Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 4.839
Filtrar
Más filtros

Colección SES
Publication year range
1.
Nature ; 626(7998): 357-366, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38052228

RESUMEN

Recently, several studies using cultures of human embryos together with single-cell RNA-seq analyses have revealed differences between humans and mice, necessitating the study of human embryos1-8. Despite the importance of human embryology, ethical and legal restrictions have limited post-implantation-stage studies. Thus, recent efforts have focused on developing in vitro self-organizing models using human stem cells9-17. Here, we report genetic and non-genetic approaches to generate authentic hypoblast cells (naive hPSC-derived hypoblast-like cells (nHyCs))-known to give rise to one of the two extraembryonic tissues essential for embryonic development-from naive human pluripotent stem cells (hPSCs). Our nHyCs spontaneously assemble with naive hPSCs to form a three-dimensional bilaminar structure (bilaminoids) with a pro-amniotic-like cavity. In the presence of additional naive hPSC-derived analogues of the second extraembryonic tissue, the trophectoderm, the efficiency of bilaminoid formation increases from 20% to 40%, and the epiblast within the bilaminoids continues to develop in response to trophectoderm-secreted IL-6. Furthermore, we show that bilaminoids robustly recapitulate the patterning of the anterior-posterior axis and the formation of cells reflecting the pregastrula stage, the emergence of which can be shaped by genetically manipulating the DKK1/OTX2 hypoblast-like domain. We have therefore successfully modelled and identified the mechanisms by which the two extraembryonic tissues efficiently guide the stage-specific growth and progression of the epiblast as it establishes the post-implantation landmarks of human embryogenesis.


Asunto(s)
Desarrollo Embrionario , Estratos Germinativos , Células Madre Pluripotentes , Humanos , Diferenciación Celular , Implantación del Embrión , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Estratos Germinativos/citología , Estratos Germinativos/embriología , Estratos Germinativos/metabolismo , Células Madre Pluripotentes/citología , Interleucina-6/metabolismo , Gástrula/citología , Gástrula/embriología , Amnios/citología , Amnios/embriología , Amnios/metabolismo , Ectodermo/citología , Ectodermo/embriología , Ectodermo/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Factores de Transcripción Otx/genética , Factores de Transcripción Otx/metabolismo
2.
Nature ; 606(7912): 188-196, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35585237

RESUMEN

Proper ectodermal patterning during human development requires previously identified transcription factors such as GATA3 and p63, as well as positional signalling from regional mesoderm1-6. However, the mechanism by which ectoderm and mesoderm factors act to stably pattern gene expression and lineage commitment remains unclear. Here we identify the protein Gibbin, encoded by the Xia-Gibbs AT-hook DNA-binding-motif-containing 1 (AHDC1) disease gene7-9, as a key regulator of early epithelial morphogenesis. We find that enhancer- or promoter-bound Gibbin interacts with dozens of sequence-specific zinc-finger transcription factors and methyl-CpG-binding proteins to regulate the expression of mesoderm genes. The loss of Gibbin causes an increase in DNA methylation at GATA3-dependent mesodermal genes, resulting in a loss of signalling between developing dermal and epidermal cell types. Notably, Gibbin-mutant human embryonic stem-cell-derived skin organoids lack dermal maturation, resulting in p63-expressing basal cells that possess defective keratinocyte stratification. In vivo chimeric CRISPR mouse mutants reveal a spectrum of Gibbin-dependent developmental patterning defects affecting craniofacial structure, abdominal wall closure and epidermal stratification that mirror patient phenotypes. Our results indicate that the patterning phenotypes seen in Xia-Gibbs and related syndromes derive from abnormal mesoderm maturation as a result of gene-specific DNA methylation decisions.


Asunto(s)
Proteínas de Unión al ADN , Epitelio , Regulación del Desarrollo de la Expresión Génica , Mesodermo , Morfogénesis , Animales , Humanos , Ratones , Dermis/citología , Dermis/embriología , Dermis/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Ectodermo/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Epidérmicas/citología , Células Epidérmicas/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Epitelio/embriología , Factor de Transcripción GATA3 , Mesodermo/metabolismo , Mutación , Organoides , Transactivadores , Factores de Transcripción/metabolismo
3.
Development ; 151(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39171364

RESUMEN

The first lineage differentiation in mammals gives rise to the inner cell mass and the trophectoderm (TE). In mice, TEAD4 is a master regulator of TE commitment, as it regulates the expression of other TE-specific genes and its ablation prevents blastocyst formation, but its role in other mammals remains unclear. Herein, we have observed that TEAD4 ablation in two phylogenetically distant species (bovine and rabbit) does not impede TE differentiation, blastocyst formation and the expression of TE markers, such as GATA3 and CDX2, although a reduced number of cells in the inner cell mass was observed in bovine TEAD4 knockout (KO) blastocysts. Transcriptional analysis in bovine blastocysts revealed no major transcriptional effect of the ablation, although the expression of hypoblast and Hippo signalling-related genes tended to be decreased in KO embryos. Experiments were conducted in the bovine model to determine whether TEAD4 was required for post-hatching development. TEAD4 KO spherical conceptuses showed normal development of the embryonic disc and TE, but hypoblast migration rate was reduced. At later stages of development (tubular conceptuses), no differences were observed between KO and wild-type conceptuses.


Asunto(s)
Blastocisto , Diferenciación Celular , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción de Dominio TEA , Factores de Transcripción , Animales , Bovinos , Factores de Transcripción de Dominio TEA/metabolismo , Blastocisto/metabolismo , Blastocisto/citología , Diferenciación Celular/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Conejos , Desarrollo Embrionario/genética , Ectodermo/metabolismo , Ectodermo/embriología , Ectodermo/citología , Femenino , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Trofoblastos/metabolismo , Trofoblastos/citología , Ratones , Vía de Señalización Hippo , Embrión de Mamíferos/metabolismo , Factor de Transcripción CDX2/metabolismo , Factor de Transcripción CDX2/genética , Factor de Transcripción GATA3/metabolismo , Factor de Transcripción GATA3/genética
4.
PLoS Biol ; 22(4): e3002611, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683880

RESUMEN

As tissues grow and change shape during animal development, they physically pull and push on each other, and these mechanical interactions can be important for morphogenesis. During Drosophila gastrulation, mesoderm invagination temporally overlaps with the convergence and extension of the ectodermal germband; the latter is caused primarily by Myosin II-driven polarised cell intercalation. Here, we investigate the impact of mesoderm invagination on ectoderm extension, examining possible mechanical and mechanotransductive effects on Myosin II recruitment and polarised cell intercalation. We find that the germband ectoderm is deformed by the mesoderm pulling in the orthogonal direction to germband extension (GBE), showing mechanical coupling between these tissues. However, we do not find a significant change in Myosin II planar polarisation in response to mesoderm invagination, nor in the rate of junction shrinkage leading to neighbour exchange events. We conclude that the main cellular mechanism of axis extension, polarised cell intercalation, is robust to the mesoderm invagination pull. We find, however, that mesoderm invagination slows down the rate of anterior-posterior cell elongation that contributes to axis extension, counteracting the tension from the endoderm invagination, which pulls along the direction of GBE.


Asunto(s)
Drosophila melanogaster , Ectodermo , Gastrulación , Mesodermo , Miosina Tipo II , Animales , Mesodermo/embriología , Mesodermo/citología , Gastrulación/fisiología , Ectodermo/citología , Ectodermo/embriología , Ectodermo/metabolismo , Miosina Tipo II/metabolismo , Drosophila melanogaster/embriología , Polaridad Celular , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrión no Mamífero , Morfogénesis , Tipificación del Cuerpo/fisiología , Drosophila/embriología
5.
Nature ; 599(7884): 268-272, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34707290

RESUMEN

Understanding human organ formation is a scientific challenge with far-reaching medical implications1,2. Three-dimensional stem-cell cultures have provided insights into human cell differentiation3,4. However, current approaches use scaffold-free stem-cell aggregates, which develop non-reproducible tissue shapes and variable cell-fate patterns. This limits their capacity to recapitulate organ formation. Here we present a chip-based culture system that enables self-organization of micropatterned stem cells into precise three-dimensional cell-fate patterns and organ shapes. We use this system to recreate neural tube folding from human stem cells in a dish. Upon neural induction5,6, neural ectoderm folds into a millimetre-long neural tube covered with non-neural ectoderm. Folding occurs at 90% fidelity, and anatomically resembles the developing human neural tube. We find that neural and non-neural ectoderm are necessary and sufficient for folding morphogenesis. We identify two mechanisms drive folding: (1) apical contraction of neural ectoderm, and (2) basal adhesion mediated via extracellular matrix synthesis by non-neural ectoderm. Targeting these two mechanisms using drugs leads to morphological defects similar to neural tube defects. Finally, we show that neural tissue width determines neural tube shape, suggesting that morphology along the anterior-posterior axis depends on neural ectoderm geometry in addition to molecular gradients7. Our approach provides a new route to the study of human organ morphogenesis in health and disease.


Asunto(s)
Morfogénesis , Tubo Neural/anatomía & histología , Tubo Neural/embriología , Técnicas de Cultivo de Órganos/métodos , Ectodermo/citología , Ectodermo/embriología , Humanos , Modelos Biológicos , Placa Neural/citología , Placa Neural/embriología , Tubo Neural/citología , Defectos del Tubo Neural/embriología , Defectos del Tubo Neural/patología , Regeneración , Células Madre/citología
6.
Nature ; 594(7864): 547-552, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34108685

RESUMEN

Tissue stem cells are generated from a population of embryonic progenitors through organ-specific morphogenetic events1,2. Although tissue stem cells are central to organ homeostasis and regeneration, it remains unclear how they are induced during development, mainly because of the lack of markers that exclusively label prospective stem cells. Here we combine marker-independent long-term 3D live imaging and single-cell transcriptomics to capture a dynamic lineage progression and transcriptome changes in the entire epithelium of the mouse hair follicle as it develops. We found that the precursors of different epithelial lineages were aligned in a 2D concentric manner in the basal layer of the hair placode. Each concentric ring acquired unique transcriptomes and extended to form longitudinally aligned, 3D cylindrical compartments. Prospective bulge stem cells were derived from the peripheral ring of the placode basal layer, but not from suprabasal cells (as was previously suggested3). The fate of placode cells is determined by the cell position, rather than by the orientation of cell division. We also identified 13 gene clusters: the ensemble expression dynamics of these clusters drew the entire transcriptional landscape of epithelial lineage diversification, consistent with cell lineage data. Combining these findings with previous work on the development of appendages in insects4,5, we describe the 'telescope model', a generalized model for the development of ectodermal organs in which 2D concentric zones in the placode telescope out to form 3D longitudinally aligned cylindrical compartments.


Asunto(s)
Linaje de la Célula , Folículo Piloso/citología , Células Madre/citología , Animales , Rastreo Celular , Ectodermo , Embrión de Mamíferos , Células Epiteliales/citología , Femenino , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Transgénicos , Familia de Multigenes , RNA-Seq , Análisis de la Célula Individual , Piel , Técnicas de Cultivo de Tejidos , Transcriptoma , Vibrisas
7.
Development ; 150(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37823343

RESUMEN

The amino acid L-proline exhibits growth factor-like properties during development - from improving blastocyst development to driving neurogenesis in vitro. Addition of 400 µM L-proline to self-renewal medium drives naïve mouse embryonic stem cells (ESCs) to early primitive ectoderm-like (EPL) cells - a transcriptionally distinct primed or partially primed pluripotent state. EPL cells retain expression of pluripotency genes, upregulate primitive ectoderm markers, undergo a morphological change and have increased cell number. These changes are facilitated by a complex signalling network hinging on the Mapk, Fgfr, Pi3k and mTor pathways. Here, we use a factorial experimental design coupled with statistical modelling to understand which signalling pathways are involved in the transition between ESCs and EPL cells, and how they underpin changes in morphology, cell number, apoptosis, proliferation and gene expression. This approach reveals pathways which work antagonistically or synergistically. Most properties were affected by more than one inhibitor, and each inhibitor blocked specific aspects of the naïve-to-primed transition. These mechanisms underpin progression of stem cells across the in vitro pluripotency continuum and serve as a model for pre-, peri- and post-implantation embryogenesis.


Asunto(s)
Ectodermo , Células Madre Embrionarias de Ratones , Animales , Ratones , Ectodermo/metabolismo , Prolina/metabolismo , Transducción de Señal , Células Madre Embrionarias , Diferenciación Celular/genética
8.
Development ; 150(19)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37756587

RESUMEN

The Foxi3 transcription factor, expressed in the neural plate border at the end of gastrulation, is necessary for the formation of posterior placodes and is thus important for ectodermal patterning. We have created two knock-in mouse lines expressing GFP or a tamoxifen-inducible Cre recombinase to show that Foxi3 is one of the earliest genes to label the border between the neural tube and epidermis, and that Foxi3-expressing neural plate border progenitors contribute primarily to cranial placodes and epidermis from the onset of expression, but not to the neural crest or neural tube lineages. By simultaneously knocking out Foxi3 in neural plate border cells and following their fates, we show that neural plate border cells lacking Foxi3 contribute to all four lineages of the ectoderm - placodes, epidermis, crest and neural tube. We contrast Foxi3 with another neural plate border transcription factor, Zic5, the progenitors of which initially contribute broadly to all germ layers until gastrulation and gradually become restricted to the neural crest lineage and dorsal neural tube cells. Our study demonstrates that Foxi3 uniquely acts early at the neural plate border to restrict progenitors to a placodal and epidermal fate.


Asunto(s)
Placa Neural , Factores de Transcripción , Animales , Ratones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Placa Neural/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ectodermo/metabolismo , Cresta Neural/metabolismo , Factores de Transcripción Forkhead/metabolismo
9.
Nature ; 586(7827): 101-107, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32939092

RESUMEN

The reprogramming of human somatic cells to primed or naive induced pluripotent stem cells recapitulates the stages of early embryonic development1-6. The molecular mechanism that underpins these reprogramming processes remains largely unexplored, which impedes our understanding and limits rational improvements to reprogramming protocols. Here, to address these issues, we reconstruct molecular reprogramming trajectories of human dermal fibroblasts using single-cell transcriptomics. This revealed that reprogramming into primed and naive pluripotency follows diverging and distinct trajectories. Moreover, genome-wide analyses of accessible chromatin showed key changes in the regulatory elements of core pluripotency genes, and orchestrated global changes in chromatin accessibility over time. Integrated analysis of these datasets revealed a role for transcription factors associated with the trophectoderm lineage, and the existence of a subpopulation of cells that enter a trophectoderm-like state during reprogramming. Furthermore, this trophectoderm-like state could be captured, which enabled the derivation of induced trophoblast stem cells. Induced trophoblast stem cells are molecularly and functionally similar to trophoblast stem cells derived from human blastocysts or first-trimester placentas7. Our results provide a high-resolution roadmap for the transcription-factor-mediated reprogramming of human somatic cells, indicate a role for the trophectoderm-lineage-specific regulatory program during this process, and facilitate the direct reprogramming of somatic cells into induced trophoblast stem cells.


Asunto(s)
Reprogramación Celular/genética , Regulación de la Expresión Génica , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Trofoblastos/citología , Trofoblastos/metabolismo , Adulto , Cromatina/genética , Cromatina/metabolismo , Ectodermo/citología , Ectodermo/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Transcripción Genética
10.
Nature ; 582(7811): 246-252, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32499648

RESUMEN

A wealth of specialized neuroendocrine command systems intercalated within the hypothalamus control the most fundamental physiological needs in vertebrates1,2. Nevertheless, we lack a developmental blueprint that integrates the molecular determinants of neuronal and glial diversity along temporal and spatial scales of hypothalamus development3. Here we combine single-cell RNA sequencing of 51,199 mouse cells of ectodermal origin, gene regulatory network (GRN) screens in conjunction with genome-wide association study-based disease phenotyping, and genetic lineage reconstruction to show that nine glial and thirty-three neuronal subtypes are generated by mid-gestation under the control of distinct GRNs. Combinatorial molecular codes that arise from neurotransmitters, neuropeptides and transcription factors are minimally required to decode the taxonomical hierarchy of hypothalamic neurons. The differentiation of γ-aminobutyric acid (GABA) and dopamine neurons, but not glutamate neurons, relies on quasi-stable intermediate states, with a pool of GABA progenitors giving rise to dopamine cells4. We found an unexpected abundance of chemotropic proliferation and guidance cues that are commonly implicated in dorsal (cortical) patterning5 in the hypothalamus. In particular, loss of SLIT-ROBO signalling impaired both the production and positioning of periventricular dopamine neurons. Overall, we identify molecular principles that shape the developmental architecture of the hypothalamus and show how neuronal heterogeneity is transformed into a multimodal neural unit to provide virtually infinite adaptive potential throughout life.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Hipotálamo/citología , Hipotálamo/embriología , Morfogénesis , Animales , Diferenciación Celular , Linaje de la Célula , Dopamina/metabolismo , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Ectodermo/citología , Ectodermo/metabolismo , Femenino , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Ácido Glutámico/metabolismo , Hipotálamo/metabolismo , Masculino , Ratones , Morfogénesis/genética , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Neuropéptidos/metabolismo , Neurotransmisores/metabolismo , Receptores Inmunológicos/metabolismo , Regulón/genética , Transducción de Señal , Factores de Transcripción/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Proteínas Roundabout
11.
Nature ; 587(7834): 443-447, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32968278

RESUMEN

Current understandings of cell specification in early mammalian pre-implantation development are based mainly on mouse studies. The first lineage differentiation event occurs at the morula stage, with outer cells initiating a trophectoderm (TE) placental progenitor program. The inner cell mass arises from inner cells during subsequent developmental stages and comprises precursor cells of the embryo proper and yolk sac1. Recent gene-expression analyses suggest that the mechanisms that regulate early lineage specification in the mouse may differ in other mammals, including human2-5 and cow6. Here we show the evolutionary conservation of a molecular cascade that initiates TE segregation in human, cow and mouse embryos. At the morula stage, outer cells acquire an apical-basal cell polarity, with expression of atypical protein kinase C (aPKC) at the contact-free domain, nuclear expression of Hippo signalling pathway effectors and restricted expression of TE-associated factors such as GATA3, which suggests initiation of a TE program. Furthermore, we demonstrate that inhibition of aPKC by small-molecule pharmacological modulation or Trim-Away protein depletion impairs TE initiation at the morula stage. Our comparative embryology analysis provides insights into early lineage specification and suggests that a similar mechanism initiates a TE program in human, cow and mouse embryos.


Asunto(s)
Evolución Biológica , Ectodermo/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Transcripción Genética , Trofoblastos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Masa Celular Interna del Blastocisto/citología , Masa Celular Interna del Blastocisto/metabolismo , Bovinos , Linaje de la Célula , Polaridad Celular , Ectodermo/citología , Embrión de Mamíferos/enzimología , Femenino , Factor de Transcripción GATA3/metabolismo , Vía de Señalización Hippo , Humanos , Ratones , Mórula/citología , Mórula/enzimología , Mórula/metabolismo , Placenta/citología , Placenta/metabolismo , Embarazo , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Trofoblastos/citología , Proteínas Señalizadoras YAP , Saco Vitelino/citología , Saco Vitelino/metabolismo
12.
Nature ; 582(7812): 399-404, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32494013

RESUMEN

The skin is a multilayered organ, equipped with appendages (that is, follicles and glands), that is critical for regulating body temperature and the retention of bodily fluids, guarding against external stresses and mediating the sensation of touch and pain1,2. Reconstructing appendage-bearing skin in cultures and in bioengineered grafts is a biomedical challenge that has yet to be met3-9. Here we report an organoid culture system that generates complex skin from human pluripotent stem cells. We use stepwise modulation of the transforming growth factor ß (TGFß) and fibroblast growth factor (FGF) signalling pathways to co-induce cranial epithelial cells and neural crest cells within a spherical cell aggregate. During an incubation period of 4-5 months, we observe the emergence of a cyst-like skin organoid composed of stratified epidermis, fat-rich dermis and pigmented hair follicles that are equipped with sebaceous glands. A network of sensory neurons and Schwann cells form nerve-like bundles that target Merkel cells in organoid hair follicles, mimicking the neural circuitry associated with human touch. Single-cell RNA sequencing and direct comparison to fetal specimens suggest that the skin organoids are equivalent to the facial skin of human fetuses in the second trimester of development. Moreover, we show that skin organoids form planar hair-bearing skin when grafted onto nude mice. Together, our results demonstrate that nearly complete skin can self-assemble in vitro and be used to reconstitute skin in vivo. We anticipate that our skin organoids will provide a foundation for future studies of human skin development, disease modelling and reconstructive surgery.


Asunto(s)
Cabello/citología , Cabello/crecimiento & desarrollo , Organoides/citología , Células Madre Pluripotentes/citología , Piel/citología , Animales , Ectodermo/citología , Femenino , Cabello/trasplante , Color del Cabello , Folículo Piloso/citología , Folículo Piloso/crecimiento & desarrollo , Folículo Piloso/inervación , Folículo Piloso/trasplante , Cabeza , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Organoides/crecimiento & desarrollo , Organoides/inervación , Organoides/trasplante , RNA-Seq , Análisis de la Célula Individual , Piel/crecimiento & desarrollo , Piel/inervación , Trasplante de Piel
13.
Nature ; 585(7825): 404-409, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32848249

RESUMEN

To implant in the uterus, the mammalian embryo first specifies two cell lineages: the pluripotent inner cell mass that forms the fetus, and the outer trophectoderm layer that forms the placenta1. In many organisms, asymmetrically inherited fate determinants drive lineage specification2, but this is not thought to be the case during early mammalian development. Here we show that intermediate filaments assembled by keratins function as asymmetrically inherited fate determinants in the mammalian embryo. Unlike F-actin or microtubules, keratins are the first major components of the cytoskeleton that display prominent cell-to-cell variability, triggered by heterogeneities in the BAF chromatin-remodelling complex. Live-embryo imaging shows that keratins become asymmetrically inherited by outer daughter cells during cell division, where they stabilize the cortex to promote apical polarization and YAP-dependent expression of CDX2, thereby specifying the first trophectoderm cells of the embryo. Together, our data reveal a mechanism by which cell-to-cell heterogeneities that appear before the segregation of the trophectoderm and the inner cell mass influence lineage fate, via differential keratin regulation, and identify an early function for intermediate filaments in development.


Asunto(s)
Linaje de la Célula , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Queratinas/metabolismo , Actinas/metabolismo , Animales , División Celular , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Ectodermo/citología , Embrión de Mamíferos/embriología , Femenino , Humanos , Filamentos Intermedios/metabolismo , Ratones , Microtúbulos/metabolismo , Complejos Multiproteicos/metabolismo , Trofoblastos/citología
14.
Semin Cell Dev Biol ; 138: 15-27, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35760729

RESUMEN

During development of the vertebrate sensory system, many important components like the sense organs and cranial sensory ganglia arise within the head and neck. Two progenitor populations, the neural crest, and cranial ectodermal placodes, contribute to these developing vertebrate peripheral sensory structures. The interactions and contributions of these cell populations to the development of the lens, olfactory, otic, pituitary gland, and cranial ganglia are vital for appropriate peripheral nervous system development. Here, we review the origins of both neural crest and placode cells at the neural plate border of the early vertebrate embryo and investigate the molecular and environmental signals that influence specification of different sensory regions. Finally, we discuss the underlying molecular pathways contributing to the complex vertebrate sensory system from an evolutionary perspective, from basal vertebrates to amniotes.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Cresta Neural , Animales , Ectodermo/metabolismo , Vertebrados , Organogénesis
15.
Semin Cell Dev Biol ; 138: 36-44, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35534333

RESUMEN

Neural crest cells are central to vertebrate development and evolution, endowing vertebrates with a "new head" that resulted in morphological, physiological, and behavioral features that allowed vertebrates to become active predators. One remarkable feature of neural crest cells is their multi-germ layer potential that allows for the formation of both ectodermal (pigmentation, peripheral glia, sensory neurons) and mesenchymal (connective tissue, cartilage/bone, dermis) cell types. Understanding the cellular and evolutionary origins of this broad cellular potential in the neural crest has been a long-standing focus for developmental biologists. Here, we review recent work that has demonstrated that neural crest cells share key features with pluripotent blastula stem cells, including expression of the Yamanaka stem cell factors (Oct3/4, Klf4, Sox2, c-Myc). These shared features suggest that pluripotency is either retained in the neural crest from blastula stages or subsequently reactivated as the neural crest forms. We highlight the cellular and molecular parallels between blastula stem cells and neural crest cells and discuss the work that has led to current models for the cellular origins of broad potential in the crest. Finally, we explore how these themes can provide new insights into how and when neural crest cells and pluripotency evolved in vertebrates and the evolutionary relationship between these populations.


Asunto(s)
Cresta Neural , Células Madre Pluripotentes , Animales , Cresta Neural/metabolismo , Vertebrados/genética , Ectodermo , Células Madre Pluripotentes/metabolismo , Regulación del Desarrollo de la Expresión Génica , Evolución Biológica
16.
Semin Cell Dev Biol ; 138: 45-53, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35331627

RESUMEN

Of all the cell types arising from the neural crest, ectomesenchyme is likely the most unusual. In contrast to the neuroglial cells generated by neural crest throughout the embryo, consistent with its ectodermal origin, cranial neural crest-derived cells (CNCCs) generate many connective tissue and skeletal cell types in common with mesoderm. Whether this ectoderm-derived mesenchyme (ectomesenchyme) potential reflects a distinct developmental origin from other CNCC lineages, and/or epigenetic reprogramming of the ectoderm, remains debated. Whereas decades of lineage tracing studies have defined the potential of CNCC ectomesenchyme, these are being revisited by modern genetic techniques. Recent work is also shedding light on the extent to which intrinsic and extrinsic cues determine ectomesenchyme potential, and whether maintenance or reacquisition of CNCC multipotency influences craniofacial repair.


Asunto(s)
Mesodermo , Cresta Neural , Cresta Neural/metabolismo , Ectodermo/metabolismo , Embrión de Mamíferos
17.
Dev Biol ; 506: 85-94, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38040078

RESUMEN

The gill slits of fishes develop from an iterative series of pharyngeal endodermal pouches that contact and fuse with surface ectoderm on either side of the embryonic head. We find in the skate (Leucoraja erinacea) that all gill slits form via a stereotypical sequence of epithelial interactions: 1) endodermal pouches approach overlying surface ectoderm, with 2) focal degradation of ectodermal basement membranes preceding endoderm-ectoderm contact; 3) endodermal pouches contact and intercalate with overlying surface ectoderm, and finally 4) perforation of a gill slit occurs by epithelial remodelling, without programmed cell death, at the site of endoderm-ectoderm intercalation. Skate embryos express Fgf8 and Fgf3 within developing pharyngeal epithelia during gill slit formation. When we inhibit Fgf signalling by treating skate embryos with the Fgf receptor inhibitor SU5402 we find that endodermal pouch formation, basement membrane degradation and endodermal-ectodermal intercalation are unaffected, but that epithelial remodelling and gill slit perforation fail to occur. These findings point to a role for Fgf signalling in epithelial remodelling during gill slit formation in the skate and, more broadly, to an ancestral role for Fgf signalling during pharyngeal pouch epithelial morphogenesis in vertebrate embryos.


Asunto(s)
Ectodermo , Branquias , Animales , Endodermo , Vertebrados , Morfogénesis
18.
Dev Biol ; 515: 30-45, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38971398

RESUMEN

The ectoderm is the outermost of the three germ layers of the early embryo that arise during gastrulation. Once the germ layers are established, the complex interplay of cellular proliferation, differentiation, and migration results in organogenesis. The ectoderm is the progenitor of both the surface ectoderm and the neural ectoderm. Notably, the surface ectoderm develops into the epidermis and its associated appendages, nails, external exocrine glands, olfactory epithelium, and the anterior pituitary. Specification, development, and homeostasis of these organs demand a tightly orchestrated gene expression program that is often dictated by epigenetic regulation. In this review, we discuss the recent discoveries that have highlighted the importance of chromatin regulatory mechanisms mediated by transcription factors, histone and DNA modifications that aid in the development of surface ectodermal organs and maintain their homeostasis post-development.


Asunto(s)
Cromatina , Ectodermo , Regulación del Desarrollo de la Expresión Génica , Homeostasis , Ectodermo/metabolismo , Ectodermo/embriología , Animales , Cromatina/metabolismo , Epigénesis Genética , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Diferenciación Celular/genética , Histonas/metabolismo
19.
Dev Biol ; 508: 64-76, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38190932

RESUMEN

Feathers originate as protofeathers before birds, in pterosaurs and basal dinosaurs. What characterizes a feather is not only its outgrowth, but its barb cells differentiation and a set of beta-corneous proteins. Reticula appear concomitantly with feathers, as small bumps on plantar skin, made only of keratins. Avian scales, with their own set of beta-corneous proteins, appear more recently than feathers on the shank, and only in some species. In the chick embryo, when feather placodes form, all the non-feather areas of the integument are already specified. Among them, midventral apterium, cornea, reticula, and scale morphogenesis appear to be driven by negative regulatory mechanisms, which modulate the inherited capacity of the avian ectoderm to form feathers. Successive dermal/epidermal interactions, initiated by the Wnt/ß-catenin pathway, and involving principally Eda/Edar, BMP, FGF20 and Shh signaling, are responsible for the formation not only of feather, but also of scale placodes and reticula, with notable differences in the level of Shh, and probably FGF20 expressions. This sequence is a dynamic and labile process, the turning point being the FGF20 expression by the placode. This epidermal signal endows its associated dermis with the memory to aggregate and to stimulate the morphogenesis that follows, involving even a re-initiation of the placode.


Asunto(s)
Ectodermo , Plumas , Animales , Embrión de Pollo , Plumas/metabolismo , Ectodermo/metabolismo , Evolución Biológica , Aves , Queratinas/metabolismo , Morfogénesis
20.
Dev Biol ; 506: 20-30, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38052294

RESUMEN

Cranial placodes are transient ectodermal thickenings that contribute to a diverse array of organs in the vertebrate head. They develop from a common territory, the pre-placodal region that over time segregates along the antero-posterior axis into individual placodal domains: the adenohypophyseal, olfactory, lens, trigeminal, otic, and epibranchial placodes. These placodes terminally differentiate into the anterior pituitary, the lens, and contribute to sensory organs including the olfactory epithelium, and inner ear, as well as several cranial ganglia. To study cranial placodes and their derivatives and generate cells for therapeutic purposes, several groups have turned to in vitro derivation of placodal cells from human embryonic stem cells (hESCs) or induced pluripotent stem cells (hiPSCs). In this review, we summarize the signaling cues and mechanisms involved in cranial placode induction, specification, and differentiation in vivo, and discuss how this knowledge has informed protocols to derive cranial placodes in vitro. We also discuss the benefits and limitations of these protocols, and the potential of in vitro cranial placode modeling in regenerative medicine to treat cranial placode-related pathologies.


Asunto(s)
Ectodermo , Cráneo , Animales , Humanos , Vertebrados , Diferenciación Celular , Transducción de Señal , Regulación del Desarrollo de la Expresión Génica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda