Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Glia ; 72(2): 322-337, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37828900

RESUMEN

Cerebral edema is one of the deadliest complications of ischemic stroke for which there is currently no pharmaceutical treatment. Aquaporin-4 (AQP4), a water-channel polarized at the astrocyte endfoot, is known to be highly implicated in cerebral edema. We previously showed in randomized studies that (S)-roscovitine, a cyclin-dependent kinase inhibitor, reduced cerebral edema 48 h after induction of focal transient ischemia, but its mechanisms of action were unclear. In our recent blind randomized study, we confirmed that (S)-roscovitine was able to reduce cerebral edema by 65% at 24 h post-stroke (t test, p = .006). Immunofluorescence analysis of AQP4 distribution in astrocytes revealed that (S)-roscovitine decreased the non-perivascular pool of AQP4 by 53% and drastically increased AQP4 clusters in astrocyte perivascular end-feet (671%, t test p = .005) compared to vehicle. Non-perivascular and clustered AQP4 compartments were negatively correlated (R = -0.78; p < .0001), suggesting a communicating vessels effect between the two compartments. α1-syntrophin, AQP4 anchoring protein, was colocalized with AQP4 in astrocyte endfeet, and this colocalization was maintained in ischemic area as observed on confocal microscopy. Moreover, (S)-roscovitine increased AQP4/α1-syntrophin interaction (40%, MW p = .0083) as quantified by proximity ligation assay. The quantified interaction was negatively correlated with brain edema in both treated and placebo groups (R = -.57; p = .0074). We showed for the first time, that a kinase inhibitor modulated AQP4/α1-syntrophin interaction, and was implicated in the reduction of cerebral edema. These findings suggest that (S)-roscovitine may hold promise as a potential treatment for cerebral edema in ischemic stroke and as modulator of AQP4 function in other neurological diseases.


Asunto(s)
Edema Encefálico , Accidente Cerebrovascular Isquémico , Humanos , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/etiología , Edema Encefálico/metabolismo , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Isquémico/metabolismo , Roscovitina/uso terapéutico , Roscovitina/metabolismo , Acuaporina 4/metabolismo , Astrocitos/metabolismo
2.
J Neuroinflammation ; 21(1): 106, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658922

RESUMEN

BACKGROUND: Intracerebral hemorrhage (ICH) is a devastating neurological disease causing severe sensorimotor dysfunction and cognitive decline, yet there is no effective treatment strategy to alleviate outcomes of these patients. The Mas axis-mediated neuroprotection is involved in the pathology of various neurological diseases, however, the role of the Mas receptor in the setting of ICH remains to be elucidated. METHODS: C57BL/6 mice were used to establish the ICH model by injection of collagenase into mice striatum. The Mas receptor agonist AVE0991 was administered intranasally (0.9 mg/kg) after ICH. Using a combination of behavioral tests, Western blots, immunofluorescence staining, hematoma volume, brain edema, quantitative-PCR, TUNEL staining, Fluoro-Jade C staining, Nissl staining, and pharmacological methods, we examined the impact of intranasal application of AVE0991 on hematoma absorption and neurological outcomes following ICH and investigated the underlying mechanism. RESULTS: Mas receptor was found to be significantly expressed in activated microglia/macrophages, and the peak expression of Mas receptor in microglia/macrophages was observed at approximately 3-5 days, followed by a subsequent decline. Activation of Mas by AVE0991 post-treatment promoted hematoma absorption, reduced brain edema, and improved both short- and long-term neurological functions in ICH mice. Moreover, AVE0991 treatment effectively attenuated neuronal apoptosis, inhibited neutrophil infiltration, and reduced the release of inflammatory cytokines in perihematomal areas after ICH. Mechanistically, AVE0991 post-treatment significantly promoted the transformation of microglia/macrophages towards an anti-inflammatory, phagocytic, and reparative phenotype, and this functional phenotypic transition of microglia/macrophages by Mas activation was abolished by both Mas inhibitor A779 and Nrf2 inhibitor ML385. Furthermore, hematoma clearance and neuroprotective effects of AVE0991 treatment were reversed after microglia depletion in ICH. CONCLUSIONS: Mas activation can promote hematoma absorption, ameliorate neurological deficits, alleviate neuron apoptosis, reduced neuroinflammation, and regulate the function and phenotype of microglia/macrophages via Akt/Nrf2 signaling pathway after ICH. Thus, intranasal application of Mas agonist ACE0991 may provide promising strategy for clinical treatment of ICH patients.


Asunto(s)
Hematoma , Accidente Cerebrovascular Hemorrágico , Ratones Endogámicos C57BL , Receptores Acoplados a Proteínas G , Recuperación de la Función , Animales , Ratones , Hematoma/tratamiento farmacológico , Hematoma/patología , Hematoma/metabolismo , Masculino , Accidente Cerebrovascular Hemorrágico/patología , Accidente Cerebrovascular Hemorrágico/tratamiento farmacológico , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Proteínas Proto-Oncogénicas/metabolismo , Edema Encefálico/etiología , Edema Encefálico/metabolismo , Edema Encefálico/tratamiento farmacológico , Microglía/efectos de los fármacos , Microglía/metabolismo
3.
J Pharmacokinet Pharmacodyn ; 51(3): 227-242, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38308741

RESUMEN

Balovaptan is a brain-penetrating vasopressin receptor 1a antagonist previously investigated for the core symptoms of autism spectrum disorder (ASD). A population pharmacokinetic (PK) model of balovaptan was developed, initially to assist clinical dosing for adult and pediatric ASD studies and subsequently for new clinical indications including malignant cerebral edema (MCE) and post-traumatic stress disorder. The final model incorporates one-compartment disposition and describes time- and dose-dependent non-linear PK through empirical drug binding and a gut extraction component with turnover. An age effect on clearance observed in children was modeled by an asymptotic function that predicts adult-equivalent exposures at 40% of the adult dose for children aged 2-4 years, 70% for 5-9 years, and at the full adult dose for ≥ 10 years. The model was adapted for intravenous (IV) balovaptan dosing and combined with in vitro and ex vivo pharmacodynamic data to simulate brain receptor occupancy as a guide for dosing in a phase II trial of MCE prophylaxis after acute ischemic stroke. A sequence of three stepped-dose daily infusions of 50, 25 and 15 mg over 30 or 60 min was predicted to achieve a target occupancy of ≥ 80% in ≥ 95% of patients over a 3-day period. This model predicts both oral and IV balovaptan exposure across a wide age range and will be a valuable tool to analyze and predict its PK in new indications and target populations, including pediatric patients.


Asunto(s)
Relación Dosis-Respuesta a Droga , Modelos Biológicos , Humanos , Niño , Preescolar , Adulto , Antagonistas de los Receptores de Hormonas Antidiuréticas/farmacocinética , Antagonistas de los Receptores de Hormonas Antidiuréticas/administración & dosificación , Adolescente , Masculino , Femenino , Benzazepinas/farmacocinética , Benzazepinas/administración & dosificación , Adulto Joven , Edema Encefálico/tratamiento farmacológico , Persona de Mediana Edad , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos
4.
Brain Inj ; 38(7): 524-530, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38433503

RESUMEN

BACKGROUND: Autophagy is recognized as a promising therapeutic target for traumatic brain injury (TBI). Crocetin is an aglycone of crocin naturally occurring in saffron and has been found to alleviate brain injury diseases. However, whether crocetin affects autophagy after TBI remains unknown. Therefore, we explore crocetin roles in autophagy after TBI. METHODS: We used a weight-dropped model to induce TBI in C57BL/6J mice. Neurological severity scoring (NSS) and grip tests were used to evaluate the neurological level of injury. Brain edema, neuronal apoptosis, neuroinflammation and autophagy were detected by measurements of brain water content, TUNEL staining, ELISA kits and western blotting. RESULTS: Crocetin ameliorated neurological dysfunctions and brain edema after TBI. Crocetin reduced neuronal apoptosis and neuroinflammation and enhanced autophagy after TBI. CONCLUSION: Crocetin alleviates TBI by inhibiting neuronal apoptosis and neuroinflammation and activating autophagy.


Asunto(s)
Apoptosis , Autofagia , Lesiones Traumáticas del Encéfalo , Carotenoides , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Fármacos Neuroprotectores , Vitamina A , Animales , Carotenoides/farmacología , Carotenoides/uso terapéutico , Vitamina A/análogos & derivados , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/patología , Autofagia/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ratones , Masculino , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Edema Encefálico/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Encéfalo/patología , Neuronas/efectos de los fármacos , Neuronas/patología
5.
J Stroke Cerebrovasc Dis ; 33(7): 107738, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38701940

RESUMEN

OBJECTIVES: Edaravone dexborneol is neuroprotective against ischemic stroke, with free radical-scavenging and anti-inflammatory effects, but its effects in hemorrhagic stroke remain unclear. We evaluated whether edaravone dexborneol has a neuroprotective effect in intracerebral hemorrhage, and its underlying mechanisms. MATERIALS AND METHODS: Bioinformatics were used to predict the pathway of action of edaravone dexborneol. An intracerebral hemorrhage model was established using type IV collagenase in edaravone dexborneol, intracerebral hemorrhage, Sham, adeno-associated virus + edaravone dexborneol, and adeno-associated virus + intracerebral hemorrhage groups. The modified Neurological Severity Score was used to evaluate neurological function in rats. Brain water content was measured using the dry-wet weight method. Tumor necrosis factor-α, interleukin-1ß, inducible nitric oxide synthase, and γ-aminobutyric acid levels were determined by enzyme-linked immunosorbent assay. The expression levels of neurofilament light chain and γ-aminobutyric acid transaminase were determined by western blot. Nissl staining was used to examine neuronal morphology. Cognitive behavior was evaluated using a small-animal treadmill. RESULTS: Edaravone dexborneol alleviated neurological defects, improved cognitive function, and reduced cerebral edema, neuronal degeneration, and necrosis in rats with cerebral hemorrhage. The expression levels of neurofilament light chain, tumor necrosis factor-α, interleukin-1ß, inducible nitric oxide synthase, and γ-aminobutyric acid were decreased, while γ-aminobutyric acid transaminase expression was up-regulated. CONCLUSIONS: Edaravone dexborneol regulates γ-aminobutyric acid content by acting on the γ-aminobutyric acid transaminase signaling pathway, thus alleviating oxidative stress, neuroinflammation, neuronal degeneration, and death caused by excitatory toxic injury of neurons after intracerebral hemorrhage.


Asunto(s)
Edema Encefálico , Modelos Animales de Enfermedad , Edaravona , Interleucina-1beta , Fármacos Neuroprotectores , Ratas Sprague-Dawley , Animales , Edaravona/farmacología , Masculino , Fármacos Neuroprotectores/farmacología , Interleucina-1beta/metabolismo , Edema Encefálico/patología , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/metabolismo , Edema Encefálico/enzimología , Edema Encefálico/prevención & control , 4-Aminobutirato Transaminasa/metabolismo , 4-Aminobutirato Transaminasa/antagonistas & inhibidores , Conducta Animal/efectos de los fármacos , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patología , Hemorragia Cerebral/enzimología , Antiinflamatorios/farmacología , Cognición/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/metabolismo , Encéfalo/enzimología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Mediadores de Inflamación/metabolismo
6.
J Neurosurg Sci ; 68(1): 109-116, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38299491

RESUMEN

BACKGROUND: This pilot study in post-stroke patients evaluated the effects of supplementation with Pycnogenol® on alterations in cognitive functions (COFU) over a period of 6 months, starting 4 weeks after the stroke. METHODS: The effects of supplementation - possibly acting on residual brain edema, on global cognitive function, attention and on mental performance - were studied. A control group used standard management (SM) and the other group added Pycnogenol®, 150 mg daily to SM. RESULTS: 38 post-stroke patients completed the 6-month-study, 20 in the Pycnogenol® group and 18 in the control group. No side effects were observed with the supplement. The tolerability was very good. The patients included into the two groups were comparable for age, sex and clinical distribution. There were 2 dropouts in the control group, due to non-medical problems. Main COFU parameters (assessed by a cognitive questionnaire) were significantly improved (all single items) with the supplement compared to controls (P<0.05). Additional observations indicate that Pycnogenol® patients experienced significantly less mini-accidents (including falls) than controls (P<0.05). The incidences of (minor) psychotic episodes or conflicts and distress and other problems including rare occurrence of minor hallucinations, were lower with the supplementation than in controls (P<0.05). Single observations concerning daily tasks indicated a better effect of Pycnogenol® compared to controls (P<0.05). Plasma free radicals also decreased significantly with the supplement in comparison to controls (P<0.05). Globally, supplemented subjects had a better recovery than controls. CONCLUSIONS: In post-stroke subjects, Pycnogenol® supplementation resulted in better recovery outcome and faster COFU 'normalization' after the stroke in comparison with SM; it can be considered a safe, manageable post-stroke, adjuvant management possibly reducing local brain edema. Nevertheless, more patients and a longer period of evaluation are needed to confirm these results.


Asunto(s)
Edema Encefálico , Humanos , Proyectos Piloto , Edema Encefálico/tratamiento farmacológico , Cognición , Extractos Vegetales/uso terapéutico , Extractos Vegetales/farmacología , Flavonoides/farmacología , Flavonoides/uso terapéutico , Suplementos Dietéticos , Sistema de Registros
7.
Int Immunopharmacol ; 131: 111869, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38492343

RESUMEN

BACKGROUND AND PURPOSE: It has been reported activation of NLRP3 inflammasome after intracerebral hemorrhage (ICH) ictus exacerbates neuroinflammation and brain injury. We hypothesized that inhibition of NLRP3 by OLT1177 (dapansutrile), a novel NLRP3 inflammasome inhibitor, could reduce brain edema and attenuate brain injury in experimental ICH. METHODS: ICH was induced by injection of autologous blood into basal ganglia in mice models. Sixty-three C57Bl/6 male mice were randomly grouped into the sham, vehicle, OLT1177 (Dapansutrile, 200 mg/kg intraperitoneally) and treated for consecutive three days, starting from 1 h after ICH surgery. Behavioral test, brain edema, brain water content, blood-brain barrier integrity and vascular permeability, cell apoptosis, and NLRP3 and its downstream protein levels were measured. RESULTS: OLT1177 significantly reduced cerebral edema after ICH and contributed to the attenuation of neurological deficits. OLT1177 could preserve blood-brain barrier integrity and lessen vascular leakage. In addition, OLT1177 preserved microglia morphological shift and significantly inhibited the activation of caspase-1 and release of IL-1ß. We also found that OLT1177 can protect against neuronal loss in the affected hemisphere. CONCLUSIONS: OLT1177 (dapansutrile) could significantly attenuate the brain edema after ICH and effectively alleviate the neurological deficit. This result suggests that the novel NLRP3 inhibitor, OLT1177, might serve as a promising candidate for the treatment of ICH.


Asunto(s)
Edema Encefálico , Lesiones Encefálicas , Nitrilos , Sulfonas , Ratones , Masculino , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/metabolismo , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Lesiones Encefálicas/metabolismo
8.
World Neurosurg ; 185: e750-e757, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38423457

RESUMEN

BACKGROUND: Ischemic stroke significantly contributes to high mortality and disability rates. Cerebral edema is a common consequence of ischemic stroke and can lead to aggravation or even death. Current treatment strategies are limited to decompressive craniectomy and the intravascular administration of hypertonic drugs, which have significant side effects. Acetazolamide (ACZ) plays a therapeutic role in cerebral edema by inhibiting aquaporin-4 (AQP-4) and improving collateral circulation. This study aimed to perform a meta-analysis and systematic review of ACZ therapy for ischemic stroke and evaluate its efficacy in animal models. METHODS: We searched Embase, Cochrane Library, PubMed, Web of Science, Chinese National Knowledge Infrastructure, Wanfang Database, and Chinese Biomedical Literature Database until April 2023 for studies on ACZ in ischemic animal models. The quality of the animal trials was assessed using the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Stroke. RESULTS: After screening 376 articles, only 5 studies were included. We found that ACZ reduced brain edema in cerebral ischemia 24 hours after onset (standard mean difference, -2.00; 95% confidence interval, -3.57 to -0.43, P = 0.01). ACZ also inhibited AQP-4 expression 24 hours after onset (standard mean difference-1.46; 95% confidence interval, -2.01 to -0.91, P < 0.001). Brain edema and AQP-4 expression also showed a declining trend on the third day after onset, although there were not enough data to support this. The effect of ACZ on brain ischemia in animals' neurological function is uncertain because of the limited research data. CONCLUSIONS: ACZ inhibited AQP-4 and alleviated brain edema after ischemic stroke in the early stages but seemingly could not improve the neurological function.


Asunto(s)
Acetazolamida , Edema Encefálico , Accidente Cerebrovascular Isquémico , Acetazolamida/uso terapéutico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Animales , Edema Encefálico/etiología , Edema Encefálico/tratamiento farmacológico , Humanos , Resultado del Tratamiento , Acuaporina 4 , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Modelos Animales de Enfermedad
9.
Aging (Albany NY) ; 16(11): 9959-9971, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38850525

RESUMEN

This meta-analysis aimed to describe the efficacy of bumetanide in improving infarct volume, brain edema, and behavioral outcomes in animal models of cerebral ischemia. Embase, PubMed and Web of Science databases were searched from their inception to February 2024 (INPLASY:202430023). Data on the animal species, stroke model, drug dose, time of treatment, method of administration, study quality, and outcomes were extracted and pooled in a meta-analysis. The combined standardized mean difference (SMD) or mean difference (MD) estimates and 95% confidence intervals (CIs) were calculated using random- or fixed-effects models. Thirteen eligible studies involving >200 animals fulfilled the inclusion criteria and were included in this meta-analysis. Meta-analyses demonstrated that bumetanide treatment significantly reduced cerebral infarct volume (SMD: -0.42; 95% CI: -0.75, -0.09; p < 0.01; n = 186 animals) and consistently relieved brain edema (SMD: -1.39; 95% CI: -2.06, -0.72; p < 0.01; n = 64 animals). Subgroup analyses demonstrated that bumetanide treatment reduced infarct volume in transient but not permanent cerebral ischemia models. When administered after the stroke, it was more effective than treatment initiation before the stroke. Eight studies assessed the effect of bumetanide on behavioral function and the results showed that bumetanide treatment significantly improved neurobehavioral deficits (SMD: -2.35; 95% CI: -2.72, -1.97; p < 0.01; n = 250 animals). We conclude that bumetanide appears to be effective in reducing infarct volume and brain edema and improving behavioral recovery in animal models of cerebral ischemia. This mechanism needs to be confirmed through further investigation.


Asunto(s)
Bumetanida , Modelos Animales de Enfermedad , Accidente Cerebrovascular Isquémico , Bumetanida/uso terapéutico , Bumetanida/farmacología , Animales , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/patología , Edema Encefálico/tratamiento farmacológico , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/uso terapéutico , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología
10.
Exp Neurol ; 374: 114705, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38290652

RESUMEN

RIPK1, a receptor-interacting serine/threonine protein kinase, plays a crucial role in maintaining cellular and tissue homeostasis by integrating inflammatory responses and cell death signaling pathways including apoptosis and necroptosis, which have been implicated in diverse physiological and pathological processes. Suppression of RIPK1 activation is a promising strategy for restraining the pathological progression of many human diseases. Neuroinflammation and neuronal apoptosis are two pivotal factors in the pathogenesis of brain injury following subarachnoid hemorrhage (SAH). In this study, we established in vivo and in vitro models of SAH to investigate the activation of RIPK1 kinase in both microglia and neurons. We observed the correlation between RIPK1 kinase activity and microglia-mediated inflammation as well as neuronal apoptosis. We then investigated whether inhibition of RIPK1 could alleviate neuroinflammation and neuronal apoptosis following SAH, thereby reducing brain edema and ameliorating neurobehavioral deficits. Additionally, the underlying mechanisms were also explored. Our research findings revealed the activation of RIPK1 kinase in both microglia and neurons following SAH, as marked by the phosphorylation of RIPK1 at serine 166. The upregulation of p-RIPK1(S166) resulted in a significant augmentation of inflammatory cytokines and chemokines, including TNF-α, IL-6, IL-1α, CCL2, and CCL5, as well as neuronal apoptosis. The activation of RIPK1 in microglia and neurons following SAH could be effectively suppressed by administration of Nec-1 s, a specific inhibitor of RIPK1. Consequently, inhibition of RIPK1 resulted in a downregulation of inflammatory cytokines and chemokines and attenuation of neuronal apoptosis after SAH in vitro. Furthermore, the administration of Nec-1 s effectively mitigated neuroinflammation, neuronal apoptosis, brain edema, and neurobehavioral deficits in mice following SAH. Our findings suggest that inhibiting RIPK1 kinase represents a promising therapeutic strategy for mitigating brain injury after SAH by attenuating RIPK1-driven neuroinflammation and neuronal apoptosis.


Asunto(s)
Edema Encefálico , Lesiones Encefálicas , Hemorragia Subaracnoidea , Animales , Ratones , Apoptosis , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/etiología , Lesiones Encefálicas/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Enfermedades Neuroinflamatorias , Ratas Sprague-Dawley , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Serina , Hemorragia Subaracnoidea/metabolismo
11.
Neuroreport ; 35(6): 352-360, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38526937

RESUMEN

An imbalance of immune/inflammatory reactions aggravates secondary brain injury after traumatic brain injury (TBI) and can deteriorate clinical prognosis. So far, not enough therapeutic avenues have been found to prevent such an imbalance in the clinical setting. Progesterone has been shown to regulate immune/inflammatory reactions in many diseases and conveys a potential protective role in TBI. This study was designed to investigate the neuroprotective effects of progesterone associated with immune/inflammatory modulation in experimental TBI. A TBI model in adult male C57BL/6J mice was created using a controlled contusion instrument. After injury, the mice received consecutive progesterone therapy (8 mg/kg per day, i.p.) until euthanized. Neurological deficits were assessed via Morris water maze test. Brain edema was measured via the dry-wet weight method. Immunohistochemical staining and flow cytometry were used to examine the numbers of immune/inflammatory cells, including IBA-1 + microglia, myeloperoxidase + neutrophils, and regulatory T cells (Tregs). ELISA was used to detect the concentrations of IL-1ß, TNF-α, IL-10, and TGF-ß. Our data showed that progesterone therapy significantly improved neurological deficits and brain edema in experimental TBI, remarkably increased regulatory T cell numbers in the spleen, and dramatically reduced the activation and infiltration of inflammatory cells (microglia and neutrophils) in injured brain tissue. In addition, progesterone therapy decreased the expression of the pro-inflammatory cytokines IL-1ß and TNF-α but increased the expression of the anti-inflammatory cytokine IL-10 after TBI. These findings suggest that progesterone administration could be used to regulate immune/inflammatory reactions and improve outcomes in TBI.


Asunto(s)
Edema Encefálico , Lesiones Traumáticas del Encéfalo , Ratones , Masculino , Animales , Interleucina-10 , Progesterona/farmacología , Neuroprotección , Factor de Necrosis Tumoral alfa/metabolismo , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/etiología , Edema Encefálico/prevención & control , Ratones Endogámicos C57BL , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Citocinas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Modelos Animales de Enfermedad , Microglía/metabolismo
12.
Fitoterapia ; 177: 106098, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38950636

RESUMEN

Brain edema after ischemic stroke could worsen cerebral injury in patients who received intravenous thrombolysis. Cornus officinalis Sieb. et Zucc., a long-established traditional Chinese medicine, is beneficial to the treatment of neurodegenerative diseases including ischemic stroke. In particular, its major component, cornel iridoid glycoside (CIG), was evidenced to exhibit neuroprotective effects against cerebral ischemic/reperfusion injury (CIR/I). Aimed to explore the effects of the CIG on brain edema of the CIR/I rats, the CIG was analyzed with the main constituents by using HPLC. The molecular docking analysis was performed between the CIG constituents and AQP4-M23. TGN-020, an AQP4 inhibitor, was used as a comparison. In the in vivo experiments, the rats were pre-treated with the CIG and were injured by performing middle cerebral artery occlusion/reperfusion (MCAO/R). After 24 h, the rats were examined for neurological function, pathological changes, brain edema, and polarized Aqp4 expressions in the brain. The HPLC analysis indicated that the CIG was composed of morroniside and loganin. The molecular docking analysis showed that both morroniside and loganin displayed lower binding energies to AQP4-M23 than TGN-020. The CIG pre-treated rats exhibited fewer neurological function deficits, minimized brain swelling, and reduced lesion volumes compared to the MCAO/R rats. In the peri-infarct and infarct regions, the CIG pre-treatment restored the polarized Aqp4 expression which was lost in the MCAO/R rats. The results suggested that the CIG could attenuate brain edema of the cerebral ischemia/reperfusion rats by modulating the polarized Aqp4 through the interaction of AQP4-M23 with morroniside and loganin.


Asunto(s)
Acuaporina 4 , Edema Encefálico , Cornus , Glicósidos Iridoides , Iridoides , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores , Daño por Reperfusión , Animales , Masculino , Ratas , Acuaporina 4/metabolismo , Encéfalo/efectos de los fármacos , Edema Encefálico/tratamiento farmacológico , Isquemia Encefálica/tratamiento farmacológico , Cornus/química , Glicósidos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Glicósidos Iridoides/farmacología , Glicósidos Iridoides/aislamiento & purificación , Iridoides/farmacología , Estructura Molecular , Fármacos Neuroprotectores/farmacología , Ratas Sprague-Dawley , Daño por Reperfusión/tratamiento farmacológico
13.
Nutrients ; 16(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38931235

RESUMEN

Stroke is the world's second-leading cause of death. Current treatments for cerebral edema following intracerebral hemorrhage (ICH) mainly involve hyperosmolar fluids, but this approach is often inadequate. Propolis, known for its various beneficial properties, especially antioxidant and anti-inflammatory properties, could potentially act as an adjunctive therapy and help alleviate stroke-associated injuries. The chemical composition of Geniotrigona thoracica propolis extract was analyzed by GC-MS after derivatization for its total phenolic and total flavonoid content. The total phenolic content and total flavonoid content of the propolis extract were 1037.31 ± 24.10 µg GAE/mL and 374.02 ± 3.36 µg QE/mL, respectively. By GC-MS analysis, its major constituents were found to be triterpenoids (22.4% of TIC). Minor compounds, such as phenolic lipids (6.7% of TIC, GC-MS) and diterpenic acids (2.3% of TIC, GC-MS), were also found. Ninety-six Sprague Dawley rats were divided into six groups; namely, the control group, the ICH group, and four ICH groups that received the following therapies: mannitol, propolis extract (daily oral propolis administration after the ICH induction), propolis-M (propolis and mannitol), and propolis-B+A (daily oral propolis administration 7 days prior to and 72 h after the ICH induction). Neurocognitive functions of the rats were analyzed using the rotarod challenge and Morris water maze. In addition, the expression of NF-κB, SUR1-TRPM4, MMP-9, and Aquaporin-4 was analyzed using immunohistochemical methods. A TUNEL assay was used to assess the percentage of apoptotic cells. Mannitol significantly improved cognitive-motor functions in the ICH group, evidenced by improved rotarod and Morris water maze completion times, and lowered SUR-1 and Aquaporin-4 levels. It also significantly decreased cerebral edema by day 3. Similarly, propolis treatments (propolis-A and propolis-B+A) showed comparable improvements in these tests and reduced edema. Moreover, combining propolis with mannitol (propolis-M) further enhanced these effects, particularly in reducing edema and the Virchow-Robin space. These findings highlight the potential of propolis from the Indonesian stingless bee, Geniotrigona thoracica, from the Central Tapanuli region as a neuroprotective, adjunctive therapy.


Asunto(s)
Hemorragia Cerebral , Modelos Animales de Enfermedad , Fármacos Neuroprotectores , Própolis , Ratas Sprague-Dawley , Animales , Própolis/farmacología , Própolis/química , Fármacos Neuroprotectores/farmacología , Hemorragia Cerebral/tratamiento farmacológico , Abejas , Ratas , Masculino , Flavonoides/farmacología , Flavonoides/análisis , Antioxidantes/farmacología , Edema Encefálico/tratamiento farmacológico , Cromatografía de Gases y Espectrometría de Masas , Fenoles/farmacología , Fenoles/análisis
14.
CNS Neurosci Ther ; 30(6): e14796, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867395

RESUMEN

AIMS: The extent of perihematomal edema following intracerebral hemorrhage (ICH) significantly impacts patient prognosis, and disruption of the blood-brain barrier (BBB) exacerbates perihematomal edema. However, the role of peripheral IL-10 in mitigating BBB disruption through pathways that link peripheral and central nervous system signals remains poorly understood. METHODS: Recombinant IL-10 was administered to ICH model mice via caudal vein injection, an IL-10-inhibiting adeno-associated virus and an IL-10 receptor knockout plasmid were delivered intraventricularly, and neurobehavioral deficits, perihematomal edema, BBB disruption, and the expression of JAK1 and STAT3 were evaluated. RESULTS: Our study demonstrated that the peripheral cytokine IL-10 mitigated BBB breakdown, perihematomal edema, and neurobehavioral deficits after ICH and that IL-10 deficiency reversed these effects, likely through the IL-10R/JAK1/STAT3 signaling pathway. CONCLUSIONS: Peripheral IL-10 has the potential to reduce BBB damage and perihematomal edema following ICH and improve patient prognosis.


Asunto(s)
Edema Encefálico , Hemorragia Cerebral , Interleucina-10 , Janus Quinasa 1 , Receptores de Interleucina-10 , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Factor de Transcripción STAT3/metabolismo , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Edema Encefálico/etiología , Edema Encefálico/tratamiento farmacológico , Janus Quinasa 1/metabolismo , Janus Quinasa 1/antagonistas & inhibidores , Interleucina-10/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo
15.
Brain Res Bull ; 215: 111033, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032586

RESUMEN

Brain Muscle ARNT-Like Protein 1 (BMAL1) suppresses oxidative stress in brain injury during surgery. Epigallocatechin-3-gallate (EGCG), a monomer in green tea, has been identified as an antioxidant and a potential agonist for BMAL1. In this work, the mechanism by which BMAL1 is regulated was investigated, as well as the therapeutic effect of EGCG on surgically injured rats. The pathological environment after brain injury during surgery was simulated by excising the right frontal lobe of rats. Rats received an intraperitoneal injection of EGCG immediately after surgery. Neurological scores and cerebral edema were recorded after surgery. Fluoro-Jade C staining, TUNEL staining, western blot, and lipid peroxidation analyses were conducted 3 days later. Here we show that the endogenous BMAL1 level decreased after brain injury. Postoperative administration of EGCG up-regulated the content of BMAL1 around the cerebral cortex, reduced the oxidative stress level, reduced neuronal apoptosis and the number of degenerated neurons, alleviated cerebral edema, and improved neurological scores in rats. This suggests that BMAL1 is an effective target for treating surgical brain injury, as well as that EGCG may be a promising agent for alleviating postoperative brain injury.


Asunto(s)
Factores de Transcripción ARNTL , Catequina , Ratas Sprague-Dawley , Regulación hacia Arriba , Animales , Catequina/análogos & derivados , Catequina/farmacología , Factores de Transcripción ARNTL/metabolismo , Masculino , Regulación hacia Arriba/efectos de los fármacos , Ratas , Estrés Oxidativo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Modelos Animales de Enfermedad , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/tratamiento farmacológico , Edema Encefálico/metabolismo , Edema Encefálico/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Antioxidantes/farmacología
16.
Naunyn Schmiedebergs Arch Pharmacol ; 397(8): 5807-5817, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38321211

RESUMEN

Traumatic brain injury (TBI) is a significant cause of disability and mortality worldwide, and effective treatment options are currently limited. Monocyte locomotion inhibitor factor (MLIF), a small molecular pentapeptide, has demonstrated a protective effect against cerebral ischemia. This study aimed to investigate the protective effects of MLIF on TBI and explore its underlying mechanism of action. In animal experiments, we observed that administration of MLIF after TBI reduced brain water content and improved brain edema, suggesting a certain degree of protection against TBI. By utilizing network pharmacology methodologies, we employed target screening techniques to identify the potential targets of MLIF in the context of TBI. As a result, we successfully enriched ten signaling pathways that are closely associated with TBI. Furthermore, using molecular docking techniques, we identified AQP4 as one of the top ten central genes discovered in this study. Eventually, our study demonstrated that MLIF exhibits anti-apoptotic properties and suppresses the expression of AQP4 protein, thus playing a protective role in traumatic brain injury. This conclusion was supported by TUNEL staining and the evaluation of Bcl-2, Bax, and AQP4 protein levels. These discoveries enhance our comprehension of the mechanisms by which MLIF exerts its protective effects and highlight its potential as a promising therapeutic intervention for TBI treatment.


Asunto(s)
Acuaporina 4 , Lesiones Traumáticas del Encéfalo , Simulación del Acoplamiento Molecular , Farmacología en Red , Fármacos Neuroprotectores , Acuaporina 4/metabolismo , Acuaporina 4/genética , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Animales , Masculino , Fármacos Neuroprotectores/farmacología , Oligopéptidos/farmacología , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/metabolismo , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ratas Sprague-Dawley , Modelos Animales de Enfermedad
17.
Neuroreport ; 35(11): 679-686, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38874950

RESUMEN

Intracerebral hemorrhage (ICH) is a significant public health matter that has no effective treatment. ICH-induced destruction of the blood-brain barrier (BBB) leads to neurological deterioration. Astrocytic sonic hedgehog (SHH) alleviates brain injury by maintaining the integrity of the BBB after ICH. Silent information regulator 1 (SIRT1) is neuroprotective in several central nervous system diseases via BBB regulation. It is also a possible influential factor of the SHH signaling pathway. Nevertheless, the role of SIRT1 on BBB and the underlying pathological process associated with the SHH signaling pathway after ICH remain unclear. We established an intracerebral hemorrhagic mouse model by collagenase injection. SRT1720 (a selective agonist of SIRT1) was used to evaluate the effect of SIRT1 on BBB integrity after ICH. SIRT1 expression was reduced in the mouse brain after ICH. SRT1720 attenuated neurobehavioral impairments and brain edema of ICH mouse. After ICH induction, SRT1720 improved BBB integrity and tight junction expressions in the mouse brain. The SHH signaling pathway-related factors smoothened and glioma-associated oncogene homolog-1 were increased with the intervention of SRT1720, while cyclopamine (a specific inhibitor of the SHH signaling pathway) reversed these effects. These findings suggest that SIRT1 protects from ICH by altering BBB permeability and tight junction expression levels. This process is associated with the SHH signaling pathway, suggesting that SIRT1 may be a potential therapeutic target for ICH.


Asunto(s)
Barrera Hematoencefálica , Hemorragia Cerebral , Compuestos Heterocíclicos de 4 o más Anillos , Sirtuina 1 , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Sirtuina 1/metabolismo , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/tratamiento farmacológico , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Masculino , Ratones , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/agonistas , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/metabolismo , Transducción de Señal/efectos de los fármacos
18.
Brain Res ; 1834: 148907, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38570153

RESUMEN

BACKGROUND: Traumatic brain injury (TBI), as a major public health problem, is characterized by high incidence rate, disability rate, and mortality rate. Neuroinflammation plays a crucial role in the pathogenesis of TBI. Triggering receptor expressed on myeloid cells-1 (TREM-1) is recognized as an amplifier of the inflammation in diseases of the central nervous system (CNS). However, the function of TREM-1 remains unclear post-TBI. This study aimed to investigate the function of TREM-1 in neuroinflammation induced by TBI. METHODS: Brain water content (BWC), modified neurological severity score (mNSS), and Morris Water Maze (MWM) were measured to evaluate the effect of TREM-1 inhibition on nervous system function and outcome after TBI. TREM-1 expression in vivo was evaluated by Western blotting. The cellular localization of TREM-1 in the damaged region was observed via immunofluorescence staining. We also conducted Western blotting to examine expression of SYK, p-SYK and other downstream proteins. RESULTS: We found that inhibition of TREM-1 reduced brain edema, decreased mNSS and improved neurobehavioral outcomes after TBI. It was further determined that TREM-1 was expressed on microglia and modulated subtype transition of microglia. Inhibition of TREM-1 alleviated neuroinflammation, which was associated with SYK/p38MAPK signaling pathway. CONCLUSIONS: These findings suggest that TREM-1 can be a potential clinical therapeutic target for alleviating neuroinflammation after TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Microglía , Enfermedades Neuroinflamatorias , Quinasa Syk , Receptor Activador Expresado en Células Mieloides 1 , Proteínas Quinasas p38 Activadas por Mitógenos , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Animales , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Receptor Activador Expresado en Células Mieloides 1/antagonistas & inhibidores , Microglía/metabolismo , Microglía/efectos de los fármacos , Quinasa Syk/metabolismo , Quinasa Syk/antagonistas & inhibidores , Masculino , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Edema Encefálico/metabolismo , Edema Encefálico/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones Endogámicos C57BL
19.
Neuropharmacology ; 257: 110054, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950691

RESUMEN

Vasogenic brain edema, a potentially life-threatening consequence following an acute ischemic stroke, is a major clinical problem. This research aims to explore the therapeutic benefits of nimodipine, a calcium channel blocker, in mitigating vasogenic cerebral edema and preserving blood-brain barrier (BBB) function in an ischemic stroke rat model. In this research, animals underwent the induction of ischemic stroke via a 60-min blockage of the middle cerebral artery and treated with a nonhypotensive dose of nimodipine (1 mg/kg/day) for a duration of five days. The wet/dry method was employed to identify cerebral edema, and the Evans blue dye extravasation technique was used to assess the permeability of the BBB. Furthermore, immunofluorescence staining was utilized to assess the protein expression levels of matrix metalloproteinase-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1). The study also examined mitochondrial function by evaluating mitochondrial swelling, succinate dehydrogenase (SDH) activity, the collapse of mitochondrial membrane potential (MMP), and the generation of reactive oxygen species (ROS). Post-stroke administration of nimodipine led to a significant decrease in cerebral edema and maintained the integrity of the BBB. The protective effects observed were associated with a reduction in cell apoptosis as well as decreased expression of MMP-9 and ICAM-1. Furthermore, nimodipine was observed to reduce mitochondrial swelling and ROS levels while simultaneously restoring MMP and SDH activity. These results suggest that nimodipine may reduce cerebral edema and BBB breakdown caused by ischemia/reperfusion. This effect is potentially mediated through the reduction of MMP-9 and ICAM-1 levels and the enhancement of mitochondrial function.


Asunto(s)
Barrera Hematoencefálica , Edema Encefálico , Bloqueadores de los Canales de Calcio , Accidente Cerebrovascular Isquémico , Metaloproteinasa 9 de la Matriz , Nimodipina , Animales , Nimodipina/farmacología , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/etiología , Edema Encefálico/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Masculino , Ratas , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Modelos Animales de Enfermedad , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratas Sprague-Dawley , Molécula 1 de Adhesión Intercelular/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/complicaciones , Dilatación Mitocondrial/efectos de los fármacos , Succinato Deshidrogenasa/metabolismo
20.
Behav Brain Res ; 472: 115158, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39047874

RESUMEN

Traumatic brain injury (TBI) is associated with the etiology of multiple neurological disorders, including neurodegeneration, leading to various cognitive deficits. Daidzin (obtained from kudzu root and soybean leaves) is known for its neuroprotective effects through multiple mechanisms. This study aimed to investigate the pharmacological effects of Daidzin on sensory, and biochemical parameters, cognitive functions, anxiety, and depressive-like behaviors in the TBI rat model. Rats were divided into four groups (Control, TBI, TBI + Ibuprofen (30 mg/kg), and TBI + Daidzin (5 mg/kg)). Rats were subjected to TBI by dropping a 200 g rod from a height of 26 cm, resulting in an impact force of 0.51 J on the exposed crania. Ibuprofen (30 mg/kg) was used as a positive control reference/standard drug and Daidzin (5 mg/kg) as the test drug. Neurological severity score (NSS) assessment was done to determine the intactness of sensory and motor responses. Brain tissue edema and acetylcholine levels were determined in the cortex and hippocampus. Cognitive functions such as hippocampus-dependent memory, novel object recognition, exploration, depressive and anxiety-like behaviors were measured. Treatment with Daidzin improved NSS, reduced hippocampal and cortical edema, and improved levels of acetylcholine in TBI-induced rats. Furthermore, Daidzin treatment improved hippocampus-dependent memory, exploration behavior, and novel object recognition while reducing depressive and anxiety-like behavior. Our study revealed that Daidzin has a therapeutic potential comparable to Ibuprofen and can offer neuroprotection and enhanced cognitive and behavioral outcomes in rats after TBI.


Asunto(s)
Conducta Animal , Lesiones Traumáticas del Encéfalo , Modelos Animales de Enfermedad , Fármacos Neuroprotectores , Animales , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/complicaciones , Ratas , Masculino , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación , Conducta Animal/efectos de los fármacos , Ibuprofeno/farmacología , Ibuprofeno/administración & dosificación , Ansiedad/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Cognición/efectos de los fármacos , Depresión/tratamiento farmacológico , Depresión/etiología , Ratas Wistar , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/etiología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda