RESUMEN
Monocytes and macrophages express the transcription factor MAFB (V-maf musculoaponeurotic fibrosarcoma oncogene homolog B) and protect against ischemic acute kidney injury (AKI). However, the mechanism through which MAFB alleviates AKI in macrophages remains unclear. In this study, we induced AKI in macrophage lineage-specific Mafb-deficient mice (C57BL/6J) using the ischemia-reperfusion injury model to analyze these mechanisms. Our results showed that MAFB regulates the expression of Alox15 (arachidonate 15-lipoxygenase) in macrophages during ischemic AKI. The expression of ALOX15 was significantly decreased at the mRNA and protein levels in macrophages that infiltrated the kidneys of macrophage-specific Mafb-deficient mice at 24 h after ischemia-reperfusion injury. ALOX15 promotes the resolution of inflammation under acute conditions by producing specialized proresolving mediators by oxidizing essential fatty acids. Therefore, MAFB in macrophages promotes the resolution of inflammation in ischemic AKI by regulating the expression of Alox15. Moreover, MAFB expression in macrophages is upregulated via the COX-2/PGE2/EP4 pathway in ischemic AKI. Our in vitro assay showed that MAFB regulates the expression of Alox15 under the COX-2/PGE2/EP4 pathway in macrophages. PGE2 mediates the lipid mediator (LM) class switch from inflammatory LMs to specialized proresolving mediators. Therefore, MAFB plays a key role in the PGE2-mediated LM class switch by regulating the expression of Alox15. Our study identified a previously unknown mechanism by which MAFB in macrophages alleviates ischemic AKI and provides new insights into regulating the LM class switch in acute inflammatory conditions.
Asunto(s)
Lesión Renal Aguda , Araquidonato 15-Lipooxigenasa , Dinoprostona , Macrófagos , Factor de Transcripción MafB , Ratones Endogámicos C57BL , Daño por Reperfusión , Animales , Factor de Transcripción MafB/genética , Factor de Transcripción MafB/metabolismo , Araquidonato 15-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/genética , Lesión Renal Aguda/metabolismo , Ratones , Macrófagos/metabolismo , Macrófagos/inmunología , Dinoprostona/metabolismo , Daño por Reperfusión/inmunología , Daño por Reperfusión/metabolismo , Ratones Noqueados , Masculino , Inflamación/inmunología , Araquidonato 12-LipooxigenasaRESUMEN
Hepatic ischemia-reperfusion injury (HIRI) represents a major risk factor in liver transplantation and resection surgeries. Kupffer cells (KCs) produce proinflammatory cytokines and lead to hepatic neutrophil infiltration in the liver, which is one of the leading causes of HIRI. Mid1 is involved in immune infiltration, but the role of Mid1 remains poorly understood. Herin, our study aimed to investigate the effect of Mid1 on HIRI progression. Male C57BL/6 mice aged 6 weeks were used for the HIRI model established. The function of Mid1 on liver injury and hepatic inflammation was evaluated. In vitro, KCs were used to investigate the function and mechanism of Mid1 in modulating KC inflammation upon lipopolysaccharide (LPS) stimulation. We found that Mid1 expression was up-regulated upon HIRI. Mid1 inhibition alleviated liver damage, as evidenced by neutrophil infiltration, intrahepatic inflammation, and hepatocyte apoptosis. In vitro experiments further revealed that Mid1 knockdown reduced the secretion of proinflammatory cytokines and chemokines in KCs. Moreover, silenced-Mid1 suppressed proinflammatory responses by the inhibition of NF-κB, JNK, and p38 signaling pathways. Taken together, Mid1 contributes to HIRI via regulating the proinflammatory response of KCs and inducing neutrophil infiltration. Targeting Mid1 may be a promising strategy to protect against HIRI.
Asunto(s)
Macrófagos del Hígado , Hígado , Ratones Endogámicos C57BL , Daño por Reperfusión , Animales , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/inmunología , Ratones , Masculino , Macrófagos del Hígado/metabolismo , Hígado/patología , Hígado/metabolismo , Infiltración Neutrófila , Citocinas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , FN-kappa B/metabolismo , Apoptosis , Inflamación/metabolismo , Inflamación/patología , Transducción de SeñalRESUMEN
Ischemia-reperfusion injury (IRI) is a cumulation of pathophysiological processes that involves cell and organelle damage upon blood flow constraint and subsequent restoration. However, studies on overall immune infiltration and ferroptosis in liver ischemia-reperfusion injury (LIRI) are limited. This study explored immune cell infiltration and ferroptosis in LIRI using bioinformatics and experimental validation. The GSE151648 dataset, including 40 matched pairs of pre- and post- transplant liver samples was downloaded for bioinformatic analysis. Eleven hub genes were identified by overlapping differentially expressed genes (DEGs), iron genes, and genes identified through weighted gene co-expression network analysis (WGCNA). Subsequently, the pathway enrichment, transcription factor-target, microRNA-mRNA and protein-protein interaction networks were investigated. The diagnostic model was established by logistic regression, which was validated in the GSE23649 and GSE100155 datasets and verified using cytological experiments. Moreover, several drugs targeting these genes were found in DrugBank, providing a more effective treatment for LIRI. In addition, the expression of 11 hub genes was validated using quantitative real-time polymerase chain reaction (qRT-PCR) in liver transplantation samples and animal models. The expression of the 11 hub genes increased in LIRI compared with the control. Five genes were significantly enriched in six biological process terms, six genes showed high enrichment for LIRI-related signaling pathways. There were 56 relevant transcriptional factors and two central modules in the protein-protein interaction network. Further immune infiltration analysis indicated that immune cells including neutrophils and natural killer cells were differentially accumulated in the pre- and post-transplant groups, and this was accompanied by changes in immune-related factors. Finally, 10 targeted drugs were screened. Through bioinformatics and further experimental verification, we identified hub genes related to ferroptosis that could be used as potential targets to alleviate LIRI.
Asunto(s)
Ferroptosis , Hígado , Mapas de Interacción de Proteínas , Daño por Reperfusión , Ferroptosis/genética , Animales , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/inmunología , Hígado/metabolismo , Humanos , Redes Reguladoras de Genes , Masculino , Ratones , Trasplante de HígadoRESUMEN
MicroRNAs play a crucial role in regulating the immune responses induced by ischemia/reperfusion injury. Through their ability to modulate gene expression, microRNAs adjust immune responses by targeting specific genes and signaling pathways. This review focuses on the impact of microRNAs on the inflammatory pathways triggered during ischemia/reperfusion injury and highlights their ability to modulate inflammation, playing a critical role in the pathophysiology of ischemia/reperfusion injury. Dysregulated expression of microRNAs contributes to the pathogenesis of ischemia/reperfusion injury, therefore targeting specific microRNAs offers an opportunity to restore immune homeostasis and improve patient outcomes. Understanding the complex network of immunoregulatory microRNAs could provide novel therapeutic interventions aimed at attenuating excessive inflammation and preserving tissue integrity.
Asunto(s)
Inflamación , MicroARNs , Daño por Reperfusión , Transducción de Señal , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Daño por Reperfusión/inmunología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/genética , Inflamación/inmunología , Inflamación/genética , Inflamación/metabolismo , Animales , Regulación de la Expresión GénicaRESUMEN
T cells mediate organ injury and repair. A proportion of unconventional kidney T cells called double-negative (DN) T cells (TCR+ CD4- CD8-), with anti-inflammatory properties, were previously demonstrated to protect from early injury in moderate experimental acute kidney injury (AKI). However, their role in repair after AKI has not been studied. We hypothesized that DN T cells mediate repair after severe AKI. C57B6 mice underwent severe (40 min) unilateral ischemia-reperfusion injury (IRI). Kidney DN T cells were studied by flow cytometry and compared with gold-standard anti-inflammatory CD4+ regulatory T cells (Tregs). In vitro effects of DN T cells and Tregs on renal tubular epithelial cell (RTEC) repair after injury were quantified with live-cell analysis. DN T cells, Tregs, CD4, or vehicle were adoptively transferred after severe AKI. Glomerular filtration rate (GFR) was measured using fluorescein isothiocyanate (FITC)-sinistrin. Fibrosis was assessed with Masson's trichrome staining. Profibrotic genes were measured with qRT-PCR. Percentages and the numbers of DN T cells substantially decreased during repair phase after severe AKI, as well as their activation and proliferation. Both DN T cells and Tregs accelerated RTEC cell repair in vitro. Post-AKI transfer of DN T cells reduced kidney fibrosis and improved GFR, as did Treg transfer. DN T cell transfer lowered transforming growth factor (TGF)ß1 and α-smooth muscle actin (αSMA) expression. DN T cells reduced effector-memory CD4+ T cells and IL-17 expression. DN T cells undergo quantitative and phenotypical changes after severe AKI, accelerate RTEC repair in vitro as well as improve GFR and renal fibrosis in vivo. DN T cells have potential as immunotherapy to accelerate repair after AKI.NEW & NOTEWORTHY Double-negative (DN) T cells (CD4- CD8-) are unconventional kidney T cells with regulatory abilities. Their role in repair from acute kidney injury (AKI) is unknown. Kidney DN T cell population decreased during repair after ischemic AKI, in contrast to regulatory T cells (Tregs) which increased. DN T cell administration accelerated tubular repair in vitro, while after severe in vivo ischemic injury reduced kidney fibrosis and increased glomerular filtration rate (GFR). DN T cell infusion is a potential therapeutic agent to improve outcome from severe AKI.
Asunto(s)
Lesión Renal Aguda , Tasa de Filtración Glomerular , Ratones Endogámicos C57BL , Daño por Reperfusión , Linfocitos T Reguladores , Animales , Lesión Renal Aguda/inmunología , Lesión Renal Aguda/patología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/fisiopatología , Daño por Reperfusión/inmunología , Daño por Reperfusión/patología , Daño por Reperfusión/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Masculino , Modelos Animales de Enfermedad , Fibrosis , Células Epiteliales/metabolismo , Células Epiteliales/patología , Traslado Adoptivo , Ratones , Riñón/patología , Riñón/inmunología , Riñón/metabolismo , Fenotipo , Túbulos Renales/patología , Túbulos Renales/metabolismo , Regeneración , Células CultivadasRESUMEN
Kidneys from donors with prolonged warm and cold ischemia are prone to posttransplant T cell-mediated rejection (TCMR) due to ischemia-reperfusion injury (IRI). However, the precise mechanisms still remain obscure. Renal tubular epithelial cells (TECs) are the main target during IRI. Meanwhile, we have previously reported that murine double minute 2 (MDM2) actively participates in TEC homeostasis during IRI. In this study, we established a murine model of renal IRI and a cell model of hypoxia-reoxygenation by culturing immortalized rat renal proximal tubule cells (NRK-52E) in a hypoxic environment for different time points followed by 24 h of reoxygenation and incubating NRK-52E cells in a chemical anoxia-recovery environment. We found that during renal IRI MDM2 expression increased on the membrane of TECs and aggregated mainly on the basolateral side. This process was accompanied by a reduction of a transmembrane protein, programmed death ligand 1 (PD-L1), a coinhibitory second signal for T cells in TECs. Using mutant plasmids of MDM2 to anchor MDM2 on the cell membrane or nuclei, we found that the upregulation of membrane MDM2 could promote the ubiquitination of PD-L1 and lead to its ubiquitination-proteasome degradation. Finally, we set up a coculture system of TECs and CD4+ T cells in vitro; our results revealed that the immunogenicity of TECs was enhanced during IRI. In conclusion, our findings suggest that the increased immunogenicity of TECs during IRI may be related to ubiquitinated degradation of PD-L1 by increased MDM2 on the cell membrane, which consequently results in T-cell activation and TCMR.NEW & NOTEWORTHY Ischemic acute kidney injury (AKI) donors can effectively shorten the waiting time for kidney transplantation but increase immune rejection, especially T cell-mediated rejection (TCMR), the mechanism of which remains to be elucidated. Our study demonstrates that during ischemia-reperfusion injury (IRI), the translocation of tubular murine double minute 2 leads to basolateral programmed death ligand 1 degradation, which ultimately results in the occurrence of TCMR, which may provide a new therapeutic strategy for preventing AKI donor-associated TCMR.
Asunto(s)
Lesión Renal Aguda , Proteínas Proto-Oncogénicas c-mdm2 , Daño por Reperfusión , Animales , Daño por Reperfusión/metabolismo , Daño por Reperfusión/inmunología , Daño por Reperfusión/patología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/inmunología , Lesión Renal Aguda/patología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Masculino , Ratas , Ratones Endogámicos C57BL , Antígeno B7-H1/metabolismo , Ubiquitinación , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/patología , Ratones , Transporte de Proteínas , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/inmunología , Túbulos Renales Proximales/patología , Línea Celular , Membrana Celular/metabolismo , Hipoxia de la Célula , Trasplante de RiñónRESUMEN
Imaging tools for kidney inflammation could improve care for patients suffering inflammatory kidney diseases by lessening reliance on percutaneous biopsy or biochemical tests alone. During kidney inflammation, infiltration of myeloid immune cells generates a kidney microenvironment that is oxidizing relative to normal kidney. Here, we evaluated whether magnetic resonance imaging (MRI) using the redox-active iron (Fe) complex Fe-PyC3A as an oxidatively activated probe could serve as a marker of kidney inflammation using mouse models of unilateral ischemia-reperfusion injury (IRI) and lupus nephritis (MRL-lpr mice). We imaged unilateral IRI in gp91phox knockout mice, which are deficient in the nicotinamide oxidase II (NOX2) enzyme required for myeloid oxidative burst, as loss of function control, and imaged MRL/MpJ mice as non-kidney involved lupus control. Gadoterate meglumine was used as a non-oxidatively activated control MRI probe. Fe-PyC3A safety was preliminarily examined following a single acute dose. Fe-PyC3A generated significantly greater MRI signal enhancement in the IRI kidney compared to the contralateral kidney in wild-type mice, but the effect was not observed in the NOX2-deficient control. Fe-PyC3A also generated significantly greater kidney enhancement in MRL-lpr mice compared to MRL/MpJ control. Gadoterate meglumine did not differentially enhance the IRI kidney over the contralateral kidney and did not differentially enhance the kidneys of MRL-lpr over MRL/MpJ mice. Fe-PyC3A was well tolerated at the highest dose evaluated, which was a 40-fold greater than required for imaging. Thus, our data indicate that MRI using Fe-PyC3A is specific to an oxidizing kidney environment shaped by activity of myeloid immune cells and support further evaluation of Fe-PyC3A for imaging kidney inflammation.
Asunto(s)
Modelos Animales de Enfermedad , Riñón , Nefritis Lúpica , Imagen por Resonancia Magnética , Ratones Noqueados , NADPH Oxidasa 2 , Oxidación-Reducción , Daño por Reperfusión , Animales , Imagen por Resonancia Magnética/métodos , Riñón/diagnóstico por imagen , Riñón/patología , Riñón/inmunología , Riñón/metabolismo , Nefritis Lúpica/diagnóstico por imagen , Nefritis Lúpica/inmunología , Nefritis Lúpica/patología , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 2/genética , Daño por Reperfusión/diagnóstico por imagen , Daño por Reperfusión/inmunología , Daño por Reperfusión/patología , Ratones Endogámicos MRL lpr , Ratones , Medios de Contraste/administración & dosificación , Ratones Endogámicos C57BL , Estrés Oxidativo , Femenino , Masculino , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genéticaRESUMEN
The occurrence of acute kidney injury (AKI) is elevated, one of the main causes is ischemia-reperfusion (I/R). However, no specific therapy is currently available to treat I/R-induced AKI (I/R-AKI). Treg cells have been demonstrated to perform an anti-inflammatory role in a range of autoimmune and inflammatory illnesses. However, there is limited available information about the possible functions of CD8 + CD103 + iTregs in I/R-AKI. We utilized renal tubular epithelial cells (RTECs) subjected to hypoxia-reoxygenation (H/R) and I/R-AKI mouse model to investigate whether CD8 + CD103 + iTregs could attenuate AKI and the underlying mechanism. In vitro, co-cultured with CD8 + CD103 + iTregs alleviated H/R-induced cell injury. After treatment of CD8 + CD103 + iTregs rather than control cells, a significant improvement of I/R-AKI was observed in vivo, including decreased serum creatinine (sCr) and blood urea nitrogen (BUN) levels, reduced renal pathological injury, lowered tubular apoptosis and inhibition of the transition from AKI to chronic kidney disease (CKD). Mechanically, CD8 + CD103 + iTregs alleviated H/R-induced cell injury and I/R-AKI partly by suppressing RTECs pyroptosis via inhibiting the NLRP3/Caspase-1 axis. Our study provides a novel perspective on the possibility of CD8 + CD103 + iTregs for the treatment of I/R-AKI.
Asunto(s)
Lesión Renal Aguda , Cadenas alfa de Integrinas , Piroptosis , Daño por Reperfusión , Linfocitos T Reguladores , Animales , Lesión Renal Aguda/patología , Lesión Renal Aguda/inmunología , Lesión Renal Aguda/prevención & control , Daño por Reperfusión/inmunología , Daño por Reperfusión/complicaciones , Daño por Reperfusión/patología , Ratones , Linfocitos T Reguladores/inmunología , Cadenas alfa de Integrinas/metabolismo , Cadenas alfa de Integrinas/genética , Ratones Endogámicos C57BL , Antígenos CD8/metabolismo , Antígenos CD8/genética , Masculino , Antígenos CD/metabolismo , Antígenos CD/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Células Epiteliales/patología , Células Epiteliales/metabolismo , Túbulos Renales/patologíaRESUMEN
Beta 2 glycoprotein I (ß2GPI) is the major autoantigen in the antiphospholipid syndrome, an autoimmune disorder characterized by thrombotic and obstetric complications. The autoantibodies that target beta 2 glycoprotein I are pathogenic and contribute to disease pathogenesis. The ß2GPI molecule is composed of 5 domains that are numbered 1 through to 5. Autoantibodies bind mainly to domain 1 whereas the majority of the biological functions of the ß2GPI molecule in diverse processes such as apoptotic cell clearance, complement regulation, lipopolysaccharide clearance and anticoagulation have been localised to domain 5 and its unique biochemistry, reviewed in this article. The role of purified domain 5 peptide as a potential therapeutic agent in APS and ischemia reperfusion injury is discussed.
Asunto(s)
Síndrome Antifosfolípido , Autoanticuerpos , beta 2 Glicoproteína I , Humanos , beta 2 Glicoproteína I/inmunología , Síndrome Antifosfolípido/inmunología , Síndrome Antifosfolípido/tratamiento farmacológico , Autoanticuerpos/inmunología , Dominios Proteicos , Animales , Autoantígenos/inmunología , Daño por Reperfusión/inmunologíaRESUMEN
BACKGROUND: Investigating immune cell infiltration in the brain post-ischemia-reperfusion (I/R) injury is crucial for understanding and managing the resultant inflammatory responses. This study aims to unravel the role of the RPS27A-mediated PSMD12/NF-κB axis in controlling immune cell infiltration in the context of cerebral I/R injury. METHODS: To identify genes associated with cerebral I/R injury, high-throughput sequencing was employed. The potential downstream genes were further analyzed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction (PPI) analyses. For experimental models, primary microglia and neurons were extracted from the cortical tissues of mouse brains. An in vitro cerebral I/R injury model was established in microglia using the oxygen-glucose deprivation/reoxygenation (OGD/R) technique. In vivo models involved inducing cerebral I/R injury in mice through the middle cerebral artery occlusion (MCAO) method. These models were used to assess neurological function, immune cell infiltration, and inflammatory factor release. RESULTS: The study identified RPS27A as a key player in cerebral I/R injury, with PSMD12 likely acting as its downstream regulator. Silencing RPS27A in OGD/R-induced microglia decreased the release of inflammatory factors and reduced neuron apoptosis. Additionally, RPS27A silencing in cerebral cortex tissues mediated the PSMD12/NF-κB axis, resulting in decreased inflammatory factor release, reduced neutrophil infiltration, and improved cerebral injury outcomes in I/R-injured mice. CONCLUSION: RPS27A regulates the expression of the PSMD12/NF-κB signaling axis, leading to the induction of inflammatory factors in microglial cells, promoting immune cell infiltration in brain tissue, and exacerbating brain damage in I/R mice. This study introduces novel insights and theoretical foundations for the treatment of nerve damage caused by I/R, suggesting that targeting the RPS27A and downstream PSMD12/NF-κB signaling axis for drug development could represent a new direction in I/R therapy.
Asunto(s)
FN-kappa B , Daño por Reperfusión , Proteínas Ribosómicas , Transducción de Señal , Animales , Daño por Reperfusión/metabolismo , Daño por Reperfusión/inmunología , Daño por Reperfusión/genética , Ratones , FN-kappa B/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Masculino , Modelos Animales de Enfermedad , Microglía/metabolismo , Microglía/inmunología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/inmunología , Neuronas/metabolismo , Ratones Endogámicos C57BL , Mapas de Interacción de ProteínasRESUMEN
BACKGROUND: Pulmonary ischaemia-reperfusion injury (IRI) is a major contributor to poor lung transplant outcomes. We recently demonstrated a central role of airway-centred natural killer (NK) cells in mediating IRI; however, there are no existing effective therapies for directly targeting NK cells in humans. METHODS: We hypothesised that a depleting anti-CD94 monoclonal antibody (mAb) would provide therapeutic benefit in mouse and human models of IRI based on high levels of KLRD1 (CD94) transcripts in bronchoalveolar lavage samples from lung transplant patients. RESULTS: We found that CD94 is highly expressed on mouse and human NK cells, with increased expression during IRI. Anti-mouse and anti-human mAbs against CD94 showed effective NK cell depletion in mouse and human models and blunted lung damage and airway epithelial killing, respectively. In two different allogeneic orthotopic lung transplant mouse models, anti-CD94 treatment during induction reduced early lung injury and chronic inflammation relative to control therapies. Anti-CD94 did not increase donor antigen-presenting cells that could alter long-term graft acceptance. CONCLUSIONS: Lung transplant induction regimens incorporating anti-CD94 treatment may safely improve early clinical outcomes.
Asunto(s)
Anticuerpos Monoclonales , Células Asesinas Naturales , Trasplante de Pulmón , Ratones Endogámicos C57BL , Subfamília D de Receptores Similares a Lectina de las Células NK , Daño por Reperfusión , Animales , Daño por Reperfusión/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Ratones , Humanos , Subfamília D de Receptores Similares a Lectina de las Células NK/metabolismo , Subfamília D de Receptores Similares a Lectina de las Células NK/inmunología , Anticuerpos Monoclonales/farmacología , Masculino , Modelos Animales de Enfermedad , Pulmón/inmunología , Pulmón/patología , Líquido del Lavado Bronquioalveolar/inmunología , Líquido del Lavado Bronquioalveolar/citología , FemeninoRESUMEN
Breaching endothelial cells (ECs) is a decisive step in the migration of leukocytes from the vascular lumen to the extravascular tissue, but fundamental aspects of this response remain largely unknown. We have previously shown that neutrophils can exhibit abluminal-to-luminal migration through EC junctions within mouse cremasteric venules and that this response is elicited following reduced expression and/or functionality of the EC junctional adhesion molecule-C (JAM-C). Here we demonstrate that the lipid chemoattractant leukotriene B4 (LTB4) was efficacious at causing loss of venular JAM-C and promoting neutrophil reverse transendothelial cell migration (rTEM) in vivo. Local proteolytic cleavage of EC JAM-C by neutrophil elastase (NE) drove this cascade of events as supported by presentation of NE to JAM-C via the neutrophil adhesion molecule Mac-1. The results identify local LTB4-NE axis as a promoter of neutrophil rTEM and provide evidence that this pathway can propagate a local sterile inflammatory response to become systemic.
Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Inmunoglobulinas/metabolismo , Elastasa de Leucocito/metabolismo , Leucotrieno B4/metabolismo , Neutrófilos/inmunología , Migración Transendotelial y Transepitelial/inmunología , Animales , Benzoatos/administración & dosificación , Moléculas de Adhesión Celular/genética , Células Cultivadas , Células Endoteliales/fisiología , Humanos , Inmunoglobulinas/genética , Uniones Intercelulares/efectos de los fármacos , Elastasa de Leucocito/genética , Leucotrieno B4/administración & dosificación , Antígeno de Macrófago-1/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Daño por Reperfusión/inmunología , Migración Transendotelial y Transepitelial/efectos de los fármacos , Vénulas/fisiología , Heridas y Lesiones/inmunologíaRESUMEN
Hepatic ischaemia-reperfusion (I/R) injury is a frequent and nearly inevitable pathophysiological process without widely accepted effective therapy. Soluble egg antigen (SEA) of Schistosoma japonicum (S. japonicum) is the main mediators capable of regulating immunological activities and has received increased attention in immune-mediated diseases. But its role in hepatic I/R injury has not been well defined. This study aimed to elucidate whether SEA protects liver against hepatic I/R injury and explore underlying mechanism. After intraperitoneal injecting SEA three times a week for 4 weeks, mice underwent 70% hepatic I/R injury. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), haematoxylin-eosin (HE) and TdT-mediated dUTP nick-end labelling (TUNEL) staining were used to evaluate liver injury. The severity related to the inflammatory response was also investigated. Furthermore, immunofluorescence was used to detect macrophage polarisation. Compared with the hepatic I/R injury group, SEA pretreatment significantly alleviated hepatic I/R injury induced liver damage, apoptosis and inflammatory. Interestingly, SEA enhanced the polarisation of macrophages towards M2 macrophages in vivo. We are the first to investigate the therapeutic efficacy of S. japonicum SEA in a hepatic I/R injury model in mice. We provided the first direct evidence that SEA attenuated hepatic I/R injury by promoting M2 macrophage polarisation.
Asunto(s)
Hígado , Macrófagos , Daño por Reperfusión , Animales , Daño por Reperfusión/inmunología , Ratones , Macrófagos/inmunología , Hígado/patología , Hígado/inmunología , Antígenos Helmínticos/inmunología , Masculino , Schistosoma japonicum/inmunología , Modelos Animales de Enfermedad , Apoptosis , Aspartato Aminotransferasas/sangre , Alanina Transaminasa/sangre , Ratones Endogámicos C57BLRESUMEN
BACKGROUND: Hepatic ischemia reperfusion injury (IRI) is a common liver surgery complication. This study aims to explore the effect and potential mechanism of Sunitinib - a multi-target tyrosine kinase inhibitor - on hepatic IRI. METHODS: We established a hepatic IRI model using C57BL/6 mice, and integrated 40 mg/kg of Sunitinib, solely or combined with 100 µg/kg of coumermycin A1 (C-A1), in the treatment strategy. H&E staining, TUNEL assay, and detection of serum ALT and AST activities were used to assess liver damage. Further, ELISA kits and Western Blots were utilized to determine IL-1ß, TNF-α, IL-6, CXCL10, and CXCL2 levels. Primary macrophages, once isolated, were cultured in vitro with either 2 nM of Sunitinib, or Sunitinib in conjunction with 1 µM of C-A1, to gauge their influence on macrophage polarization. qPCR and Western blot were conducted to examine the level of p-STAT1/STAT1, p-STAT3/STAT3, p-JAK2/JAK2, and M1/M2 polarization markers. To quantify immune cell infiltration, we applied Immunofluorescence. RESULTS: Sunitinib pretreatment significantly alleviated liver injury and reduced p-STAT1/STAT1, p-STAT3/STAT3, p-JAK2/JAK2 levels. In vitro, Sunitinib treatment curbed M1 polarization induced by LPS + IFN-γ and bolstered M2 polarization triggered by IL-4. C-A1 application upregulated JAK2/STAT pathway phosphorylation and promoted LPS + IFN-γ-induced M1 polarization, which was reversed by Sunitinib treatment. In IL-4-stimulated macrophages, application of C-A1 activated the JAK2/STAT pathway and decreased M2-type macrophages, which was reversed by Sunitinib treatment either. CONCLUSION: Sunitinib is capable of guiding the polarization of macrophages toward an M2-type phenotype via the inhibition of the JAK2/STAT pathway, thereby exerting a protective effect on hepatic IRI.
Asunto(s)
Janus Quinasa 2 , Macrófagos , Ratones Endogámicos C57BL , Daño por Reperfusión , Transducción de Señal , Sunitinib , Animales , Janus Quinasa 2/metabolismo , Janus Quinasa 2/antagonistas & inhibidores , Sunitinib/farmacología , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/inmunología , Daño por Reperfusión/patología , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Masculino , Transducción de Señal/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/patología , Factores de Transcripción STAT/metabolismoRESUMEN
The migration of neutrophils into inflamed tissues is a fundamental component of innate immunity. A decisive step in this process is the polarized migration of blood neutrophils through endothelial cells (ECs) lining the venular lumen (transendothelial migration (TEM)) in a luminal-to-abluminal direction. By real-time confocal imaging, we found that neutrophils had disrupted polarized TEM ('hesitant' and 'reverse') in vivo. We noted these events in inflammation after ischemia-reperfusion injury, characterized by lower expression of junctional adhesion molecule C (JAM-C) at EC junctions, and they were enhanced by blockade or genetic deletion of JAM-C in ECs. Our results identify JAM-C as a key regulator of polarized neutrophil TEM in vivo and suggest that reverse TEM of neutrophils can contribute to the dissemination of systemic inflammation.
Asunto(s)
Moléculas de Adhesión Celular/inmunología , Endotelio Vascular/inmunología , Inmunoglobulinas/inmunología , Inflamación/inmunología , Neutrófilos/inmunología , Migración Transendotelial y Transepitelial/inmunología , Animales , Endotelio Vascular/citología , Endotelio Vascular/patología , Procesamiento de Imagen Asistido por Computador , Inflamación/patología , Ratones , Microscopía Confocal , Daño por Reperfusión/inmunología , Daño por Reperfusión/patologíaRESUMEN
BACKGROUND AND AIMS: Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of reactive oxygen species (ROS) and inflammation and has been implicated in both human and murine inflammatory disease models. We aimed to characterize the roles of macrophage-specific Nrf2 in liver ischemia/reperfusion injury (IRI). APPROACH AND RESULTS: First, macrophage Nrf2 expression and liver injury in patients undergoing OLT or ischemia-related hepatectomy were analyzed. Subsequently, we created a myeloid-specific Nrf2-knockout (Nrf2M-KO ) strain to study the function and mechanism of macrophage Nrf2 in a murine liver IRI model. In human specimens, macrophage Nrf2 expression was significantly increased in liver tissues after transplantation or hepatectomy. Interestingly, lower Nrf2 expressions correlated with more severe liver injury postoperatively. In a mouse model, we found Nrf2M-KO mice showed worse hepatocellular damage than Nrf2-proficient controls based on serum biochemistry, pathology, ROS, and inflammation. In vitro, Nrf2 deficiency promoted innate immune activation and migration in macrophages on toll-like receptor (TLR) 4 stimulation. Microarray profiling showed Nrf2 deletion caused markedly lower transcriptional levels of tissue inhibitor of metalloproteinase 3 (Timp3). ChIP-seq, PCR, and luciferase reporter assay further demonstrated Nrf2 bound to the promoter region of Timp3. Moreover, a disintegrin and metalloproteinase (ADAM) 10/ROCK1 was specifically increased in Nrf2-deficient macrophages. Increasing Timp3 expression effectively inhibited ADAM10/ROCK1 expression and rescued the Nrf2M-KO -mediated inflammatory response on TLR4 stimulation in vitro. Importantly, Timp3 overexpression, recombinant Timp3 protein, or ROCK1 knockdown rescued Nrf2M-KO -related liver IRI by inhibiting macrophage activation. CONCLUSIONS: In conclusion, macrophage Nrf2 mediates innate proinflammatory responses, attenuates liver IRI by binding to Timp3, and inhibits the RhoA/ROCK pathway, which provides a therapeutic target for clinical organ IRI.
Asunto(s)
Inmunidad Innata , Hígado , Factor 2 Relacionado con NF-E2 , Daño por Reperfusión , Animales , Humanos , Inflamación/metabolismo , Isquemia/complicaciones , Isquemia/metabolismo , Isquemia/patología , Hígado/patología , Macrófagos/metabolismo , Metaloproteasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/inmunología , Transducción de Señal , Inhibidor Tisular de Metaloproteinasa-3/metabolismo , Quinasas Asociadas a rho , Proteína de Unión al GTP rhoA/metabolismoRESUMEN
Intestinal microbial metabolites are conjectured to affect mucosal integrity through an incompletely characterized mechanism. Here we showed that microbial-specific indoles regulated intestinal barrier function through the xenobiotic sensor, pregnane X receptor (PXR). Indole 3-propionic acid (IPA), in the context of indole, is a ligand for PXR in vivo, and IPA downregulated enterocyte TNF-α while it upregulated junctional protein-coding mRNAs. PXR-deficient (Nr1i2(-/-)) mice showed a distinctly "leaky" gut physiology coupled with upregulation of the Toll-like receptor (TLR) signaling pathway. These defects in the epithelial barrier were corrected in Nr1i2(-/-)Tlr4(-/-) mice. Our results demonstrate that a direct chemical communication between the intestinal symbionts and PXR regulates mucosal integrity through a pathway that involves luminal sensing and signaling by TLR4.
Asunto(s)
Intestinos/inmunología , Receptores de Esteroides/inmunología , Uniones Estrechas/inmunología , Receptor Toll-Like 4/inmunología , Uniones Adherentes/genética , Uniones Adherentes/inmunología , Animales , Antiinflamatorios no Esteroideos/farmacología , Anticuerpos/inmunología , Complejo CD3/inmunología , Células CACO-2 , Línea Celular , Femenino , Células HEK293 , Humanos , Indoles , Indometacina/farmacología , Inflamación/inmunología , Intestinos/microbiología , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Microbiota/inmunología , Receptor X de Pregnano , Interferencia de ARN , ARN Mensajero , ARN Interferente Pequeño , Receptores de Esteroides/genética , Daño por Reperfusión/inmunología , Transducción de Señal/inmunología , Uniones Estrechas/genética , Receptor Toll-Like 4/genética , Factor de Necrosis Tumoral alfa/biosíntesisRESUMEN
BACKGROUND AND AIMS: Liver ischemia reperfusion injury (IRI) remains an unresolved clinical problem. This study dissected roles of liver-resident macrophage Kupffer cells (KCs), with a functional focus on efferocytosis receptor T-cell immunoglobulin and mucin domain-containing protein-4 (TIM-4), in both the activation and resolution of IRI in a murine liver partial warm ischemia model. APPROACH AND RESULTS: Fluorescence-activated cell sorting results showed that TIM-4 was expressed exclusively by KCs, but not infiltrating macrophages (iMФs), in IR livers. Anti-TIM-4 antibody depleted TIM-4+ macrophages in vivo, resulting in either alleviation or deterioration of liver IRI, which was determined by the repopulation kinetics of the KC niche with CD11b+ macrophages. To determine the KC-specific function of TIM-4, we reconstituted clodronate-liposome-treated mice with exogenous wild-type or TIM-4-deficient KCs at either 0 hour or 24 hours postreperfusion. TIM-4 deficiency in KCs resulted in not only increases in the severity of liver IRI (at 6 hours postreperfusion), but also impairment of the inflammation resolution (at 7 days postreperfusion). In vitro analysis revealed that TIM-4 promoted KC efferocytosis to regulate their Toll-like receptor response by up-regulating IL-10 and down-regulating TNF-α productions. CONCLUSIONS: TIM-4 is critical for KC homeostatic function in both the activation and resolution of liver IRI by efferocytosis.
Asunto(s)
Interleucina-10/metabolismo , Macrófagos del Hígado/fisiología , Hepatopatías/inmunología , Proteínas de la Membrana/metabolismo , Daño por Reperfusión/inmunología , Receptores Toll-Like/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Homeostasis/fisiología , Inflamación/metabolismo , Ratones , Transducción de SeñalRESUMEN
BACKGROUND AND AIMS: Liver ischemia/reperfusion injury (IRI) induces local and systemic inflammation in which neutrophil extracellular traps (NETs) are major drivers. IRI markedly augments metastatic growth, which is consistent with the notion that the liver IRI can serve as a premetastatic niche. Exercise training (ExT) confers a sustainable protection, reducing IRI in some animal models, and has been associated with improved survival in patients with cancer; however, the impact of ExT on liver IRI or development of hepatic metastases is unknown. APPROACH AND RESULTS: Mice were randomized into exercise (ExT) and sedentary groups before liver IRI and tumor injection. Computerized dynamic network analysis of 20 inflammatory mediators was used to dissect the sequence of mediator interactions after ischemia/reperfusion (I/R) that induce injury. ExT mice showed a significant decrease in hepatic IRI and tissue necrosis. This coincided with disassembly of complex networks among inflammatory mediators seen in sedentary mice. Neutrophil infiltration and NET formation were decreased in the ExT group, which suppressed the expression of liver endothelial cell adhesion molecules. Concurrently, ExT mice revealed a distinct population of infiltrating macrophages expressing M2 phenotypic genes. In a metastatic model, fewer metastases were present 3 weeks after I/R in the ExT mice, a finding that correlated with a marked increase in tumor-suppressing T cells within the tumor microenvironment. CONCLUSIONS: ExT preconditioning mitigates the inflammatory response to liver IRI, protecting the liver from injury and metastases. In light of these findings, potential may exist for the reduction of liver premetastatic niches induced by liver IRI through the use of ExT as a nonpharmacologic therapy before curative surgical approaches.
Asunto(s)
Trampas Extracelulares/inmunología , Inflamación , Hepatopatías , Metástasis de la Neoplasia , Infiltración Neutrófila/inmunología , Condicionamiento Físico Animal/métodos , Daño por Reperfusión , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Inmunidad , Inflamación/etiología , Inflamación/inmunología , Inflamación/terapia , Hepatopatías/inmunología , Hepatopatías/patología , Hepatopatías/terapia , Ratones , Metástasis de la Neoplasia/inmunología , Metástasis de la Neoplasia/terapia , Factores Protectores , Daño por Reperfusión/inmunología , Daño por Reperfusión/patología , Daño por Reperfusión/terapia , Resultado del TratamientoRESUMEN
BACKGROUND AND AIMS: The cluster of differentiation 47 (CD47)-signal regulatory protein alpha (SIRPα) signaling pathway plays important roles in immune homeostasis and tissue inflammatory response. Activation of the Hedgehog/smoothened (SMO)/GLI family zinc finger 1 (Gli1) pathway regulates cell growth, differentiation, and immune function. However, it remains unknown whether and how the CD47-SIRPα interaction may regulate Hedgehog/SMO/Gli1 signaling in mesenchymal stem cell (MSC)-mediated immune regulation during sterile inflammatory liver injury. APPROACH AND RESULTS: In a mouse model of ischemia/reperfusion (IR)-induced sterile inflammatory liver injury, we found that adoptive transfer of MSCs increased CD47 expression and ameliorated liver IR injury. However, deletion of CD47 in MSCs exacerbated IR-induced liver damage, with increased serum ALT levels, macrophage/neutrophil infiltration, and pro-inflammatory mediators. MSC treatment augmented SIRPα, Hedgehog/SMO/Gli1, and Notch1 intracellular domain (NICD), whereas CD47-deficient MSC treatment reduced these gene expressions in IR-stressed livers. Moreover, disruption of myeloid SMO or Notch1 increased IR-triggered liver inflammation with diminished Gli1 and NICD, but enhanced NIMA related kinase 7 (NEK7) and NLR family pyrin domain containing 3 (NLRP3) activation in MSC-transferred mice. Using a MSC/macrophage co-culture system, we found that MSC CD47 and macrophage SIRPα expression were increased after LPS stimulation. The CD47-SIRPα interaction increased macrophage Gli1 and NICD nuclear translocation, whereby NICD interacted with Gli1 and regulated its target gene Dvl2 (dishevelled segment polarity protein 2), which in turn inhibited NEK7/NLRP3 activity. CONCLUSIONS: The CD47-SIRPα signaling activates the Hedgehog/SMO/Gli1 pathway, which controls NEK7/NLRP3 activity through a direct interaction between Gli1 and NICD. NICD is a coactivator of Gli1, and the target gene Dvl2 regulated by the NICD-Gli1 complex is crucial for the modulation of NLRP3-driven inflammatory response in MSC-mediated immune regulation. Our findings provide potential therapeutic targets in MSC-mediated immunotherapy of sterile inflammatory liver injury.