomal loci, mostly active promoters that are prone to non-specific enrichment in ChIP and appear as 'Phantom Peaks'. These peaks are not obtained with pre-immune serum and are not prominent in input chromatin.Mining the modENCODE ChIP-seq profiles identifies potential Phantom Peaks in many profiles of epigenetic regulators. These profiles and other ChIP-seq data featuring prominent Phantom Peaks must be validated with chromatin from cells in which the protein of interest has been depleted.


Asunto(s)
Artefactos , Inmunoprecipitación de Cromatina/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN/métodos , Animales , Sitios de Unión , Cromosomas de Insectos/metabolismo , Bases de Datos Genéticas , Drosophila/embriología , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Factores de Empalme de ARN , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda