Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 14.214
Filtrar
Más filtros

Publication year range
1.
Cell ; 175(1): 43-56.e21, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241615

RESUMEN

Stem cell regulation and hierarchical organization of human skeletal progenitors remain largely unexplored. Here, we report the isolation of a self-renewing and multipotent human skeletal stem cell (hSSC) that generates progenitors of bone, cartilage, and stroma, but not fat. Self-renewing and multipotent hSSCs are present in fetal and adult bones and can also be derived from BMP2-treated human adipose stroma (B-HAS) and induced pluripotent stem cells (iPSCs). Gene expression analysis of individual hSSCs reveals overall similarity between hSSCs obtained from different sources and partially explains skewed differentiation toward cartilage in fetal and iPSC-derived hSSCs. hSSCs undergo local expansion in response to acute skeletal injury. In addition, hSSC-derived stroma can maintain human hematopoietic stem cells (hHSCs) in serum-free culture conditions. Finally, we combine gene expression and epigenetic data of mouse skeletal stem cells (mSSCs) and hSSCs to identify evolutionarily conserved and divergent pathways driving SSC-mediated skeletogenesis. VIDEO ABSTRACT.


Asunto(s)
Desarrollo Óseo/fisiología , Huesos/citología , Células Madre Hematopoyéticas/citología , Animales , Huesos/metabolismo , Cartílago/citología , Diferenciación Celular , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Análisis de la Célula Individual/métodos , Células Madre/citología , Células del Estroma/citología , Transcriptoma/genética
2.
Nat Rev Mol Cell Biol ; 21(11): 696-711, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32901139

RESUMEN

Bone development occurs through a series of synchronous events that result in the formation of the body scaffold. The repair potential of bone and its surrounding microenvironment - including inflammatory, endothelial and Schwann cells - persists throughout adulthood, enabling restoration of tissue to its homeostatic functional state. The isolation of a single skeletal stem cell population through cell surface markers and the development of single-cell technologies are enabling precise elucidation of cellular activity and fate during bone repair by providing key insights into the mechanisms that maintain and regenerate bone during homeostasis and repair. Increased understanding of bone development, as well as normal and aberrant bone repair, has important therapeutic implications for the treatment of bone disease and ageing-related degeneration.


Asunto(s)
Desarrollo Óseo/fisiología , Enfermedades Óseas/fisiopatología , Huesos/fisiología , Regeneración/fisiología , Animales , Humanos
3.
Cell ; 157(6): 1445-1459, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24856970

RESUMEN

Chromatin modifying activities inherent to polycomb repressive complexes PRC1 and PRC2 play an essential role in gene regulation, cellular differentiation, and development. However, the mechanisms by which these complexes recognize their target sites and function together to form repressive chromatin domains remain poorly understood. Recruitment of PRC1 to target sites has been proposed to occur through a hierarchical process, dependent on prior nucleation of PRC2 and placement of H3K27me3. Here, using a de novo targeting assay in mouse embryonic stem cells we unexpectedly discover that PRC1-dependent H2AK119ub1 leads to recruitment of PRC2 and H3K27me3 to effectively initiate a polycomb domain. This activity is restricted to variant PRC1 complexes, and genetic ablation experiments reveal that targeting of the variant PCGF1/PRC1 complex by KDM2B to CpG islands is required for normal polycomb domain formation and mouse development. These observations provide a surprising PRC1-dependent logic for PRC2 occupancy at target sites in vivo.


Asunto(s)
Células Madre Embrionarias/metabolismo , Proteínas F-Box/metabolismo , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Animales , Desarrollo Óseo , Islas de CpG , Proteínas F-Box/química , Proteínas F-Box/genética , Genes Letales , Estudio de Asociación del Genoma Completo , Histona Demetilasas con Dominio de Jumonji/química , Histona Demetilasas con Dominio de Jumonji/genética , Ratones , Estructura Terciaria de Proteína
4.
EMBO J ; 43(19): 4228-4247, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39160274

RESUMEN

Splicing and endoplasmic reticulum (ER)-proteostasis are two key processes that ultimately regulate the functional proteins that are produced by a cell. However, the extent to which these processes interact remains poorly understood. Here, we identify SNRPB and other components of the Sm-ring, as targets of the unfolded protein response and novel regulators of export from the ER. Mechanistically, The Sm-ring regulates the splicing of components of the ER export machinery, including Sec16A, a component of ER exit sites. Loss of function of SNRPB is causally linked to cerebro-costo-mandibular syndrome (CCMS), a genetic disease characterized by bone defects. We show that heterozygous deletion of SNRPB in mice resulted in bone defects reminiscent of CCMS and that knockdown of SNRPB delays the trafficking of type-I collagen. Silencing SNRPB inhibited osteogenesis in vitro, which could be rescued by overexpression of Sec16A. This rescue indicates that the role of SNRPB in osteogenesis is linked to its effects on ER-export. Finally, we show that SNRPB is a target for the unfolded protein response, which supports a mechanistic link between the spliceosome and ER-proteostasis. Our work highlights components of the Sm-ring as a novel node in the proteostasis network, shedding light on CCMS pathophysiology.


Asunto(s)
Desarrollo Óseo , Retículo Endoplásmico , Empalme del ARN , Respuesta de Proteína Desplegada , Animales , Ratones , Retículo Endoplásmico/metabolismo , Humanos , Desarrollo Óseo/genética , Ratones Noqueados , Osteogénesis/genética
5.
Development ; 151(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39250530

RESUMEN

Developing bones can adapt their shape in response to mechanical stresses from neighbouring growing organs. In a new study, Koichi Matsuo and colleagues examine how bone-forming osteoblasts and bone-resorbing osteoclasts coordinate growth in the mouse fibula. They describe the process called 'endo-forming trans-pairing', where bone resorption by osteoclasts in the outer periosteum is paired with bone formation by osteoblasts in the inner endosteum to shape the growing bone. To learn more about the story behind the paper, we caught up with first author Yukiko Kuroda and the corresponding author Koichi Matsuo, Professor at the School of Medicine, Keio University, Japan.


Asunto(s)
Huesos , Microscopía/métodos , Huesos/citología , Osteoclastos/citología , Osteoclastos/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Nervio Ciático , Desarrollo Óseo , Animales , Morfogénesis
6.
Development ; 151(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39119717

RESUMEN

Developing long bones alter their shape while maintaining uniform cortical thickness via coordinated activity of bone-forming osteoblasts and bone-resorbing osteoclasts at periosteal and endosteal surfaces, a process we designate trans-pairing. Two types of trans-pairing shift cortical bone in opposite orientations: peri-forming trans-pairing (peri-t-p) increases bone marrow space and endo-forming trans-pairing (endo-t-p) decreases it, via paired activity of bone resorption and formation across the cortex. Here, we focused on endo-t-p in growing bones. Analysis of endo-t-p activity in the cortex of mouse fibulae revealed osteoclasts under the periosteum compressed by muscles, and expression of RANKL in periosteal cells of the cambium layer. Furthermore, mature osteoblasts were localized on the endosteum, while preosteoblasts were at the periosteum and within cortical canals. X-ray tomographic microscopy revealed the presence of cortical canals more closely associated with endo- than with peri-t-p. Sciatic nerve transection followed by muscle atrophy and unloading induced circumferential endo-t-p with concomitant spread of cortical canals. Such canals likely supply the endosteum with preosteoblasts from the periosteum under endo-t-p, allowing bone shape to change in response to mechanical stress or nerve injury.


Asunto(s)
Osteoblastos , Osteoclastos , Periostio , Animales , Osteoblastos/metabolismo , Osteoblastos/citología , Periostio/citología , Periostio/metabolismo , Osteoclastos/metabolismo , Osteoclastos/citología , Ratones , Desarrollo Óseo , Osteogénesis/fisiología , Resorción Ósea/patología , Hueso Cortical , Ligando RANK/metabolismo , Ratones Endogámicos C57BL
7.
Annu Rev Genomics Hum Genet ; 24: 225-253, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37624666

RESUMEN

The transforming growth factor ß (TGF-ß) and bone morphogenetic protein (BMP) signaling pathways play a pivotal role in bone development and skeletal health. More than 30 different types of skeletal dysplasia are now known to be caused by pathogenic variants in genes that belong to the TGF-ß superfamily and/or regulate TGF-ß/BMP bioavailability. This review describes the latest advances in skeletal dysplasia that is due to impaired TGF-ß/BMP signaling and results in short stature (acromelic dysplasia and cardiospondylocarpofacial syndrome) or tall stature (Marfan syndrome). We thoroughly describe the clinical features of the patients, the underlying genetic findings, and the pathomolecular mechanisms leading to disease, which have been investigated mainly using patient-derived skin fibroblasts and mouse models. Although no pharmacological treatment is yet available for skeletal dysplasia due to impaired TGF-ß/BMP signaling, in recent years advances in the use of drugs targeting TGF-ß have been made, and we also discuss these advances.


Asunto(s)
Osteocondrodisplasias , Osteosclerosis , Animales , Ratones , Disponibilidad Biológica , Desarrollo Óseo , Factor de Crecimiento Transformador beta/genética
8.
Nature ; 585(7826): 563-568, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32939088

RESUMEN

Neural crest cells (NCCs) are migratory, multipotent embryonic cells that are unique to vertebrates and form an array of clade-defining adult features. The evolution of NCCs has been linked to various genomic events, including the evolution of new gene-regulatory networks1,2, the de novo evolution of genes3 and the proliferation of paralogous genes during genome-wide duplication events4. However, conclusive functional evidence linking new and/or duplicated genes to NCC evolution is lacking. Endothelin ligands (Edns) and endothelin receptors (Ednrs) are unique to vertebrates3,5,6, and regulate multiple aspects of NCC development in jawed vertebrates7-10. Here, to test whether the evolution of Edn signalling was a driver of NCC evolution, we used CRISPR-Cas9 mutagenesis11 to disrupt edn, ednr and dlx genes in the sea lamprey, Petromyzon marinus. Lampreys are jawless fishes that last shared a common ancestor with modern jawed vertebrates around 500 million years ago12. Thus, comparisons between lampreys and gnathostomes can identify deeply conserved and evolutionarily flexible features of vertebrate development. Using the frog Xenopus laevis to expand gnathostome phylogenetic representation and facilitate side-by-side analyses, we identify ancient and lineage-specific roles for Edn signalling. These findings suggest that Edn signalling was activated in NCCs before duplication of the vertebrate genome. Then, after one or more genome-wide duplications in the vertebrate stem, paralogous Edn pathways functionally diverged, resulting in NCC subpopulations with different Edn signalling requirements. We posit that this new developmental modularity facilitated the independent evolution of NCC derivatives in stem vertebrates. Consistent with this, differences in Edn pathway targets are associated with differences in the oropharyngeal skeleton and autonomic nervous system of lampreys and modern gnathostomes. In summary, our work provides functional genetic evidence linking the origin and duplication of new vertebrate genes with the stepwise evolution of a defining vertebrate novelty.


Asunto(s)
Endotelinas/metabolismo , Evolución Molecular , Cresta Neural/citología , Petromyzon/metabolismo , Transducción de Señal , Xenopus/metabolismo , Animales , Desarrollo Óseo , Huesos/citología , Huesos/metabolismo , Linaje de la Célula , Endotelinas/genética , Femenino , Cabeza/crecimiento & desarrollo , Corazón/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Ligandos , Masculino , Petromyzon/genética , Petromyzon/crecimiento & desarrollo , Receptores de Endotelina/deficiencia , Receptores de Endotelina/genética , Receptores de Endotelina/metabolismo , Xenopus/genética , Xenopus/crecimiento & desarrollo
9.
Physiol Rev ; 98(3): 1083-1112, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29717928

RESUMEN

It is from the discovery of leptin and the central nervous system as a regulator of bone remodeling that the presence of autonomic nerves within the skeleton transitioned from a mere histological observation to the mechanism whereby neurons of the central nervous system communicate with cells of the bone microenvironment and regulate bone homeostasis. This shift in paradigm sparked new preclinical and clinical investigations aimed at defining the contribution of sympathetic, parasympathetic, and sensory nerves to the process of bone development, bone mass accrual, bone remodeling, and cancer metastasis. The aim of this article is to review the data that led to the current understanding of the interactions between the autonomic and skeletal systems and to present a critical appraisal of the literature, bringing forth a schema that can put into physiological and clinical context the main genetic and pharmacological observations pointing to the existence of an autonomic control of skeletal homeostasis. The different types of nerves found in the skeleton, their functional interactions with bone cells, their impact on bone development, bone mass accrual and remodeling, and the possible clinical or pathophysiological relevance of these findings are discussed.


Asunto(s)
Sistema Nervioso Autónomo/fisiología , Remodelación Ósea , Huesos/inervación , Huesos/fisiología , Adaptación Fisiológica , Animales , Desarrollo Óseo , Enfermedades Óseas/fisiopatología , Huesos/embriología , Humanos , Soporte de Peso
10.
Development ; 149(12)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35593425

RESUMEN

During bone development and repair, osteoblasts are recruited to bone deposition sites. To identify the origin of recruited osteoblasts, cell lineage tracing using Cre/loxP recombination is commonly used. However, a confounding factor is the use of transgenic Cre drivers that do not accurately recapitulate endogenous gene expression or the use of knock-in Cre drivers that alter endogenous protein activity or levels. Here, we describe a CRISPR/Cas9 homology-directed repair knock-in approach that allows efficient generation of Cre drivers controlled by the endogenous gene promoter. In addition, a self-cleaving peptide preserves the reading frame of the endogenous protein. Using this approach, we generated col10a1p2a-CreERT2 knock-in medaka and show that tamoxifen-inducible CreERT2 efficiently recombined loxP sites in col10a1 cells. Similar knock-in efficiencies were obtained when two unrelated loci (osr1 and col2a1a) were targeted. Using live imaging, we traced the fate of col10a1 osteoblast progenitors during bone lesion repair in the medaka vertebral column. We show that col10a1 cells at neural arches represent a mobilizable cellular source for bone repair. Together, our study describes a previously unreported strategy for precise cell lineage tracing via efficient and non-disruptive knock-in of Cre.


Asunto(s)
Oryzias , Animales , Animales Modificados Genéticamente , Desarrollo Óseo , Linaje de la Célula/genética , Oryzias/genética , Osteoblastos/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda