Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 535
Filtrar
1.
Nucleic Acids Res ; 50(3): e18, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34850106

RESUMEN

Information about the cellular concentrations of deoxyribonucleoside triphosphates (dNTPs) is instrumental for mechanistic studies of DNA replication and for understanding diseases caused by defects in dNTP metabolism. The dNTPs are measured by methods based on either HPLC or DNA polymerization. An advantage with the HPLC-based techniques is that the parallel analysis of ribonucleoside triphosphates (rNTPs) can serve as an internal quality control of nucleotide integrity and extraction efficiency. We have developed a Freon-free trichloroacetic acid-based method to extract cellular nucleotides and an isocratic reverse phase HPLC-based technique that is able to separate dNTPs, rNTPs and ADP in a single run. The ability to measure the ADP levels improves the control of nucleotide integrity, and the use of an isocratic elution overcomes the shifting baseline problems in previously developed gradient-based reversed phase protocols for simultaneously measuring dNTPs and rNTPs. An optional DNA-polymerase-dependent step is used for confirmation that the dNTP peaks do not overlap with other components of the extracts, further increasing the reliability of the analysis. The method is compatible with a wide range of biological samples and has a sensitivity better than other UV-based HPLC protocols, closely matching that of mass spectrometry-based detection.


Asunto(s)
Cromatografía Líquida de Alta Presión , Desoxirribonucleótidos , Ribonucleótidos/análisis , Adenosina Difosfato , Cromatografía Líquida de Alta Presión/métodos , ADN , Desoxirribonucleótidos/análisis , Reproducibilidad de los Resultados
2.
Nucleic Acids Res ; 48(8): e45, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32103262

RESUMEN

Cells maintain a fine-tuned, dynamic concentration balance in the pool of deoxyribonucleoside 5'-triphosphates (dNTPs). This balance is essential for physiological processes including cell cycle control or antiviral defense. Its perturbation results in increased mutation frequencies, replication arrest and may promote cancer development. An easily accessible and relatively high-throughput method would greatly accelerate the exploration of the diversified consequences of dNTP imbalances. The dNTP incorporation based, fluorescent TaqMan-like assay published by Wilson et al. has the aforementioned advantages over mass spectrometry, radioactive or chromatography based dNTP quantification methods. Nevertheless, the assay failed to produce reliable data in several biological samples. Therefore, we applied enzyme kinetics analysis on the fluorescent dNTP incorporation curves and found that the Taq polymerase exhibits a dNTP independent exonuclease activity that decouples signal generation from dNTP incorporation. Furthermore, we found that both polymerization and exonuclease activities are unpredictably inhibited by the sample matrix. To resolve these issues, we established a kinetics based data analysis method which identifies the signal generated by dNTP incorporation. We automated the analysis process in the nucleoTIDY software which enables even the inexperienced user to calculate the final and accurate dNTP amounts in a 96-well-plate setup within minutes.


Asunto(s)
Desoxirribonucleótidos/análisis , Programas Informáticos , Polimerasa Taq , Exodesoxirribonucleasas , Fluorescencia , Cinética
3.
Nucleic Acids Res ; 47(17): e101, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31318971

RESUMEN

A new approach to single-molecule DNA sequencing in which dNTPs, released by pyrophosphorolysis from the strand to be sequenced, are captured in microdroplets and read directly could have substantial advantages over current sequence-by-synthesis methods; however, there is no existing method sensitive enough to detect a single nucleotide in a microdroplet. We have developed a method for dNTP detection based on an enzymatic two-stage reaction which produces a robust fluorescent signal that is easy to detect and process. By taking advantage of the inherent specificity of DNA polymerases and ligases, coupled with volume restriction in microdroplets, this method allows us to simultaneously detect the presence of and distinguish between, the four natural dNTPs at the single-molecule level, with negligible cross-talk.


Asunto(s)
Desoxirribonucleótidos/análisis , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxirribonucleósidos/química , Desoxirribonucleótidos/química , Límite de Detección , Microscopía Fluorescente , Oligodesoxirribonucleótidos/biosíntesis , Oligodesoxirribonucleótidos/química , Sensibilidad y Especificidad
4.
Nucleic Acids Res ; 46(11): e66, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29554314

RESUMEN

Information about the intracellular concentration of dNTPs and NTPs is important for studies of the mechanisms of DNA replication and repair, but the low concentration of dNTPs and their chemical similarity to NTPs present a challenge for their measurement. Here, we describe a new rapid and sensitive method utilizing hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry for the simultaneous determination of dNTPs and NTPs in biological samples. The developed method showed linearity (R2 > 0.99) in wide concentration ranges and could accurately quantify dNTPs and NTPs at low pmol levels. The intra-day and inter-day precision were below 13%, and the relative recovery was between 92% and 108%. In comparison with other chromatographic methods, the current method has shorter analysis times and simpler sample pre-treatment steps, and it utilizes an ion-pair-free mobile phase that enhances mass-spectrometric detection. Using this method, we determined dNTP and NTP concentrations in actively dividing and quiescent mouse fibroblasts.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Desoxirribonucleótidos/análisis , Ribonucleótidos/análisis , Espectrometría de Masas en Tándem/métodos , Células 3T3 , Animales , Línea Celular , Interacciones Hidrofóbicas e Hidrofílicas , Ratones
5.
Anal Chem ; 91(1): 1019-1026, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30525455

RESUMEN

Investigation into intracellular ribonucleotides (RNs) and deoxyribonucleotides (dRNs) is important for studies of the mechanism of many biological processes, such as RNA and DNA synthesis and DNA repair, as well as metabolic and therapeutic efficacy of nucleoside analogues. However, current methods are still unsatisfactory for determination of nucleotides in complex matrixes. Here we describe a novel method for the determination of RN and dRN pools in cells based on fast derivatization with (trimethylsilyl)diazomethane (TMSD) followed by quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Derivatization was accomplished in 3 min, and each derivatized nucleotide not only had a sufficient retention on reversed-phase column by introduction of methyl groups but also exhibited a unique ion transition which consequently eliminated mutual interference in LC-MS/MS. Chromatographic separation was performed on a C18 column with a simple acetonitrile-water gradient elution system, which avoided contamination and ion suppression caused by ion-pairing reagents. The developed method was fully validated and applied to the analysis of RNs and dRNs in cell samples. Moreover, results demonstrated that the applicability of this method could be extended to nucleoside analogues and their metabolites and could facilitate many applications in future studies.


Asunto(s)
Desoxirribonucleótidos/análisis , Diazometano/química , Ribonucleótidos/análisis , Células A549 , Cromatografía Liquida , Diazometano/análogos & derivados , Células HCT116 , Humanos , Espectrometría de Masas en Tándem , Células Tumorales Cultivadas
6.
Anal Chem ; 91(22): 14561-14568, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31638767

RESUMEN

The quantification of cellular deoxyribonucleoside triphosphate (dNTP) levels is important for studying pathologies, genome integrity, DNA repair, and the efficacy of pharmacological drug treatments. Current standard methods, such as enzymatic assays or high-performance liquid chromatography, are complicated, costly, and labor-intensive, and alternative techniques that simplify dNTP quantification would present very useful complementary approaches. Here, we present a dNTP assay based on isothermal rolling circle amplification (RCA) and rapid time-gated Förster resonance energy transfer (TG-FRET), which used a commercial clinical plate reader system. Despite the relatively simple assay format, limits of detection down to a few picomoles of and excellent specificity for each dNTP against the other dNTPs, rNTPs, and dUTP evidenced the strong performance of the assay. Direct applicability of RCA-FRET to applied nucleic acid research was demonstrated by quantifying all dNTPs in CEM-SS leukemia cells with and without hydroxyurea or auranofin treatment. Both pharmacological agents could reduce the dNTP production in a time- and dose-dependent manner. RCA-FRET provides simple, rapid, sensitive, and specific quantification of intracellular dNTPs and has the potential to become an advanced tool for both fundamental and applied dNTP research.


Asunto(s)
Desoxirribonucleótidos/análisis , Transferencia Resonante de Energía de Fluorescencia/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Auranofina/farmacología , Secuencia de Bases , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Humanos , Hidroxiurea/farmacología , Límite de Detección , Prueba de Estudio Conceptual , Ribonucleótido Reductasas/antagonistas & inhibidores , Sensibilidad y Especificidad , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores
7.
Anal Chem ; 91(22): 14569-14576, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31638773

RESUMEN

Accurate, traceable quantification of ribonucleotide or deoxyribonucleotide oligomers is achievable using acid hydrolysis and isotope dilution mass spectrometry (ID-MS). In this work, formic acid hydrolysis is demonstrated to generate stoichiometric release of nucleobases from intact oligonucleotides, which then can be measured by ID-MS, facilitating true and precise absolute quantification of RNA, short linearized DNA, or genomic DNA. Surrogate nucleobases are quantified with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) workflow, using multiple reaction monitoring (MRM). Nucleobases were chromatographically resolved using a novel cation-exchange separation, incorporating a pH gradient. Trueness of this quantitative assay is estimated from agreement among the surrogate nucleobases and by comparison to concentrations provided for commercial materials or Standard Reference Materials (SRMs) from the National Institute of Standards and Technology (NIST). Comparable concentration estimates using NanoDrop spectrophotometry or established from droplet-digital polymerase chain reaction (ddPCR) techniques agree well with the results. Acid hydrolysis-ID-LC-MS/MS provides excellent quantitative selectivity and accuracy while enabling traceability to mass unit. Additionally, this approach can be uniquely useful for quantifying modified nucleobases or mixtures.


Asunto(s)
Cromatografía Liquida/métodos , ADN Viral/análisis , ARN/análisis , Espectrometría de Masas en Tándem/métodos , Virus BK/química , ADN Viral/química , Desoxirribonucleótidos/análisis , Desoxirribonucleótidos/química , Formiatos/química , Humanos , Hidrólisis , ARN/química , Ribonucleótidos/análisis , Ribonucleótidos/química
8.
Anal Biochem ; 568: 65-72, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30605633

RESUMEN

Quantification of cellular deoxyribonucleoside mono- (dNMP), di- (dNDP), triphosphates (dNTPs) and related nucleoside metabolites are difficult due to their physiochemical properties and widely varying abundance. Involvement of dNTP metabolism in cellular processes including senescence and pathophysiological processes including cancer and viral infection make dNTP metabolism an important bioanalytical target. We modified a previously developed ion pairing reversed phase chromatography-mass spectrometry method for the simultaneous quantification and 13C isotope tracing of dNTP metabolites. dNMPs, dNDPs, and dNTPs were chromatographically resolved to avoid mis-annotation of in-source fragmentation. We used commercially available 13C15N-stable isotope labeled analogs as internal standards and show that this isotope dilution approach improves analytical figures of merit. At sufficiently high mass resolution achievable on an Orbitrap mass analyzer, stable isotope resolved metabolomics allows simultaneous isotope dilution quantification and 13C isotope tracing from major substrates including 13C-glucose. As a proof of principle, we quantified dNMP, dNDP and dNTP pools from multiple cell lines. We also identified isotopologue enrichment from glucose corresponding to ribose from the pentose-phosphate pathway in dNTP metabolites.


Asunto(s)
Desoxirribonucleótidos/análisis , Técnicas de Dilución del Indicador , Espectrometría de Masas , Isótopos de Carbono , Células Cultivadas , Cromatografía Liquida , Desoxirribonucleótidos/metabolismo , Humanos , Marcaje Isotópico , Isótopos de Nitrógeno
9.
Retrovirology ; 15(1): 69, 2018 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-30316304

RESUMEN

BACKGROUND: SAM domain and HD domain containing protein 1 (SAMHD1) is a host anti-HIV-1 restriction factor known to suppress viral reverse transcription in nondividing myeloid cells by its dNTP triphosphorylase activity that depletes cellular dNTPs. However, HIV-2 and some SIV strains rapidly replicate in macrophages due to their accessory protein, viral protein X (Vpx), which proteosomally degrades SAMHD1 and elevates dNTP levels. Endogenous reverse transcription (ERT) of retroviruses is the extra-cellular reverse transcription step that partially synthesizes proviral DNAs within cell-free viral particles before the viruses infect new cells. ERT activity utilizes dNTPs co-packaged during budding from the virus-producing cells, and high ERT activity is known to enhance HIV-1 infectivity in nondividing cells. Here, since Vpx elevates cellular dNTP levels in macrophages, we hypothesize that HIV-2 should contain higher ERT activity than HIV-1 in macrophages, and that the Vpx-mediated dNTP elevation should enhance both ERT activity and infectivity of HIV-1 particles produced in macrophages. RESULTS: Here, we demonstrate that HIV-2 produced from human primary monocyte derived macrophages displays higher ERT activity than HIV-1 produced from macrophages. Also, HIV-1 particles produced from macrophages treated with virus like particles (VLPs) containing Vpx, Vpx (+), displayed large increases of ERT activity with the enhanced copy numbers of early, middle and late reverse transcription products within the viral particles, compared to the viruses produced from macrophages treated with Vpx (-) VLPs. Furthermore, upon the infection with an equal p24 amount to fresh macrophages, the viruses produced from the Vpx (+) VLP treated macrophages demonstrated higher infectivity than the viruses from the Vpx (-) VLP treated macrophages. CONCLUSIONS: This finding identifies the viral ERT step as an additional step of HIV-1 replication cycle that SAMHD1 restricts in nondividing myeloid target cells.


Asunto(s)
VIH-1/genética , VIH-2/genética , Macrófagos/virología , Transcripción Reversa/genética , Proteína 1 que Contiene Dominios SAM y HD/genética , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Citoplasma/química , Desoxirribonucleótidos/análisis , VIH-1/fisiología , VIH-2/fisiología , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/fisiología , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Reguladoras y Accesorias Virales/farmacología , Virión , Replicación Viral
10.
Molecules ; 22(3)2017 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-28335578

RESUMEN

Despite the apparent clinical benefits of high-dose cytarabine (Ara-C) over lower dose Ara-C in acute myeloid leukemia (AML) therapy, the mechanism behind high-dose Ara-C therapy remains uncertain. In this study, a LC-MS-based method was carried out to investigate the metabolic alteration of ribonucleotide and deoxyribonucleotide in human promyelocytic leukemia cells (HL-60) after treatment with Ara-C to reveal its antitumor mechanism. The metabolic results revealed that four nucleotides (ATP, ADP, CDP, and dCTP) could be used as potential biomarkers indicating the benefit of high-dose Ara-C over lower dose Ara-C treatment. Combining metabolic perturbation and cell cycle analysis, we conjectured that, apart from the acknowledged mechanism of Ara-C on tumor inhibition, high-dose Ara-C could present a specific action pathway. It was suggested that the pronounced rise in AMP/ATP ratio induced by high-dose Ara-C can trigger AMP-activated protein kinase (AMPK) and subsequently Forkhead Box, class O (FoxO), to promote cell cycle arrest. Moreover, the significant decrease in CDP pool induced by high-dose Ara-C might further accelerate the reduction of dCTP, which then aggravates DNA synthesis disturbance. As a result, all of these alterations led to heightened tumor inhibition. This study provides new insight in the investigation of potential mechanisms in the clinical benefits of high-dose Ara-C in therapy for AML.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Citarabina/farmacología , Desoxirribonucleótidos/análisis , Ribonucleótidos/análisis , Proteínas Quinasas Activadas por AMP/metabolismo , Ciclo Celular/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HL-60 , Humanos
11.
Anal Biochem ; 444: 60-6, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24096197

RESUMEN

Oligonucleotides labeled with a single fluorophore (fluorescein or tetramethylrhodamine) have been used previously as fluorogenic substrates for a number of DNA modifying enzymes. Here, it is shown that such molecules can be used as fluorogenic probes to detect the template-dependent binding of deoxynucleotide triphosphates by DNA polymerases. Two polymerases were used in this work: the Klenow fragment of the Escherichia coli DNA polymerase I and the Bacillus stearothermophilus polymerase, Bst. When complexes of these polymerases with dye-labeled hairpin-type oligonucleotides were mixed with various deoxynucleotide triphosphates in the presence of Sr²âº as the divalent metal cation, the formation of ternary DNA-polymerase-dNTP complexes was detected by concentration-dependent changes in the fluorescence intensities of the dyes. Fluorescein- and tetramethylrhodamine-labeled probes of identical sequences responded differently to the two polymerases. With Bst polymerase, the fluorescence intensities of all probes increased with the next correct dNTP; with Klenow polymerase, tetramethylrhodamine-labeled probes increased their fluorescence, but the intensity of fluorescein-labeled probes decreased on formation of ternary complexes with the correct incoming nucleotides. The use of Sr²âº as the divalent metal ion allowed the formation of catalytically inactive ternary complexes and obviated the need for using 2',3'-dideoxy-terminated oligonucleotides as would have been needed in the case of Mg²âº as the metal ion.


Asunto(s)
ADN Polimerasa I/metabolismo , Desoxirribonucleótidos/metabolismo , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/química , Oligonucleótidos/metabolismo , Sitios de Unión , ADN Polimerasa I/análisis , Desoxirribonucleótidos/análisis , Escherichia coli/enzimología , Geobacillus stearothermophilus/enzimología , Oligonucleótidos/química , Unión Proteica
12.
Nucleic Acids Res ; 39(17): e112, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21576234

RESUMEN

Current methods for measuring deoxyribonucleoside triphosphates (dNTPs) employ reagent and labor-intensive assays utilizing radioisotopes in DNA polymerase-based assays and/or chromatography-based approaches. We have developed a rapid and sensitive 96-well fluorescence-based assay to quantify cellular dNTPs utilizing a standard real-time PCR thermocycler. This assay relies on the principle that incorporation of a limiting dNTP is required for primer-extension and Taq polymerase-mediated 5-3' exonuclease hydrolysis of a dual-quenched fluorophore-labeled probe resulting in fluorescence. The concentration of limiting dNTP is directly proportional to the fluorescence generated. The assay demonstrated excellent linearity (R(2) > 0.99) and can be modified to detect between ∼0.5 and 100 pmol of dNTP. The limits of detection (LOD) and quantification (LOQ) for all dNTPs were defined as <0.77 and <1.3 pmol, respectively. The intra-assay and inter-assay variation coefficients were determined to be <4.6% and <10%, respectively with an accuracy of 100 ± 15% for all dNTPs. The assay quantified intracellular dNTPs with similar results obtained from a validated LC-MS/MS approach and successfully measured quantitative differences in dNTP pools in human cancer cells treated with inhibitors of thymidylate metabolism. This assay has important application in research that investigates the influence of pathological conditions or pharmacological agents on dNTP biosynthesis and regulation.


Asunto(s)
Desoxirribonucleótidos/análisis , Hibridación de Ácido Nucleico/métodos , ADN Polimerasa Dirigida por ADN , Nucleótidos de Desoxiuracil/análisis , Transferencia Resonante de Energía de Fluorescencia , Células HCT116 , Humanos , Sondas de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Ribonucleótidos/química , Moldes Genéticos
13.
Nucleic Acids Res ; 38(6): e85, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20008099

RESUMEN

Eukaryotic cells contain a delicate balance of minute amounts of the four deoxyribonucleoside triphosphates (dNTPs), sufficient only for a few minutes of DNA replication. Both a deficiency and a surplus of a single dNTP may result in increased mutation rates, faulty DNA repair or mitochondrial DNA depletion. dNTPs are usually quantified by an enzymatic assay in which incorporation of radioactive dATP (or radioactive dTTP in the assay for dATP) into specific synthetic oligonucleotides by a DNA polymerase is proportional to the concentration of the unknown dNTP. We find that the commonly used Klenow DNA polymerase may substitute the corresponding ribonucleotide for the unknown dNTP leading in some instances to a large overestimation of dNTPs. We now describe assay conditions for each dNTP that avoid ribonucleotide incorporation. For the dTTP and dATP assays it suffices to minimize the concentrations of the Klenow enzyme and of labeled dATP (or dTTP); for dCTP and dGTP we had to replace the Klenow enzyme with either the Taq DNA polymerase or Thermo Sequenase. We suggest that in some earlier reports ribonucleotide incorporation may have caused too high values for dGTP and dCTP.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Desoxirribonucleótidos/análisis , Extractos Celulares/química , Citidina Trifosfato , ADN Polimerasa I , Nucleótidos de Desoxicitosina/análisis , Nucleótidos de Desoxiguanina/análisis , Humanos , Ribonucleótidos , Polimerasa Taq
14.
J Bacteriol ; 193(17): 4396-404, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21725017

RESUMEN

Chlamydia trachomatis is an obligate intracellular bacterium that is dependent on its host cell for nucleotides. Chlamydia imports ribonucleotide triphosphates (NTPs) but not deoxyribonucleotide triphosphates (dNTPs) and instead uses ribonucleotide reductase to convert imported ribonucleotides into deoxyribonucleotides for DNA synthesis. The genes encoding ribonucleotide reductase have been recently shown to be negatively controlled by a conserved regulator called NrdR. In this study, we provide direct evidence that Escherichia coli NrdR is a transcriptional repressor and that C. trachomatis CT406 encodes its chlamydial ortholog. We showed that CT406 binds specifically to two NrdR boxes upstream of the nrdAB operon in C. trachomatis. Using an in vitro transcription assay, we confirmed that these NrdR boxes function as an operator since they were necessary and sufficient for CT406-mediated repression. We validated our in vitro findings with reporter studies in E. coli showing that both E. coli NrdR and CT406 repressed transcription from the E. coli nrdH and C. trachomatis nrdAB promoters in vivo. This in vivo repression was reversed by hydroxyurea treatment. Since hydroxyurea inhibits ribonucleotide reductase and reduces intracellular deoxyribonucleotide levels, these results suggest that NrdR activity is modulated by a deoxyribonucleotide corepressor.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chlamydia trachomatis/genética , Proteínas Represoras/metabolismo , Ribonucleótido Reductasas/genética , Proteínas Bacterianas/genética , Secuencia de Bases , Chlamydia trachomatis/metabolismo , Mapeo Cromosómico , Replicación del ADN , ADN Bacteriano , Desoxirribonucleótidos/análisis , Desoxirribonucleótidos/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Hidroxiurea/farmacología , Datos de Secuencia Molecular , Operón , Plásmidos , Proteínas Represoras/genética , Ribonucleótido Reductasas/metabolismo , Transcripción Genética
15.
Anal Chem ; 83(22): 8439-47, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21932784

RESUMEN

The feasibility of implementing pyrosequencing chemistry within droplets using electrowetting-based digital microfluidics is reported. An array of electrodes patterned on a printed-circuit board was used to control the formation, transportation, merging, mixing, and splitting of submicroliter-sized droplets contained within an oil-filled chamber. A three-enzyme pyrosequencing protocol was implemented in which individual droplets contained enzymes, deoxyribonucleotide triphosphates (dNTPs), and DNA templates. The DNA templates were anchored to magnetic beads which enabled them to be thoroughly washed between nucleotide additions. Reagents and protocols were optimized to maximize signal over background, linearity of response, cycle efficiency, and wash efficiency. As an initial demonstration of feasibility, a portion of a 229 bp Candida parapsilosis template was sequenced using both a de novo protocol and a resequencing protocol. The resequencing protocol generated over 60 bp of sequence with 100% sequence accuracy based on raw pyrogram levels. Excellent linearity was observed for all of the homopolymers (two, three, or four nucleotides) contained in the C. parapsilosis sequence. With improvements in microfluidic design it is expected that longer reads, higher throughput, and improved process integration (i.e., "sample-to-sequence" capability) could eventually be achieved using this low-cost platform.


Asunto(s)
ADN de Hongos/análisis , ADN de Hongos/genética , Técnicas Analíticas Microfluídicas/métodos , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Candida/genética , Desoxirribonucleótidos/análisis , Desoxirribonucleótidos/genética , Desoxirribonucleótidos/metabolismo , Electrodos , Enzimas/química , Enzimas/metabolismo , Técnicas Analíticas Microfluídicas/instrumentación , Análisis de Secuencia de ADN/instrumentación , Moldes Genéticos
16.
Sci Rep ; 10(1): 611, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31953472

RESUMEN

The levels of the four deoxynucleoside triphosphates (dNTPs) are under strict control in the cell, as improper or imbalanced dNTP pools may lead to growth defects and oncogenesis. Upon treatment of cancer cells with therapeutic agents, changes in the canonical dNTPs levels may provide critical information for evaluating drug response and mode of action. The radioisotope-labeling enzymatic assay has been commonly used for quantitation of cellular dNTP levels. However, the disadvantage of this method is the handling of biohazard materials. Here, we described the use of click chemistry to replace radioisotope-labeling in template-dependent DNA polymerization for quantitation of the four canonical dNTPs. Specific oligomers were designed for dCTP, dTTP, dATP and dGTP measurement, and the incorporation of 5-ethynyl-dUTP or C8-alkyne-dCTP during the polymerization reaction allowed for fluorophore conjugation on immobilized oligonucleotides. The four reactions gave a linear correlation coefficient >0.99 in the range of the concentration of dNTPs present in 106 cells, with little interference of cellular rNTPs. We present evidence indicating that data generated by this methodology is comparable to radioisotope-labeling data. Furthermore, the design and utilization of a robust microplate assay based on this technology evidenced the modulation of dNTPs in response to different chemotherapeutic agents in cancer cells.


Asunto(s)
Química Clic/métodos , Cobre/química , Desoxirribonucleótidos/análisis , Nucleótidos de Desoxiuracil/química , Reacción de Cicloadición , Nucleótidos de Desoxiadenina/análisis , Nucleótidos de Desoxiadenina/química , Nucleótidos de Desoxicitosina/análisis , Nucleótidos de Desoxicitosina/química , Nucleótidos de Desoxiguanina/análisis , Nucleótidos de Desoxiguanina/química , Desoxirribonucleótidos/química , Células HCT116 , Células HEK293 , Humanos , Células K562 , Rodaminas/química , Coloración y Etiquetado , Nucleótidos de Timina/análisis , Nucleótidos de Timina/química
17.
Antimicrob Agents Chemother ; 53(3): 1252-5, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19104011

RESUMEN

To test whether zidovudine (3'-azido-3'-deoxythymidine) (AZT) inhibition of thymidine phosphorylation causes depletion of the TTP pool resulting in mitochondrial DNA depletion, 3T3-F442a cells were differentiated in the presence of AZT and analyzed to determine mitochondrial DNA content and deoxynucleotide levels. These results suggest that AZT toxicity may not be related to deoxynucleotide pool alterations.


Asunto(s)
Fármacos Anti-VIH/farmacología , Diferenciación Celular/efectos de los fármacos , ADN Mitocondrial/metabolismo , Estavudina/farmacología , Zidovudina/farmacología , Células 3T3 , Animales , Desoxirribonucleótidos/análisis , Desoxirribonucleótidos/metabolismo , Relación Dosis-Respuesta a Droga , Cinética , Ratones
18.
Trends Biochem Sci ; 20(10): 431-4, 1995 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-8533158

RESUMEN

In addition to its induction by DNA damage, p53 is induced by drugs that starve cells for DNA and RNA precursors, or by inhibitors of DNA or RNA polymerase. In normal cells, the induction of p53 by dNTP starvation serves a protective role, mediating rapid, reversible cell-cycle arrest without DNA damage. In most cell lines, this first line of defense is missing, so that starvation for dNTPs causes DNA to break, thus increasing the probability of genomic instability, chromosome deletions and gene amplification. The mechanism of how p53 is induced remains unclear.


Asunto(s)
ADN/biosíntesis , Genes p53 , ARN/biosíntesis , Animales , Ciclo Celular , Daño del ADN , Desoxirribonucleótidos/análisis , Desoxirribonucleótidos/genética , Amplificación de Genes , Regulación de la Expresión Génica , Humanos , Modelos Genéticos
19.
Nucleic Acids Res ; 34(8): e61, 2006 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-16679448

RESUMEN

We report a novel method for rapid quantification of the degree of DNA methylation of a specific gene. Our method combined bisulfite-mediated PCR and quantification of deoxyribonucleoside monophosphate (dNMP) contents in the PCR product through capillary electrophoresis. A specific bisulfite-PCR product was enzymatically hydrolyzed to dNMP monomers which were quantitatively analyzed through subsequent capillary electrophoresis. PCR following bisulfite treatment converts unmethylated cytosines to thymines while leaving methyl-cytosines unchanged. Then the ratio of cytosine to thymine determined by capillary electrophoresis represents the ratio of methyl-cytosine to cytosine in genomic locus of interest. Pure oligonucleotides with known sequences were processed in parallel as standards for normalization of dNMP peaks in capillary electrophoresis. Sources of quantification uncertainty such as carryovers of dNTPs or primers and incomplete hydrolysis were examined and ruled out. When the method was applied to samples with known methylation levels (by bisulfite-mediated sequencing) as a validation, deviations were within +/-5%. After bisulfite-PCR, the analytical procedure can be completed within 1.5 h.


Asunto(s)
Metilación de ADN , Desoxirribonucleótidos/análisis , Reacción en Cadena de la Polimerasa/métodos , Sulfitos , Citosina/análisis , Desoxirribonucleótidos/química , Desoxirribonucleótidos/normas , Electroforesis Capilar , Hidrólisis , Estándares de Referencia
20.
Mol Cell Biol ; 4(9): 1815-22, 1984 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-6092941

RESUMEN

ts20 is a temperature-sensitive mutant cell line derived from BALB/3T3 cells. DNA synthesis in the mutant decreased progressively after an initial increase during the first 3 h at the restrictive temperature. RNA and protein synthesis increased for 20 h and remained at a high level for 40 h. Cells were arrested in S phase as determined by flow microfluorimetry, and DNA chain elongation was retarded as measured by fiber autoradiography. Infection with polyomavirus did not bypass the defect in cell DNA synthesis, and the mutant did not support virus DNA replication at the restrictive temperature. After shift down to the permissive temperature, cell DNA synthesis was restored whereas virus DNA synthesis was not. Analysis of virus DNA synthesized at the restrictive temperature showed that the synthesis of form I and replicative intermediate DNA decreased concurrently and that the rate of completion of virus DNA molecules remained constant with increasing time at the restrictive temperature. These studies indicated that the mutation inhibited ongoing DNA synthesis at a step early in elongation of nascent chains. The defect in virus and cell DNA synthesis was expressed in vitro. [3H]dTTP incorporation was reduced, consistent with the in vivo data. The addition of a high-salt extract prepared from wild-type 3T3 cells preferentially stimulated the incorporation of [3H]dTTP into the DNA of mutant cells at the restrictive temperature. A similar extract prepared from mutant cells was less effective and was more heat labile as incubation of it at the restrictive temperature for 1 h destroyed its ability to stimulate DNA synthesis in vitro, whereas wild-type extract was not inactivated until incubated at that temperature for 3 h.


Asunto(s)
Replicación del ADN , Mutación , Animales , Núcleo Celular/fisiología , Células Cultivadas , Citosol/fisiología , Replicación del ADN/efectos de los fármacos , Desoxirribonucleótidos/análisis , Citometría de Flujo , Cinética , Metilnitronitrosoguanidina/toxicidad , Ratones , Ratones Endogámicos BALB C , Fenotipo , Poliomavirus/genética , Temperatura , Extractos de Tejidos/farmacología , Transcripción Genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda