RESUMEN
Establishing when, and from where, carbon, nitrogen and water were delivered to Earth is a fundamental objective in understanding the origin of habitable planets such as Earth. Yet, volatile delivery to Earth remains controversial1-5. Krypton isotopes provide insights on volatile delivery owing to their substantial isotopic variations among sources6-10, although pervasive atmospheric contamination has hampered analytical efforts. Here we present the full suite of krypton isotopes from the deep mantle of the Galápagos and Iceland plumes, which have the most primitive helium, neon and tungsten isotopic compositions11-16. Except for 86Kr, the krypton isotopic compositions are similar to a mixture of chondritic and atmospheric krypton. These results suggest early accretion of carbonaceous material by proto-Earth and rule out any combination of hydrodynamic loss with outgassing of the deep or shallow mantle to explain atmospheric noble gases. Unexpectedly, the deep-mantle sources have a deficit in the neutron-rich 86Kr relative to the average composition of carbonaceous meteorites, which suggests a nucleosynthetic anomaly. Although the relative depletion of neutron-rich isotopes on Earth compared with carbonaceous meteorites has been documented for a range of refractory elements1,17,18, our observations suggest such a depletion for a volatile element. This finding indicates that accretion of volatile and refractory elements occurred simultaneously, with krypton recording concomitant accretion of non-solar volatiles from more than one type of material, possibly including outer Solar System planetesimals.
Asunto(s)
Carbono/análisis , Planeta Tierra , Evolución Planetaria , Sedimentos Geológicos/química , Criptón/análisis , Atmósfera/química , Ecuador , Evolución Química , Helio/análisis , Islandia , Isótopos/análisis , Meteoroides , Neón/análisis , Neutrones , Nitrógeno/análisis , Tungsteno/análisis , Xenón/análisisRESUMEN
Conservationists have long argued that inadequate funding for managing protected areas (PAs) jeopardizes their ability to achieve conservation goals. However, this claim has rarely been substantiated by quantitative evaluations. To address this, we examined the impact of funding on PA effectiveness both at the scale of 17 national PA systems across Latin America and within a PA system (Ecuador), for which we had precise historical financial data. Most PAs reduced deforestation between 2000 and 2010, demonstrating their crucial role in forest conservation. However, large deficits in funding considerably reduced the effectiveness of PAs in Ecuador (on average, a unit decrease in deficit leads to a 3.07% increase in effectiveness in avoiding deforestation). While differences in effectiveness between individual PAs in Ecuador were associated with funding deficits, national-level socioeconomic metrics (e.g., the Human Development Index) were the major factor when comparing PA system-level effectiveness among countries. This result suggests that while funding plays a major role in the performance of individual PAs, the quality of the socioeconomic context at the country level is critical for the overall performance of the PA systems. We, therefore, emphasize that maximizing the effectiveness of PAs requires a multilevel approach that includes better and more strategic resource allocation for individual PAs, combined with actions for strengthening the governance and institutions that regulate PA systems.
Asunto(s)
Conservación de los Recursos Naturales , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/métodos , América Latina , Humanos , Ecuador , Bosques , Factores SocioeconómicosRESUMEN
Methyl salicylate is an important inter- and intra-plant signaling molecule, but is deemed undesirable by humans when it accumulates to high levels in ripe fruits. Balancing the tradeoff between consumer satisfaction and overall plant health is challenging as the mechanisms regulating volatile levels have not yet been fully elucidated. In this study, we investigated the accumulation of methyl salicylate in ripe fruits of tomatoes that belong to the red-fruited clade. We determine the genetic diversity and the interaction of four known loci controlling methyl salicylate levels in ripe fruits. In addition to Non-Smoky Glucosyl Transferase 1 (NSGT1), we uncovered extensive genome structural variation (SV) at the Methylesterase (MES) locus. This locus contains four tandemly duplicated Methylesterase genes and genome sequence investigations at the locus identified nine distinct haplotypes. Based on gene expression and results from biparental crosses, functional and non-functional haplotypes for MES were identified. The combination of the non-functional MES haplotype 2 and the non-functional NSGT1 haplotype IV or V in a GWAS panel showed high methyl salicylate levels in ripe fruits, particularly in accessions from Ecuador, demonstrating a strong interaction between these two loci and suggesting an ecological advantage. The genetic variation at the other two known loci, Salicylic Acid Methyl Transferase 1 (SAMT1) and tomato UDP Glycosyl Transferase 5 (SlUGT5), did not explain volatile variation in the red-fruited tomato germplasm, suggesting a minor role in methyl salicylate production in red-fruited tomato. Lastly, we found that most heirloom and modern tomato accessions carried a functional MES and a non-functional NSGT1 haplotype, ensuring acceptable levels of methyl salicylate in fruits. Yet, future selection of the functional NSGT1 allele could potentially improve flavor in the modern germplasm.
Asunto(s)
Solanum lycopersicum , Humanos , Solanum lycopersicum/genética , Salicilatos/análisis , Salicilatos/química , Salicilatos/metabolismo , Glicosiltransferasas , Ecuador , Frutas/genéticaRESUMEN
So far in this century, six very large-magnitude earthquakes (MW ≥ 7.8) have ruptured separate portions of the subduction zone plate boundary of western South America along Ecuador, Peru, and Chile. Each source region had last experienced a very large earthquake from 74 to 261 y earlier. This history led to their designation in advance as seismic gaps with potential to host future large earthquakes. Deployments of geodetic and seismic monitoring instruments in several of the seismic gaps enhanced resolution of the subsequent faulting processes, revealing preevent patterns of geodetic slip deficit accumulation and heterogeneous coseismic slip on the megathrust fault. Localized regions of large slip, or asperities, appear to have influenced variability in how each source region ruptured relative to prior events, as repeated ruptures have had similar, but not identical slip distributions. We consider updated perspectives of seismic gaps, asperities, and geodetic locking to assess current very large earthquake hazard along the South American subduction zone, noting regions of particular concern in northern Ecuador and Colombia (1958/1906 rupture zone), southeastern Peru (southeasternmost 1868 rupture zone), north Chile (1877 rupture zone), and north-central Chile (1922 rupture zone) that have large geodetic slip deficit measurements and long intervals (from 64 to 154 y) since prior large events have struck those regions. Expanded geophysical measurements onshore and offshore in these seismic gaps may provide critical information about the strain cycle and fault stress buildup late in the seismic cycle in advance of the future great earthquakes that will eventually strike each region.
Asunto(s)
Terremotos , Chile , Ecuador , Perú , ColombiaRESUMEN
Oceanic islands support unique biotas but often lack ecological redundancy, so that the removal of a species can have a large effect on the ecosystem. The larger islands of the Galápagos Archipelago once had one or two species of giant tortoise that were the dominant herbivore. Using paleoecological techniques, we investigate the ecological cascade on highland ecosystems that resulted from whalers removing many thousands of tortoises from the lowlands. We hypothesize that the seasonal migration of a now-extinct tortoise species to the highlands was curtailed by decreased intraspecific competition. We find the trajectory of plant community dynamics changed within a decade of the first whaling vessels visiting the islands. Novel communities established, with a previously uncommon shrub, Miconia, replacing other shrubs of the genera Alternanthera and Acalypha. It was, however, the introduction of cattle and horses that caused the local extirpation of plant species, with the most extreme impacts being evident after c. 1930. This modified ecology is considered the natural state of the islands and has shaped subsequent conservation policy and practice. Restoration of El Junco Crater should emphasize exclusion of livestock, rewilding with tortoises, and expanding the ongoing plantings of Miconia to also include Acalypha and Alternanthera.
Asunto(s)
Ecosistema , Extinción Biológica , Tortugas , Animales , Evolución Biológica , Bovinos , Ecología , Ecuador , Herbivoria , Actividades Humanas , HumanosRESUMEN
Accurate prediction of vectors dispersal, as well as identification of adaptations that allow blood-feeding vectors to thrive in built environments, are a basis for effective disease control. Here we adopted a landscape genomics approach to assay gene flow, possible local adaptation, and drivers of population structure in Rhodnius ecuadoriensis, an important vector of Chagas disease. We used a reduced-representation sequencing technique (2b-RADseq) to obtain 2,552 SNP markers across 272 R. ecuadoriensis samples from 25 collection sites in southern Ecuador. Evidence of high and directional gene flow between seven wild and domestic population pairs across our study site indicates insecticide-based control will be hindered by repeated re-infestation of houses from the forest. Preliminary genome scans across multiple population pairs revealed shared outlier loci potentially consistent with local adaptation to the domestic setting, which we mapped to genes involved with embryogenesis and saliva production. Landscape genomic models showed elevation is a key barrier to R. ecuadoriensis dispersal. Together our results shed early light on the genomic adaptation in triatomine vectors and facilitate vector control by predicting that spatially-targeted, proactive interventions would be more efficacious than current, reactive approaches.
Asunto(s)
Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/genética , Rhodnius/genética , Adaptación Biológica/genética , Animales , Vectores de Enfermedades , Ecosistema , Ecuador/epidemiología , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Flujo Génico , Insectos Vectores/genética , Metagenómica/métodos , Polimorfismo de Nucleótido Simple/genética , Densidad de Población , Rhodnius/patogenicidad , Transcriptoma/genética , Trypanosoma cruzi/genéticaRESUMEN
BACKGROUND: Klebsiella pneumoniae is the major cause of nosocomial infections worldwide and is related to a worsening increase in Multidrug-Resistant Bacteria (MDR) and virulence genes that seriously affect immunosuppressed patients, long-stay intensive care patients, elderly individuals, and children. Whole-Genome Sequencing (WGS) has resulted in a useful strategy for characterizing the genomic components of clinically important bacteria, such as K. pneumoniae, enabling them to monitor genetic changes and understand transmission, highlighting the risk of dissemination of resistance and virulence associated genes in hospitals. In this study, we report on WGS 14 clinical isolates of K. pneumoniae from a pediatric hospital biobank of Guayaquil, Ecuador. RESULTS: The main findings revealed pronounced genetic heterogeneity among the isolates. Multilocus sequencing type ST45 was the predominant lineage among non-KPC isolates, whereas ST629 was found more frequently among KPC isolates. Phylogenetic analysis suggested local transmission dynamics. Comparative genomic analysis revealed a core set of 3511 conserved genes and an open pangenome in neonatal isolates. The diversity of MLSTs and capsular types, and the high genetic diversity among these isolates indicate high intraspecific variability. In terms of virulence factors, we identified genes associated with adherence, biofilm formation, immune evasion, secretion systems, multidrug efflux pump transporters, and a notably high number of genes related to iron uptake. A large number of these genes were detected in the ST45 isolate, whereas iron uptake yersiniabactin genes were found exclusively in the non-KPC isolates. We observed high resistance to commonly used antibiotics and determined that these isolates exhibited multidrug resistance including ß-lactams, aminoglycosides, fluoroquinolones, quinolones, trimetropins, fosfomycin and macrolides; additionally, resistance-associated point mutations and cross-resistance genes were identified in all the isolates. We also report the first K. pneumoniae KPC-3 gene producers in Ecuador. CONCLUSIONS: Our WGS results for clinical isolates highlight the importance of MDR in neonatal K. pneumoniae infections and their genetic diversity. WGS will be an imperative strategy for the surveillance of K. pneumoniae in Ecuador, and will contribute to identifying effective treatment strategies for K. pneumoniae infections in critical units in patients at stratified risk.
Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Genoma Bacteriano , Hospitales Pediátricos , Klebsiella pneumoniae , Filogenia , Secuenciación Completa del Genoma , Humanos , Ecuador , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/aislamiento & purificación , Klebsiella pneumoniae/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Niño , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/epidemiología , Factores de Virulencia/genética , Tipificación de Secuencias Multilocus , Preescolar , Lactante , Variación GenéticaRESUMEN
We describe the case of a returned traveler to the United States from Ecuador who had an acute febrile illness, initially diagnosed as Oropouche fever. This illness was later confirmed to be a rare infection with Iquitos virus, a related bunyavirus that shares 2 of 3 genome segments with Oropouche virus.
Asunto(s)
Infecciones por Bunyaviridae , Orthobunyavirus , Filogenia , Viaje , Humanos , Ecuador , Estados Unidos , Orthobunyavirus/genética , Orthobunyavirus/aislamiento & purificación , Orthobunyavirus/clasificación , Infecciones por Bunyaviridae/diagnóstico , Infecciones por Bunyaviridae/virología , Masculino , AdultoRESUMEN
Poison frogs (Dendrobatidae) are famous for their aposematic species, having a combination of diverse color patterns and defensive skin toxins, yet most species in this family are inconspicuously colored and considered non-aposematic. Epipedobates is among the youngest genus-level clades of Dendrobatidae that includes both aposematic and inconspicuous species. Using Sanger-sequenced mitochondrial and nuclear markers, we demonstrate deep genetic divergences among inconspicuous species of Epipedobates but relatively shallow genetic divergences among conspicuous species. Our phylogenetic analysis includes broad geographic sampling of the inconspicuous lineages typically identified as E. boulengeri and E. espinosai, which reveals two putative new species, one in west-central Colombia (E. sp. 1) and the other in north-central Ecuador (E. aff. espinosai). We conclude that E. darwinwallacei is a junior subjective synonym of E. espinosai. We also clarify the geographic distributions of inconspicuous Epipedobates species including the widespread E. boulengeri. We provide a qualitative assessment of the phenotypic diversity in each nominal species, with a focus on the color and pattern of inconspicuous species. We conclude that Epipedobates contains eight known valid species, six of which are inconspicuous. A relaxed molecular clock analysis suggests that the most recent common ancestor of Epipedobates is â¼11.1 million years old, which nearly doubles previous estimates. Last, genetic information points to a center of species diversity in the Chocó at the southwestern border of Colombia with Ecuador. A Spanish translation of this text is available in the supplementary materials.
Asunto(s)
Anuros , Ranas Venenosas , Animales , Filogenia , Anuros/genética , Mitocondrias , EcuadorRESUMEN
Human activity changes multiple factors in the environment, which can have positive or negative synergistic effects on organisms. However, few studies have explored the causal effects of multiple anthropogenic factors, such as urbanization and invasive species, on animals and the mechanisms that mediate these interactions. This study examines the influence of urbanization on the detrimental effect of invasive avian vampire flies (Philornis downsi) on endemic Darwin's finches in the Galápagos Islands. We experimentally manipulated nest fly abundance in urban and non-urban locations and then characterized nestling health, fledging success, diet, and gene expression patterns related to host defense. Fledging success of non-parasitized nestlings from urban (79%) and non-urban (75%) nests did not differ significantly. However, parasitized, non-urban nestlings lost more blood, and fewer nestlings survived (8%) compared to urban nestlings (50%). Stable isotopic values (δ15 N) from urban nestling feces were higher than those from non-urban nestlings, suggesting that urban nestlings are consuming more protein. δ15 N values correlated negatively with parasite abundance, which suggests that diet might influence host defenses (e.g., tolerance and resistance). Parasitized, urban nestlings differentially expressed genes within pathways associated with red blood cell production (tolerance) and pro-inflammatory response (innate immunological resistance), compared to parasitized, non-urban nestlings. In contrast, parasitized non-urban nestlings differentially expressed genes within pathways associated with immunoglobulin production (adaptive immunological resistance). Our results suggest that urban nestlings are investing more in pro-inflammatory responses to resist parasites but also recovering more blood cells to tolerate blood loss. Although non-urban nestlings are mounting an adaptive immune response, it is likely a last effort by the immune system rather than an effective defense against avian vampire flies since few nestlings survived.
Asunto(s)
Pinzones , Muscidae , Parásitos , Animales , Humanos , Pinzones/parasitología , EcuadorRESUMEN
BACKGROUND: Decrease in malaria rates (e.g. incidence and cases) in Latin America maintains this region on track to achieve the goal of elimination. During the last 5 years, three countries have been certified as malaria free. However, the region fails to achieve the goal of 40% reduction on malaria rates and an increase of cases has been reported in some countries, including Ecuador. This scenario has been associated with multiple causes, such as decrease of funding to continue anti-malarial programmes and the development of insecticide resistance of the main malaria vectors. In Ecuador, official reports indicated phenotypic resistance in Aedes aegypti and Anopheles albimanus to deltamethrin and malathion, particularly in the coastal areas of Ecuador, however, information about the mechanisms of resistance have not been yet elucidated. This study aims to evaluate phenotypic response to deltamethrin and its relationship with kdr mutations in An. albimanus from two localities with different agricultural activities in southern coastal Ecuador. METHODS: The CDC bottle assay was carried out to evaluate the phenotypic status of the mosquito's population. Sequencing the voltage gated sodium channel gene (VGSC) sought knockdown mutations (kdr) in codons 1010, 1013 and 1014 associated with resistance. RESULTS: Phenotypic resistance was found in Santa Rosa (63.3%) and suspected resistance in Huaquillas (82.1%); with females presenting a higher median of knockdown rate (83.7%) than males (45.6%). No statistical differences were found between the distributions of knockdown rate for the two localities (p = 0.6048) which indicates no influence of agricultural activity. Although phenotypic resistance was confirmed, genetic analysis demonstrate that this resistance was not related with the kdr mechanism of the VGSC gene because no mutations were found in codons 1010 and 1013, while in codon 1014, 90.6% showed the susceptible sequence (TTG) and 7.3% ambiguous nucleotides (TKK and TYG). CONCLUSIONS: These results highlighted the importance of continuous monitoring of resistance in malaria vectors in Ecuador, particularly in areas that have reported outbreaks during the last years. It is also important to elucidate the mechanism involved in the development of the resistance to PYs to propose alternative insecticides or strategies for vector control in areas where resistance is present.
Asunto(s)
Anopheles , Insecticidas , Malaria , Nitrilos , Animales , Femenino , Anopheles/genética , Codón , Ecuador , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Mosquitos Vectores/genética , Mutación , MasculinoRESUMEN
BACKGROUND: Treatment of Helicobacter pylori gastric infection is complex and associated with increased rates of therapeutic failure. This research aimed to characterize the H. pylori infection status, strain resistance to antimicrobial agents, and the predominant lesion pattern in the gastroduodenal mucosa of patients with clinical suspicion of refractoriness to first- and second-line treatment who were diagnosed and treated in a health center in Guayaquil, Ecuador. METHODS: A total of 374 patients with upper gastrointestinal symptoms and H. pylori infection were preselected and prescribed one of three triple therapy regimens for primary infection, as judged by the treating physician. Subsequently, 121 patients who returned to the follow-up visit with persistent symptoms after treatment were studied. RESULTS: All patients had H. pylori infection. Histopathological examination diagnosed chronic active gastritis in 91.7% of cases; premalignant lesions were observed in 15.8%. The three triple therapy schemes applied showed suboptimal efficacy (between 47.6% and 77.2%), with the best performance corresponding to the scheme consisting of a proton pump inhibitor + amoxicillin + levofloxacin. Bacterial strains showed very high phenotypic resistance to all five antimicrobials tested: clarithromycin, 82.9%; metronidazole, 69.7%; amoxicillin and levofloxacin, almost 50%; tetracycline, 38.2%. Concurrent resistance to clarithromycin-amoxicillin was 43.4%, to tetracycline-metronidazole 30.3%, to amoxicillin-levofloxacin 27.6%, and to clarithromycin-metronidazole 59.2%. CONCLUSIONS: In vitro testing revealed resistance to all five antibiotics, indicating that H. pylori exhibited resistance phenotypes to these antibiotics. Consequently, the effectiveness of triple treatments may be compromised, and further studies are needed to assess refractoriness in quadruple and concomitant therapies.
Asunto(s)
Antiinfecciosos , Infecciones por Helicobacter , Helicobacter pylori , Humanos , Claritromicina/farmacología , Claritromicina/uso terapéutico , Metronidazol/farmacología , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Levofloxacino/farmacología , Ecuador , Antibacterianos/farmacología , Amoxicilina/farmacología , Tetraciclina/uso terapéutico , Tetraciclina/farmacología , Quimioterapia CombinadaRESUMEN
Lobomycosis, also called paracoccidioidomycosis ceti, is a chronic mycotic cutaneous disease affecting odontocetes. Lobomycosis-like disease (LLD) has a clinical presentation consistent with lobomycosis but lacks a histological and molecular diagnosis. We review the literature on lobomycosis aetiology, clinical signs and pathogenesis, species affected and geographic distribution and examine the factors influencing the presence, transmission and prevalence of the disease, to better understand its ecology. In addition, we provide unpublished information on LLD in two common bottlenose dolphin (Tursiops truncatus) communities inhabiting the Gulf of Guayaquil, Ecuador. Lobomycosis and LLD occur in Delphinidae from the Atlantic, Pacific, and Indian Oceans between 33°N and 35°S. Primary risk factors include habitat, sex, age, sociality, and pollution. In dolphins from the Americas and Japan, lobomycosis is caused by Paracoccidioides ceti, family Ajellomycetaceae. The disease is characterized by cutaneous granulomatous lesions that may occur anywhere on the body, grow to large size, and may ulcerate. Histologically, the lesions consist of acanthosis and histiocytic granulomas between the skin and subcutaneous tissues, with inflammatory changes that extend deep into the dermis. Multiple yeast cells with a double refringent layer stained positive using Gomori-Grocott methenamine silver in the dermis of a T. truncatus from Ecuador diagnosed with LLD since 2011, a first record for the Southeast Pacific. Injuries may enable the entry of P. ceti into the dermis while skin contact likely favours transmission, putting males at higher risk than females. Lobomycosis and LLD may have a negative impact on small communities already threatened by anthropogenic factors.
We review lobomycosis and lobomycosis-like disease in cetaceans and give new information for bottlenose dolphins (Tursiops truncatus) from the Gulf of Guayaquil, Ecuador. Caused by Paracoccidioides ceti, the disease affects several dolphin species worldwide, including in Ecuador, for which we present a first record.
Asunto(s)
Lobomicosis , Animales , Ecuador/epidemiología , Lobomicosis/patología , Lobomicosis/microbiología , Lobomicosis/veterinaria , Lobomicosis/epidemiología , Paracoccidioides/aislamiento & purificación , Cetáceos/microbiología , Prevalencia , Factores de Riesgo , Masculino , Piel/microbiología , Piel/patología , Femenino , Paracoccidioidomicosis/veterinaria , Paracoccidioidomicosis/epidemiología , Paracoccidioidomicosis/microbiología , Paracoccidioidomicosis/patologíaRESUMEN
A new fusagra-like virus infecting papaya (Carica papaya L.) was genetically characterized. The genome of the virus, provisionally named "papaya sticky fruit-associated virus" (PSFaV), is a single molecule of double-stranded RNA, 9,199 nucleotides (nt) in length, containing two discontinuous open reading frames. Pairwise sequence comparisons based on complete RNA-dependent-RNA-polymerase (RdRp) sequences revealed identity of 79.4% and 83.3% at the nt and amino acid (aa) level, respectively, to babaco meleira-like virus (BabMelV), an uncharacterized virus sequence discovered in babaco (Vasconcellea x heilbornii) in Ecuador. Additional plant-associated viruses with sequence identity in the 50% range included papaya meleira virus (PMeV) isolates from Brazil. Phylogenetic analysis based on the amino acid sequences of the capsid protein (CP), RdRp, and CP-RdRp fusion protein genes placed PSFaV in a group within a well-supported clade that shares a recent ancestor with Sclerotium rolfsii RNA virus 2 and Phlebiopsis gigantea mycovirus dsRNA 2, two fungus-associated fusagraviruses. Genomic features and phylogenetic relatedness suggest that PSFaV, along with its closest relative BabMelV, represent a species of novel plant-associated virus classified within the recently established family Fusagraviridae.
Asunto(s)
Carica , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas , ARN Viral , Carica/virología , Genoma Viral/genética , Ecuador , Enfermedades de las Plantas/virología , ARN Viral/genética , Secuenciación Completa del Genoma , Virus ARN/genética , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , ARN Polimerasa Dependiente del ARN/genética , Proteínas de la Cápside/genéticaRESUMEN
INTRODUCTION: Carbapenem-resistant gram-negative bacilli are a worldwide concern because of high morbidity and mortality rates. Additionally, the increasing prevalence of these bacteria is dangerous. To investigate the extent of antimicrobial resistance and prioritize the utility of novel drugs, we evaluated the molecular characteristics and antimicrobial susceptibility profiles of carbapenem-resistant Enterobacterales, Pseudomonas aeruginosa and Acinetobacter baumannii in Ecuador in 2022. METHODS: Ninety-five clinical isolates of carbapenem non-susceptible gram-negative bacilli were collected from six hospitals in Ecuador. Carbapenem resistance was confirmed with meropenem disk diffusion assays following Clinical Laboratory Standard Institute guidelines. Carbapenemase production was tested using a modified carbapenemase inactivation method. Antimicrobial susceptibility was tested with a disk diffusion assay, the Vitek 2 System, and gradient diffusion strips. Broth microdilution assays were used to assess colistin susceptibility. All the isolates were screened for the blaKPC, blaNDM, blaOXA-48, blaVIM and blaIMP genes. In addition, A. baumannii isolates were screened for the blaOXA-23, blaOXA-58 and blaOXA-24/40 genes. RESULTS: Carbapenemase production was observed in 96.84% of the isolates. The blaKPC, blaNDM and blaOXA-48 genes were detected in Enterobacterales, with blaKPC being predominant. The blaVIM gene was detected in P. aeruginosa, and blaOXA-24/40 predominated in A. baumannii. Most of the isolates showed co-resistance to aminoglycosides, fluoroquinolones, and trimethoprim/sulfamethoxazole. Both ceftazidime/avibactam and meropenem/vaborbactam were active against carbapenem-resistant gram-negative bacilli that produce serin-carbapenemases. CONCLUSION: The epidemiology of carbapenem resistance in Ecuador is dominated by carbapenemase-producing K. pneumoniae harbouring blaKPC. Extensively drug resistant (XDR) P. aeruginosa and A. baumannii were identified, and their identification revealed the urgent need to implement strategies to reduce the dissemination of these strains.
Asunto(s)
Carbapenémicos , beta-Lactamasas , Humanos , Carbapenémicos/farmacología , Meropenem , Epidemiología Molecular , Ecuador/epidemiología , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Antibacterianos/farmacología , Bacterias Gramnegativas/genética , Klebsiella pneumoniae/genética , Pseudomonas aeruginosa/genéticaRESUMEN
BACKGROUND: Antibiotic resistance of Enterobacterales poses a major challenge in the treatment of urinary tract infections (UTIs). In low- and middle-income countries (LMICs), standard microbiological (i.e. urine culture and simple disk diffusion test) methods are considered the "gold standard" for bacterial identification and drug susceptibility testing, while PCR and DNA sequencing are less commonly used. In this study, we aimed to re-identifying Enterobacterales as the primary bacterial agents responsible for urinary tract infections (UTIs) by comparing the sensitivity and specificity of traditional microbiological methods with advanced molecular techniques for the detection of uropathogens in indigenous women from Otavalo, Ecuador. METHODS: A facility-based cross-sectional study was conducted from October 2021 to February 2022 among Kichwa-Otavalo women. Pathogens from urine samples were identified using culture and biochemical typing. Morphological identification was doble-checked through PCR and DNA sequencing of 16S, recA, and rpoB molecular barcodes. The isolates were subjected to antimicrobial susceptibility-testing using disk diffusion test. RESULTS: This study highlighted a 32% misidentification rate between biochemical and molecular identification. Using traditional methods, E. coli was 26.19% underrepresented meanwhile Klebsiella oxytoca was overrepresented by 92.86%. Furthermore, the genera Pseudomonas, Proteus, and Serratia were confirmed to be E. coli and Klebsiella spp. by molecular method, and one Klebsiella spp. was reidentified as Enterobacter spp. The susceptibility profile showed that 59% of the isolates were multidrug resistant strains and 31% produced extended spectrum beta-lactamases (ESBLs). Co-trimoxazole was the least effective antibiotic with 61% of the isolates resistant. Compared to previous reports, resistance to nitrofurantoin and fosfomycin showed an increase in resistance by 25% and 15%, respectively. CONCLUSIONS: Community-acquired UTIs in indigenous women in Otavalo were primarily caused by E. coli and Klebsiella spp. Molecular identification (16S/rpoB/recA) revealed a high rate of misidentification by standard biochemical and microbiological techniques, which could lead to incorrect antibiotic prescriptions. UTI isolates in this population displayed higher levels of resistance to commonly used antibiotics compared with non-indigenous groups. Accurate identification of pathogens causing UTIs and their antibiotic susceptibility in local populations is important for local antibiotic prescribing guidelines.
Asunto(s)
Antibacterianos , Infecciones Urinarias , Humanos , Infecciones Urinarias/microbiología , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/epidemiología , Femenino , Ecuador/epidemiología , Estudios Transversales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Adulto , Pruebas de Sensibilidad Microbiana , Pueblos Indígenas , Farmacorresistencia Bacteriana/genética , Persona de Mediana Edad , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/genética , Enterobacteriaceae/aislamiento & purificación , Adulto Joven , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/epidemiología , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Infecciones Comunitarias Adquiridas/microbiologíaRESUMEN
BACKGROUND: Venezuelan migration has experienced an unprecedented increase in the last decade, with approximately 7.7 million Venezuelan-born individuals residing in other countries as of 2024. Our study aims to identify the potential and actual demand for healthcare services (SRH) in the Venezuelan diaspora's four primary destinations within the Andean Countries: Colombia, Ecuador, Peru, and Chile. METHODS: Using official data from administrative records, censuses, and sample surveys reported by the host countries and international agencies, we estimate the annual evolution of Venezuelan-born women of reproductive age (WRA) and their offspring. Additionally, we conduct two case studies focusing on Colombia and Chile to analyse the groups most vulnerable to unmet health needs. RESULTS: The population of WRA has increased to between 5 and 6.8%, and births have risen to approximately 3-8% in host countries due to Venezuelan migration. Yet, we found a general decrease in health coverage for certain age groups of Venezuelan female migrants in host countries for the period 2017-2022, particularly in Chile. By 2022, an estimated 20% of healthcare needs remained unmet among children, girls, and younger Venezuelan women, contributing to greater health inequalities between Venezuelan-born adolescents and those from other countries of birth. CONCLUSIONS: Our findings highlight the escalating demand for and limited access to healthcare services among Venezuelan WRA in their destinations. Unmet healthcare needs are particularly prevalent among younger women by 2022, underscoring the urgency for health system to incorporate gender-responsive, equitable interventions and ensuring health rights for high-risk migrant groups such as infants, children, adolescents, and younger women. Addressing these challenges remains a critical task for the regional public health agenda in Latin America.
Asunto(s)
Salud Pública , Humanos , Femenino , Venezuela , Perú , Adolescente , Adulto , Chile , Colombia , Adulto Joven , Persona de Mediana Edad , Ecuador , Accesibilidad a los Servicios de Salud/estadística & datos numéricos , Niño , Necesidades y Demandas de Servicios de Salud/estadística & datos numéricos , Migrantes/estadística & datos numéricosRESUMEN
PURPOSE: Accurate height and weight measurement can be challenging in older adults and complicates nutritional status assessment. Other parameters like the neutrophil-to-lymphocyte ratio (NLR) and the lymphocyte count (LC) could be an option to these measurements. We aimed to test these variables as subrogates of body mass index (BMI) or calf-circumference (CC) for malnutrition screening in community-dwelling older adults. METHODS: This is a secondary analysis from the Salud, Bienestar y Envejecimiento (SABE) survey from Ecuador (2009). Includes data on demographics, health-related factors, physical assessments, and complete blood count, allowing to calculate NLR and LC to be used as part of the Mini Nutritional Assessment (MNA), instead of the BMI. Consequently, 4 models were included: standard MNA, MNA-CC, MNA-NLR and MNA-LC. Finally, age, sex, and comorbidities were considered as confounding variables. RESULTS: In our analysis of 1,663 subjects, 50.81% were women. Positive correlations with standard MNA were found for MNA-NLR (Estimate = 0.654, p < 0.001) MNA-CC (Estimate = 0.875, p value < 0.001) and MNA-LC (Estimate = 0.679, p < 0.001). Bland-Altman plots showed the smallest bias in MNA-CC. Linear association models revealed varying associations between MNA variants and different parameters, being MNA-NLR strongly associated with all of them (e.g. Estimate = 0.014, p = 0.001 for albumin), except BMI. CONCLUSION: The newly proposed model classified a greater number of subjects at risk of malnutrition and fewer with normal nutrition compared to the standard MNA. Additionally, it demonstrated a strong correlation and concordance with the standard MNA. This suggests that hematological parameters may offer an accurate alternative and important insights into malnutrition.
Asunto(s)
Índice de Masa Corporal , Evaluación Geriátrica , Desnutrición , Neutrófilos , Evaluación Nutricional , Humanos , Femenino , Masculino , Anciano , Desnutrición/diagnóstico , Desnutrición/epidemiología , Desnutrición/sangre , Ecuador/epidemiología , Evaluación Geriátrica/métodos , Evaluación Geriátrica/estadística & datos numéricos , Anciano de 80 o más Años , Recuento de Linfocitos/métodos , Linfocitos , Estado Nutricional , Tamizaje Masivo/métodos , Tamizaje Masivo/estadística & datos numéricos , Vida Independiente/estadística & datos numéricosRESUMEN
BACKGROUND: Ion channels, vital transmembrane protein complexes, regulate ion movement within cells. Germline variants in channel-encoding genes lead to channelopathies. The sodium channels in cardiac cells exhibit a structure of an alpha subunit and one to two beta subunits. The alpha subunit, encoded by the SCN5A gene, comprises four domains. CASE PRESENTATION: A fifteen-year-old Ecuadorian female with atrial flutter and abnormal sinus rhythm with no familial history of cardiovascular disease underwent NGS with the TruSight Cardio kit (Illumina). A likely pathogenic SCN5A gene variant (NM_188056.2:c.2677 C > Tp. Arg893Cys) was identified, associated with arrhythmias, long QT, atrial fibrillation, and Brugada syndrome. Ancestral analysis revealed a predominant European component (43.9%), followed by Native American (35.7%) and African (20.4%) components. CONCLUSIONS: The participant presents atrial flutter and conduction disorders, despite lacking typical cardiovascular risk factors. The proband carries a SCN5A variant that has not been previously reported in Latin America and may be associated to her phenotype. The documented arginine-to-cysteine substitution at position 893 in the protein is crucial for various cellular functions. The subject's mixed genetic composition highlights potential genetic contributors to atrial flutter, emphasizing the need for comprehensive genetic studies, particularly in mixed populations like Ecuadorians. This case underscores the importance of genetic analysis for personalized treatment and the significance of studying diverse genetic backgrounds in understanding cardiovascular diseases.