Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Más filtros

Colección SES
Publication year range
1.
J Biol Chem ; 299(12): 105368, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37866634

RESUMEN

Positive heterotropic cooperativity, or "activation," results in an instantaneous increase in enzyme activity in the absence of an increase in protein expression. Thus, cytochrome P450 (CYP) enzyme activation presents as a potential drug-drug interaction mechanism. It has been demonstrated previously that dapsone activates the CYP2C9-catalyzed oxidation of a number of nonsteroidal anti-inflammatory drugs in vitro. Here, we conducted molecular dynamics simulations (MDS) together with enzyme kinetic investigations and site-directed mutagenesis to elucidate the molecular basis of the activation of CYP2C9-catalyzed S-flurbiprofen 4'-hydroxylation and S-naproxen O-demethylation by dapsone. Supplementation of incubations of recombinant CYP2C9 with dapsone increased the catalytic efficiency of flurbiprofen and naproxen oxidation by 2.3- and 16.5-fold, respectively. MDS demonstrated that activation arises predominantly from aromatic interactions between the substrate, dapsone, and the phenyl rings of Phe114 and Phe476 within a common binding domain of the CYP2C9 active site, rather than involvement of a distinct effector site. Mutagenesis of Phe114 and Phe476 abrogated flurbiprofen and naproxen oxidation, and MDS and kinetic studies with the CYP2C9 mutants further identified a pivotal role of Phe476 in dapsone activation. MDS additionally showed that aromatic stacking interactions between two molecules of naproxen are necessary for binding in a catalytically favorable orientation. In contrast to flurbiprofen and naproxen, dapsone did not activate the 4'-hydroxylation of diclofenac, suggesting that the CYP2C9 active site favors cooperative binding of nonsteroidal anti-inflammatory drugs with a planar or near-planar geometry. More generally, the work confirms the utility of MDS for investigating ligand binding in CYP enzymes.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas , Citocromo P-450 CYP2C9 , Dapsona , Flurbiprofeno , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/metabolismo , Hidrocarburo de Aril Hidroxilasas/metabolismo , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Dapsona/metabolismo , Flurbiprofeno/metabolismo , Cinética , Naproxeno/metabolismo , Humanos
2.
J Pharmacol Exp Ther ; 386(3): 323-330, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37348965

RESUMEN

Glucose 6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in humans (∼5% of all individuals). G6PD deficiency (G6PDd) is caused by an unstable enzyme and manifests most strongly in red blood cells (RBCs) that cannot synthesize new protein. G6PDd RBCs have decreased ability to mitigate oxidative stress due to lower levels of NADPH, as a result of a defective pentose phosphate pathway. Accordingly, oxidative drugs can result in hemolysis and potentially life-threatening anemia in G6PDd patients. Dapsone is a highly useful drug for treating a variety of pathologies but oral dapsone is contraindicated in patients with G6PDd due to oxidative stress-induced anemia. Dapsone must be metabolized to become hemolytic. Dapsone hydroxylamine (DDS-NOH) has been implicated as the major hemolytic dapsone metabolite, but this has never been tested on G6PDd RBCs with in vivo circulation as a metric. Moreover, the metabolic lesion caused by DDS-NOH is unknown. We report that RBCs from a novel humanized mouse expressing the human Mediterranean G6PD-deficient variant have increased sensitivity to DDS-NOH. In addition, we show that DDS-NOH damaged RBCs can either undergo sequestration (with subsequent return to circulation) or permanent removal in a dose-dependent manner, with G6PD-sufficient RBCs mostly being sequestered, and G6PDd RBCs mostly being permanently removed. Finally, we characterize the metabolic lesion caused by DDS-NOH in G6PDd RBCs and report a blockage in terminal glycolysis resulting in a cellular accumulation of pyruvate. These findings confirm DDS-NOH as a hemolytic metabolite and elucidate metabolic effects of DDS-NOH on G6PDd RBCs. SIGNIFICANCE STATEMENT: These findings confirm that dapsone hydroxylamine, an active metabolite of dapsone, causes in vivo clearance of murine red blood cells expressing a human variant of deficient glucose 6-phosphate dehydrogenase (G6PD), an enzymopathy that affects half a billion individuals (G6PD deficiency). Both cellular mechanisms of clearance (sequestration versus destruction) and specific metabolic disturbances caused by dapsone hydroxylamine are elucidated, providing novel mechanistic understanding.


Asunto(s)
Deficiencia de Glucosafosfato Deshidrogenasa , Hemólisis , Animales , Humanos , Ratones , Dapsona/farmacología , Dapsona/metabolismo , Eritrocitos/metabolismo , Glucosa/metabolismo , Deficiencia de Glucosafosfato Deshidrogenasa/complicaciones , Deficiencia de Glucosafosfato Deshidrogenasa/metabolismo , Fosfatos/metabolismo
3.
Drug Dev Ind Pharm ; 46(2): 246-252, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31951762

RESUMEN

Objective: Drug release systems based on colonic microbiota have been explored with the use of polysaccharides, which are biodegradable. In order to modulate the release into the colon, dapsone tablets were developed, coated with Surelease® and chondroitin sulfate (SC).Methods: The formulation was developed using the wet granulation method, in the form of 9-millimetre circular tablets. The coating was applied in a perforated basin-type coating using different proportions of Surelease® and chondroitin sulfate. The tablets were assessed according to the criteria of mean weight, hardness, and friability. The dissolution test was performed in the dissolver IV apparatus, in media simulating the gastrointestinal system environments (pH 1.2-pH 6.0 and pH 7.2) for 420 min. The results were analyzed by statistical analysis and factorial design.Results: The results of mean weight, hardness, and friability met the pharmacopeial specifications. In the dissolution test, the results obtained demonstrated that Surelease® is able to offer effective protection to the drug, releasing minimum rates when used at 6% or 10% of the tablet's weight gain. The experiments showed that the drug was not able to spread through the coatings manufactured exclusively with Surelease® or even when SC was incorporated in different proportions. Only in the formulation where SC was included in the highest proportion (10%), and the weight gain of the tablet was lower (6%), the release of dapsone increased, reaching 9.5% of drug released. Through factorial planning, it was observed that the drug release rate increases when the weight gain of the tablet remains at the lower level (6%), while the amount of polysaccharide is increased (90:10).Conclusions: The data indicate that the proportion of polysaccharide for ethyl cellulose in the film and the thickness of the coating are the key parameters in controlling the release of the drug from the system.


Asunto(s)
Colon/metabolismo , Dapsona/química , Dapsona/metabolismo , Comprimidos/química , Comprimidos/metabolismo , Celulosa/análogos & derivados , Celulosa/química , Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Excipientes/química , Dureza , Concentración de Iones de Hidrógeno , Polisacáridos/química , Solubilidad/efectos de los fármacos
4.
J Cell Biochem ; 119(12): 9838-9852, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30125973

RESUMEN

Leprosy (causative, Mycobacterium leprae) continues to be the persisting public health problem with stable incidence rates, owing to the emergence of dapsone resistance that being the principal drug in the ongoing multidrug therapy. Hence, to overcome the drug resistance, structural modification through medicinal chemistry was used to design newer dapsone derivative(s) (DDs), against folic acid biosynthesis pathway. The approach included theoretical modeling, molecular docking, and molecular dynamic (MD) simulation as well as binding free energy estimation for validation of newly designed seven DDs, before synthesis. Theoretical modeling, docking, and MD simulation studies were used to understand the mode of binding and efficacy of DDs against the wild-type and mutant dihydropteroate synthases (DHPS). Principal component analysis was performed to understand the conformational dynamics of DHPS-DD complexes. Furthermore, the overall stability and negative-binding free energy of DHPS-DD complexes were deciphered using Molecular Mechanics/Poisson-Boltzmann Surface Area technique. Molecular mechanics study revealed that DD3 possesses higher binding free energy than dapsone against mutant DHPS. Energetic contribution analysis portrayed that van der Waals and electrostatic energy contributes profoundly to the overall negative free energy, whereas polar solvation energy opposes the binding. Finally, DD3 was synthesized and characterized using Fourier-transform infrared spectroscopy, UV, liquid chromatography-mass spectrometry, and proton nuclear magnetic resonance techniques. This study suggested that DD3 could be further promoted as newer antileprosy agent. The principles of medicinal chemistry and bioinformatics tools help to locate effective therapeutics to minimize resources and time in current drug development modules.


Asunto(s)
Dapsona/farmacología , Dihidropteroato Sintasa/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mycobacterium leprae/enzimología , Dapsona/análogos & derivados , Dapsona/metabolismo , Dapsona/uso terapéutico , Dihidropteroato Sintasa/genética , Dihidropteroato Sintasa/metabolismo , Quimioterapia Combinada , Leprostáticos/farmacología , Leprostáticos/uso terapéutico , Mutación , Mycobacterium leprae/efectos de los fármacos , Unión Proteica , Conformación Proteica
5.
J Oncol Pharm Pract ; 24(8): 637-640, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28732451

RESUMEN

An understanding of the clinical significance of dapsone-drug interactions is essential for optimal use of this agent. This review aims to provide clinicians with an overview of this topic.


Asunto(s)
Antiinfecciosos/metabolismo , Azoles/metabolismo , Dapsona/metabolismo , Antiinfecciosos/efectos adversos , Azoles/efectos adversos , Dapsona/efectos adversos , Interacciones Farmacológicas/fisiología , Hemólisis/efectos de los fármacos , Hemólisis/fisiología , Humanos
6.
AAPS PharmSciTech ; 19(5): 2174-2184, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29725903

RESUMEN

Dapsone (DPS) is a unique sulfone with antibiotic and anti-inflammatory activity. Owing to its dual action, DPS has a great potential to treat acne. Topical DPS application is expected to be effective in treatment of mild to moderate acne conditions. Invasomes are novel vesicles composed of phosphatidylcholine, ethanol, and one or mixture of terpenes of enhanced percutaneous permeation. In this study, DPS-loaded invasomes were prepared using the thin film hydration technique. The effect of different terpenes (Limonene, Cineole, Fenchone, and Citral) in different concentrations on the properties of the prepared DPS-loaded invasomes was investigated using a full factorial experimental design, namely, the particle size, drug entrapment, and release efficiency. The optimized formulation was selected for morphological evaluation which showed spherical shaped vesicles. Further solid-state characterization using differential scanning calorimetry and X-ray diffractometry revealed that the drug was dispersed in an amorphous state within the prepared invasomes. Finally, the ability of the prepared DPS-loaded invasomes to deliver DPS through the skin was investigated in vivo using wistar rats. The maximum in vivo skin deposition amount of DPS was found to be 4.11 mcg/cm2 for invasomes versus 1.71 mcg/cm2 for the drug alcoholic solution, representing about 2.5-fold higher for the invasomes compared to the drug solution. The AUC0-10 calculated for DPS-loaded invasomes was nearly 2-fold greater than that of DPS solution (14.54 and 8.01 mcg.h/cm2 for the optimized invasomes and DPS solution, respectively). These results reveal that the skin retention of DPS can be enhanced using invasomes.


Asunto(s)
Acné Vulgar/metabolismo , Antiinfecciosos/metabolismo , Dapsona/metabolismo , Portadores de Fármacos/metabolismo , Absorción Cutánea/efectos de los fármacos , Acné Vulgar/tratamiento farmacológico , Administración Cutánea , Animales , Antiinfecciosos/administración & dosificación , Antiinfecciosos/química , Dapsona/administración & dosificación , Dapsona/química , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Femenino , Liposomas , Masculino , Tamaño de la Partícula , Ratas , Ratas Wistar , Absorción Cutánea/fisiología , Resultado del Tratamiento , Difracción de Rayos X
7.
Eur J Med Chem ; 261: 115786, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37716187

RESUMEN

Perforin is a pore-forming protein whose normal function enables cytotoxic T and natural killer (NK) cells to kill virus-infected and transformed cells. Conversely, unwanted perforin activity can also result in auto-immune attack, graft rejection and aberrant responses to pathogens. Perforin is critical for the function of the granule exocytosis cell death pathway and is therefore a target for drug development. In this study, by screening a fragment library using NMR and surface plasmon resonance, we identified 4,4-diaminodiphenyl sulfone (dapsone) as a perforin ligand. We also found that dapsone has modest (mM) inhibitory activity of perforin lytic activity in a red blood cell lysis assay in vitro. Sequential modification of this lead fragment, guided by structural knowledge of the ligand binding site and binding pose, and supported by SPR and ligand-detected 19F NMR, enabled the design of nanomolar inhibitors of the cytolytic activity of intact NK cells against various tumour cell targets. Interestingly, the ligands we developed were largely inert with respect to direct perforin-mediated red blood cell lysis but were very potent in the context of perforin's action on delivering granzymes in the immune synapse, the context in which it functions physiologically. Our work indicates that a fragment-based, structure-guided drug discovery strategy can be used to identify novel ligands that bind perforin. Moreover, these molecules have superior physicochemical properties and solubility compared to previous generations of perforin ligands.


Asunto(s)
Dapsona , Células Asesinas Naturales , Perforina/metabolismo , Ligandos , Células Asesinas Naturales/metabolismo , Muerte Celular , Dapsona/metabolismo
8.
Drug Deliv ; 29(1): 821-836, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35266431

RESUMEN

This study aimed to illustrate the use of D-optimal mixture design (DOMD) for optimization of an enhancer containing Dapsone niosomal formula for acne topical treatment. Mixture components (MixCs) studied were: Span 20, Cholesterol, and Cremophor RH. Different responses were measured. Optimized formula (OF) was selected to minimize particle size and maximize absolute zeta potential and entrapment efficiency. Optimized formula gel (OF-gel) was prepared and characterized. OF-gel in vivo skin penetration using confocal laser scanning microscopy and activity against Cutibacterium acnes in acne mouse model were studied. Based on DOMD results analysis, adequate models were derived. Piepel and contour plots were plotted accordingly to explain how alteration in MixCs L-pseudo values affected studied responses and regions for different responses' values. The OF had suitable predicted responses which were in good correlation with the actually measured ones. The OF-gel showed suitable characterization and in vivo skin penetration up to the dermis layer. In vivo acne mouse-model showed that OF-gel-treated group (OF-gel-T-gp) had significantly better recovery (healing) criteria than untreated (UT-gp) and Aknemycin®-treated (A-T-gp) groups. This was evident in significantly higher reduction of inflammation percent observed in OF-gel-T-gp than both UT-gp and A-T-gp. Better healing in OF-gel-T-gp compared with other groups was also verified by histopathological examination. Moreover, OF-gel-T-gp and A-T-gp bacterial loads were non-significantly different from each other but significantly lower than UT-gp. Thus, DOMD was an adequate statistical tool for optimization of an appropriate enhancer containing Dapsone niosomal formula that proved to be promising for topical treatment of acne.


Asunto(s)
Acné Vulgar , Liposomas , Acné Vulgar/tratamiento farmacológico , Acné Vulgar/metabolismo , Animales , Dapsona/metabolismo , Liposomas/metabolismo , Ratones , Tamaño de la Partícula , Piel/metabolismo , Absorción Cutánea
9.
Chem Phys Lipids ; 239: 105115, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34252425

RESUMEN

The increase in antimicrobial resistance has created a crisis that has become top priority for global policy and public health. Antibiotics are constantly being rendered in-effective due to the emergence of bacterial resistance; therefore, novel strategies for improving therapeutic efficacies of existing drugs must be focused. Advancements in nanotechnology have opened up new avenues for enhancing therapeutic efficacy of existing drugs via construction of intelligent and efficient delivery systems. This study reports the synthesis of Dapsone based nonionic surfactant and its utilization as delivery system for Ceftriaxone sodium. The synthesized nonionic surfactant was characterized via mass spectrometry and 1H NMR and IR spectroscopic techniques. The drug loaded vesicles of newly synthesized sulfur based nonionic were formed through thin film hydration method and characterized for drug entrapment efficiency, vesicles size, zeta potential, morphology using UV-vis spectrometry, dynamic light scattering (DLS) and atomic force microscopic (AFM) techniques. The biocompatibility of newly synthesized surfactant was assessed using blood hemolysis and in-vitro cells cytotoxicity. Antibacterial potential of drug loaded vesicles was assessed in gram positive and gram negative bacterial cultures. The spectroscopic results confirm successful synthesis of novel sulfur based nonionic surfactant that formed spherical shaped drug loaded vesicles with an average size of 97.95 ± 3.45 nm and 56.3 ± 3.15 % entrapment of the model drug (Ceftriaxone sodium). The vesicles displayed negative surface charge of -16.8 ± 3.72 mV and released the entrapped drug in a controlled way in-vitro drug release. The drug loaded vesicular formulation showed enhanced cellular uptake and greater antibacterial potentials when compared with control. Results of this study show that the Dapsone based surfactant is safe, biocompatible, non-toxic and can be used as promising vesicular carrier for enhancing therapeutic efficacy of antibacterial drug, Ceftriaxone sodium.


Asunto(s)
Materiales Biocompatibles/química , Dapsona/química , Portadores de Fármacos/síntesis química , Tensoactivos/química , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Materiales Biocompatibles/metabolismo , Materiales Biocompatibles/farmacología , Biopelículas/efectos de los fármacos , Dapsona/metabolismo , Dapsona/farmacología , Portadores de Fármacos/química , Liberación de Fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/fisiología , Hemólisis/efectos de los fármacos , Humanos , Micelas , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Azufre/química
10.
J Appl Toxicol ; 30(3): 271-5, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19998329

RESUMEN

The most prominent adverse effects seen during treatment with dapsone, an antibacterial and antiprotozoal agent, are hemolysis and methemoglobinemia. An in vitro microsomal/cytochrome P(450) (CYP)-linked assay, which allows reactive metabolites generated in situ to react with the co-incubated human erythrocytes, was employed to profile CYP isoforms responsible for hemotoxicity of dapsone. Dapsone caused a robust generation of methemoglobin in human erythrocytes in the presence of human/mouse liver microsomes, which indicates contribution of CYP-mediated metabolism for hemotoxicity. The highest methemoglobin formation with dapsone was observed with CYP2C19, with minor contributions from CYP2B6, CYP2D6 and CYP3A4. Cimetidine and chloramphenicol completely abrogated methemoglobin generation by dapsone, thus confirming a predominant contribution of CYP2C19. The results provide useful insights into CYP-dependent hemotoxicity of dapsone in human erythrocytes.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Dapsona/metabolismo , Dapsona/toxicidad , Eritrocitos/efectos de los fármacos , Hemolíticos/metabolismo , Hemolíticos/toxicidad , Animales , Antibacterianos/metabolismo , Antibacterianos/toxicidad , Antiprotozoarios/metabolismo , Antiprotozoarios/toxicidad , Hidrocarburo de Aril Hidroxilasas/antagonistas & inhibidores , Hidrocarburo de Aril Hidroxilasas/metabolismo , Biotransformación , Citocromo P-450 CYP2B6 , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Inhibidores del Citocromo P-450 CYP3A , Inhibidores Enzimáticos del Citocromo P-450 , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Masculino , Metahemoglobina/metabolismo , Ratones , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Concentración Osmolar , Oxidorreductasas N-Desmetilantes/metabolismo , Proteínas Recombinantes/metabolismo
11.
Drug Metab Pers Ther ; 35(3)2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32681773

RESUMEN

Pneumocystis jirovecii pneumonia (PJP) is a potentially life-threatening infection that occurs in immunocompromised individuals. The incidence can be as high as 80% in some groups but can be reduced to less than 1% with appropriate prophylaxis. HIV-infected patients with a low CD4 count are at the highest risk of PJP. Others at substantial risk include haematopoietic stem cell and solid organ transplant recipients, those with cancer (particularly haematologic malignancies), and those receiving glucocorticoids, chemotherapeutic agents, and other immunosuppressive medications. Trimethoprim-sulfamethoxazole is an established first-line line agent for prevention and treatment of PJP. However, in some situations, this medication cannot be used and dapsone is considered a suitable cost-effective second line agent. However, information on potential interactions with drugs commonly used in immunosuppressed patients is lacking or contradictory. In this this article we review the metabolic pathway of dapsone with a focus on interactions and clinical significance particularly in patients with haematological malignancies. An understanding of this process should optimise the use of this agent.


Asunto(s)
Dapsona/uso terapéutico , Neumonía por Pneumocystis/tratamiento farmacológico , Antifúngicos/administración & dosificación , Antifúngicos/farmacología , Azoles/administración & dosificación , Azoles/farmacología , Dapsona/antagonistas & inhibidores , Dapsona/metabolismo , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Humanos
12.
Zhongguo Zhong Yao Za Zhi ; 34(16): 2079-82, 2009 Aug.
Artículo en Zh | MEDLINE | ID: mdl-19938551

RESUMEN

OBJECTIVE: To study the effect of ferment powder caterpillar fungus on cytochrome P450 isozymes CYP1A2, CYP3A4 and CYP2E1. METHOD: The methods of Cocktail probe drugs were used. The rats were randomly divided into two groups. One group were given ferment powder caterpillar fungus once daily orally for ten days. Another group received orally normal saline one daily as the blank control. After ten days of treatment, the rats were given probe drugs of coffine, dapsone and chlorzoxazone and the blood was taken out by femoral catheterization. The plasma concentration of probe drugs were determined by HPLC. Data of plasma drug level-time were disposed with DAS Ver 2.0. RESULT: The metabolism of caffeine and dapsone speeded up after receiving ferment powder caterpillar fungus, but the metabolism of chlorzoxazone was hardly changed. CONCLUSION: It suggested that ferment powder caterpillar fungus tended to be the inducer of CYP1A2 and CYP3A4. But the CYP2E1 was hardly affected.


Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/metabolismo , Medicamentos Herbarios Chinos/administración & dosificación , Fermentación , Animales , Cafeína/metabolismo , Clorzoxazona/metabolismo , Dapsona/metabolismo , Masculino , Distribución Aleatoria , Ratas , Ratas Wistar
13.
Toxicol Sci ; 172(2): 435-444, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31428780

RESUMEN

Dapsone hydroxylamine (DDS-NHOH), N-hydroxylated metabolite of a sulfonamide antibiotic, dapsone, is responsible for various adverse effects of dapsone that include methemoglobinemia, hemolytic anemia, and thrombosis. However, the mechanism underlying DDS-NHOH-induced thrombosis remains unclear. Here, we demonstrated that DDS-NHOH, but not dapsone, could increase prothrombotic risks through inducing the procoagulant activity of red blood cells (RBCs). In freshly isolated human RBCs in vitro, sub-hemolytic concentrations of DDS-NHOH (10-50 µM) increased phosphatidylserine (PS) exposure and augmented the formation of PS-bearing microvesicles (MV). Reactive oxygen species (ROS) generation and the subsequent dysregulation of enzymes maintaining membrane phospholipid asymmetry were found to induce the procoagulant activity of DDS-NHOH. Dapsone hydroxylamine also accelerated thrombin generation and enhanced RBC self-aggregation and adherence of RBCs to endothelial cells in vitro. Most importantly, both the single dose of 50 or 100 mg/kg (i.p.) DDS-NHOH and repeated doses of 10 mg/kg per day (i.p.) for 4 days increased thrombus formation in rats (six rats per dose) in vivo, substantiating a potential prothrombotic risk of DDS-NHOH. Collectively, these results demonstrated the central role of RBC procoagulant activity induced by DDS-NHOH in the thrombotic risk of dapsone.


Asunto(s)
Coagulación Sanguínea/efectos de los fármacos , Dapsona/análogos & derivados , Eritrocitos/efectos de los fármacos , Trombosis/inducido químicamente , Adulto , Animales , Células Cultivadas , Dapsona/metabolismo , Dapsona/toxicidad , Relación Dosis-Respuesta a Droga , Hemólisis/efectos de los fármacos , Humanos , Masculino , Agregación Plaquetaria/efectos de los fármacos , Ratas Sprague-Dawley , Trombosis/sangre , Trombosis/metabolismo
14.
J Pharm Biomed Anal ; 164: 698-705, 2019 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-30472588

RESUMEN

PURPOSE: In vivo phenotyping of CYP isoforms involved in the metabolism of anti-HIV and antitubercular drugs is important to determine therapeutic dose levels in HIV/AIDS-TB coinfections. In this study, we used a cocktail of bupropion, losartan and dapsone for in vivo phenotyping of CYP2B6, CYP2C9 and N-acetyltransferase-2 (NAT2) in plasma. CYP2B6 is the main catalyst of anti-HIV efavirenz, while NAT2 is involved in antitubercular drug isoniazid metabolism. CYP2C9 has a significant association with antitubercular drug-induced reactions. The activity level of these isoforms has a significant bearing on therapeutic dose in rapid and poor metabolizers. METHODS: Briefly, a cocktail of probe drugs was administered to human volunteers and the drugs and metabolites were determined by an inhouse LC-MS/MS method in 250 µl plasma. The mobile phase and drug/metabolite extraction methods were optimized before analysis. Retention time, Cmax and tmax were calculated from the same sample and the values were used for phenotyping the isoforms. RESULTS: Retention time of drugs and metabolites was calculated. The method was sensitive (4.5-8.2 %CV) and no interfering peak was observed in any batch. %Accuracy of the calibrator and QC was 85-115%. %CV of storage stability testing was within FDA approved limits. Cmax and tmax were comparable to the values reported for individual drugs. CONCLUSIONS: This study advocates the use of a cocktail of bupropion, losartan and dapsone for in vivo phenotyping of CYP2B6, CYP2C9 and NAT2, which is important in determining therapeutic dose levels of anti-HIV and anti-TB drugs in HIV/AIDS-TB coinfections.


Asunto(s)
Fármacos Anti-VIH/metabolismo , Antituberculosos/metabolismo , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2C9/genética , Adulto , Fármacos Anti-VIH/uso terapéutico , Antituberculosos/uso terapéutico , Arilamina N-Acetiltransferasa , Bupropión/administración & dosificación , Bupropión/sangre , Bupropión/metabolismo , Bupropión/farmacocinética , Coinfección/tratamiento farmacológico , Coinfección/genética , Coinfección/microbiología , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Dapsona/administración & dosificación , Dapsona/sangre , Dapsona/metabolismo , Dapsona/farmacocinética , Combinación de Medicamentos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Infecciones por VIH/microbiología , Voluntarios Sanos , Humanos , Inactivación Metabólica , Isoenzimas/genética , Isoenzimas/metabolismo , Losartán/administración & dosificación , Losartán/sangre , Losartán/metabolismo , Losartán/farmacocinética , Fenotipo , Polimorfismo Genético , Espectrometría de Masas en Tándem/métodos , Tuberculosis/tratamiento farmacológico , Tuberculosis/genética , Tuberculosis/microbiología , Adulto Joven
15.
J Phys Chem B ; 122(26): 6837-6845, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29874078

RESUMEN

The objective of the present work was to develop solid lipid nanoparticles (SLNs) as drug-encapsulating structures by the solvent injection method. In this report, for the first time the inherent potential of lactonic sophorolipid (glycolipid) was exploited to formulate SLNs. A range of different Pluronic copolymers were screened by dynamic and static light scattering with the aim of obtaining most stable SLNs. To comprehend the structure of the SLNs, techniques such as transmission electron microscopy, differential scanning calorimetry, Fourier transform infrared spectroscopy, and X-ray diffraction were employed. A clear correlation between the type of Pluronic and size and stability of the SLNs could be drawn. The vector properties of the formed SLNs were assessed for both the encapsulated hydrophobic drugs-rifampicin and dapsone. To elucidate the transport mechanism of drug release, kinetic modeling was carried out on the drug release profiles. The promising results of sophorolipid-based SLNs have actually established a new arena beneath the significantly developed field of SLNs.


Asunto(s)
Materiales Biomiméticos/química , Dapsona/química , Lípidos/química , Nanopartículas/química , Rifampin/química , Rastreo Diferencial de Calorimetría , Dapsona/metabolismo , Portadores de Fármacos/química , Liberación de Fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Rifampin/metabolismo , Temperatura
16.
J Pharmacol Exp Ther ; 323(3): 771-7, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17766678

RESUMEN

The initiation of an immune response to small molecules is believed to require the release of stress/danger signals that activate resident dendritic cells, presumably secondary to the formation of reactive metabolites. We hypothesized that exposure to arylhydroxylamine metabolites of dapsone and sulfamethoxazole lead to the expression/release of numerous stress signals in the skin. To test this hypothesis, we examined the effect of these metabolites on the expression of selected heat shock proteins, uric acid, cytokines, adhesion molecules, and costimulatory molecules in normal human epidermal keratinocytes (NHEKs). NHEKs showed a time-dependent up-regulation of heat shock protein 70 and translocation of heat shock protein 27 when exposed to the arylhydroxylamine metabolites. In addition, the secretion of several proinflammatory cytokines was increased upon incubation of these cells with metabolite. In contrast, the uric acid concentration was not altered. Moreover, intercellular adhesion molecule-1, CD80, and CD86 expressions did not change when NHEKs were exposed to these reactive metabolites. Our data suggest that NHEKs selectively up-regulate certain danger signals when exposed to arylhydroxylamine metabolites. These signals may subsequently activate dendritic cells and initiate an immune response within skin.


Asunto(s)
Dapsona/toxicidad , Proteínas de Choque Térmico/biosíntesis , Hidroxilaminas , Queratinocitos/efectos de los fármacos , Sulfametoxazol/toxicidad , Células Cultivadas , Citocinas/biosíntesis , Dapsona/metabolismo , Humanos , Hidroxilaminas/química , Hidroxilaminas/metabolismo , Hidroxilaminas/toxicidad , Inmunidad Innata/efectos de los fármacos , Molécula 1 de Adhesión Intercelular/biosíntesis , Queratinocitos/inmunología , Queratinocitos/metabolismo , Microscopía Fluorescente , Sulfametoxazol/metabolismo , Ácido Úrico/metabolismo
17.
J Dermatol Sci ; 88(3): 320-329, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28870516

RESUMEN

BACKGROUND: Dapsone (4,4'-diaminodiphenylsulfone) has been widely used for the treatment of infections such as leprosy. Dapsone hypersensitivity syndrome (DHS) is a major side effect, developing in 0.5-3.6% of patients treated with dapsone, and its mortality rate is ∼10%. Recently, human leukocyte antigen (HLA)-B*13:01 was identified as a marker of susceptibility to DHS. OBJECTIVES: To investigate why HLA-B*13:01 is responsible for DHS from a structural point of view. METHODS: First, we used homology modeling to derive the three-dimensional structures of HLA-B*13:01 (associated with DHS) and HLA-B*13:02 (not so associated despite strong sequence identity [99%] with HLA-B*13:01). Next, we used molecular docking, molecular dynamic simulations, and the molecular mechanics Poisson-Boltzman surface area method, to investigate the interactions of dapsone with HLA-B*13:01 and 13:02. RESULTS: We found a crucial structural difference between HLA-B*13:01 and 13:02 in the F-pocket of the antigen-binding site. As Trp95 in the α-domain of HLA-B*13:02 is replaced with the less bulky Ile95 in HLA-B*13:01, we found an additional well-defined sub-pocket within the antigen-binding site of HLA-B*13:01. All three representative docking poses of dapsone against the antigen-binding site of HLA-B*13:01 used this unique sub-pocket, indicating its suitability for binding dapsone. However, HLA-B*13:02 does not seem to possess a binding pocket suitable for binding dapsone. Finally, a binding free energy calculation combined with a molecular dynamics simulation and the molecular mechanics Poisson-Boltzman surface area method indicated that the binding affinity of dapsone for HLA-B*13:01 would be much greater than that for HLA-B*13:02. CONCLUSIONS: Our computational results suggest that dapsone would fit within the structure of the antigen-recognition site of HLA-B*13:01. This may change the self-peptides that bind to HLA-B*13:01, explaining why HLA-B*13:01 is a marker of DHS susceptibility.


Asunto(s)
Dapsona/metabolismo , Síndrome de Hipersensibilidad a Medicamentos/inmunología , Antígenos HLA-B/metabolismo , Leprostáticos/metabolismo , Lepra/tratamiento farmacológico , Biología Computacional , Dapsona/efectos adversos , Dapsona/inmunología , Síndrome de Hipersensibilidad a Medicamentos/etiología , Antígenos HLA-B/inmunología , Humanos , Leprostáticos/efectos adversos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Homología de Secuencia de Aminoácido
18.
Clin Pharmacol Ther ; 80(3): 257-63, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16952492

RESUMEN

BACKGROUND: We have previously shown that flurbiprofen metabolism to 4'-hydroxyflurbiprofen provides an in vivo measure of cytochrome P450 (CYP) 2C9 activity. This study evaluated the possibility of incorporating flurbiprofen into the current 5-drug Pittsburgh cocktail. METHODS: In a randomized, 3-way, Latin-square, crossover-design study, 24 healthy subjects (mean age [+/-SD], 47.8 +/- 15.1 years) received flurbiprofen (50 mg) and the Pittsburgh 5-drug cocktail (100 mg caffeine, 100 mg mephenytoin, 10 mg debrisoquin [INN, debrisoquine], 250 mg chlorzoxazone, and 100 mg dapsone) separately and in combination on 3 occasions over a period of 5 weeks. Urine was collected from 0 to 8 hours, and plasma was obtained at 4 and 8 hours after drug administration. Parent drug and metabolite concentrations were measured to determine phenotypic indices for each of the metabolizing enzymes. RESULTS: The geometric mean ratio and 90% confidence interval of the phenotypic indices were included within the 80% to 125% bioequivalence range for each of the probe drugs. There were no statistically significant differences between the phenotypic indices determined after administration of the 5-drug and 6-drug cocktails. However, there was a small but statistically significant increase (7.5%, P = .03) in the 8-hour urinary flurbiprofen recovery ratio after administration of the 6-drug cocktail compared with that after administration of flurbiprofen alone. The 6-drug cocktail was well tolerated. CONCLUSION: The results of this study show that caffeine (CYP1A2), chlorzoxazone (CYP2E1), dapsone (N-acetyltransferase 2), debrisoquin (CYP2D6), flurbiprofen (CYP2C9), and mephenytoin (CYP2C19) can be simultaneously administered in low doses without metabolic interaction.


Asunto(s)
Estudios Cruzados , Flurbiprofeno/farmacología , Administración Oral , Adolescente , Adulto , Anciano , Cafeína/metabolismo , Cafeína/farmacología , Cafeína/uso terapéutico , Clorzoxazona/metabolismo , Clorzoxazona/farmacología , Clorzoxazona/uso terapéutico , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Dapsona/metabolismo , Dapsona/farmacología , Dapsona/uso terapéutico , Debrisoquina/metabolismo , Debrisoquina/farmacología , Debrisoquina/uso terapéutico , Quimioterapia Combinada , Femenino , Flurbiprofeno/metabolismo , Flurbiprofeno/uso terapéutico , Genotipo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Mefenitoína/metabolismo , Mefenitoína/farmacología , Mefenitoína/uso terapéutico , Persona de Mediana Edad
19.
J Clin Pharmacol ; 46(11): 1299-307, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17050794

RESUMEN

The effects of conjugated equine estrogens (CEE) 0.625 mg daily on cytochrome P450 (CYP) were quantified in 12 middle-aged and 13 elderly postmenopausal women at baseline and 6 months later. CYP phenotype was characterized by caffeine (CYP1A2), chlorzoxazone (CYP2E1), dapsone (CYP, N-acetyltransferase 2), dextromethorphan (CYP2D6), and mephenytoin (CYP2C19) metabolism. CEE significantly decreased CYP1A2 (caffeine metabolic ratio: 0.57 +/- 0.20 before, 0.40 +/- 0.20 after, P = .001) and significantly increased CYP2D6 (dextromethorphan/dextrorphan ratio: 0.0116 +/- 0.0143 before, 0.0084 +/- 0.0135 after, P = .022) metabolism. CEE had no overall effect on CYP2C19, CYP2E1, CYP-mediated dapsone metabolism, and N-acetyltransferase 2. The dextromethorphan metabolic ratio decreased only in the seniors. The dapsone recovery ratio decreased in the middle-aged group and increased in the seniors. CEE significantly influenced CYP1A2, CYP2D6, and CYP-mediated dapsone oxidative metabolism but not CYP2C19, CYP2E1, or N-acetyltransferase 2 metabolism in postmenopausal women. Age influenced CYP2D6 metabolism and dapsone hydroxylation.


Asunto(s)
Estrógenos Conjugados (USP)/farmacología , Fase I de la Desintoxicación Metabólica/fisiología , Posmenopausia , Anciano , Envejecimiento , Hidrocarburo de Aril Hidroxilasas/metabolismo , Arilamina N-Acetiltransferasa/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Dapsona/metabolismo , Femenino , Humanos , Hidroxilación , Persona de Mediana Edad , Oxigenasas de Función Mixta/metabolismo
20.
J Steroid Biochem Mol Biol ; 163: 183-92, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27224941

RESUMEN

16-dehydropregnenolone (DHP) is a promising novel antihyperlipidemic agent developed and patented by Central Drug Research Institute (CDRI), India. The purpose of the present study was to investigate whether DHP influences the activities and mRNA expression of hepatic drug-metabolizing cytochrome P450 (CYP) enzymes (CYP1A2, CYP2C11, CYP2D2, CYP2E1 and CYP3A1) in Sprague-Dawley (SD) rats. A cocktail suspension of CYP probe substrates which contained caffeine (CYP1A2), tolbutamide (CYP2C11), dextromethorphan (CYP2D2), chlorzoxazone (CYP2E1) and dapsone (CYP3A1) was administered orally on eighth- or fifteenth-day to rats pre-treated with DHP intragastrically at a dose of 36 and 72mg/kg for one week and two weeks. The concentrations of probe drugs in plasma were estimated by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Alongside, the effect of DHP on CYPs activity and mRNA expression levels were assayed in isolated rat liver microsomes and by real-time reverse transcription-polymerase chain reaction (RT-PCR), respectively. DHP had significant inducing effects on CYP1A2, 2C11, 2D2 and 2E1 with no effect on CYP3A1 in dose- and time-dependent manner, as revealed from the pharmacokinetic profiles of the probe drugs in rats. In-vitro microsomal activities and mRNA expression results were in good agreement with the in-vivo pharmacokinetic results. Collectively, the results unveiled that DHP is an inducer of rat hepatic CYP enzymes. Hence, intense attention should be paid when DHP is co-administered with drugs metabolized by CYP1A2, 2C11, 2D2 and 2E1, which might result in drug-drug interactions and therapeutic failure.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/genética , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP3A/genética , Familia 2 del Citocromo P450/genética , Hipolipemiantes/farmacocinética , Pregnenolona/análogos & derivados , Esteroide 16-alfa-Hidroxilasa/genética , Administración Oral , Animales , Hidrocarburo de Aril Hidroxilasas/metabolismo , Cafeína/metabolismo , Cafeína/farmacología , Clorzoxazona/metabolismo , Clorzoxazona/farmacología , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A/metabolismo , Familia 2 del Citocromo P450/metabolismo , Dapsona/metabolismo , Dapsona/farmacología , Dextrometorfano/metabolismo , Dextrometorfano/farmacología , Regulación de la Expresión Génica , Hipolipemiantes/administración & dosificación , Hígado/efectos de los fármacos , Hígado/enzimología , Masculino , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/enzimología , Pregnenolona/administración & dosificación , Pregnenolona/farmacocinética , Ratas , Ratas Sprague-Dawley , Esteroide 16-alfa-Hidroxilasa/metabolismo , Tolbutamida/metabolismo , Tolbutamida/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda