Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 9.048
Filtrar
Más filtros

Colección SES
Publication year range
1.
Cell ; 155(6): 1323-36, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24315101

RESUMEN

Circulating glucocorticoid levels oscillate with a robust circadian rhythm, yet the physiological relevance of this rhythmicity remains unclear. Here, we show that modulation of circadian glucocorticoid oscillation by enhancing its amplitude leads to anxiolytic-like behavior. We observed that mice with adrenal subcapsular cell hyperplasia (SCH), a common histological change in the adrenals, are less anxious than mice without SCH. This behavioral change was found to be dependent on the higher amplitude of glucocorticoid oscillation, although the total glucocorticoid secretion is not increased in these mice. Genetic and pharmacologic experiments demonstrated that intermediate opioid peptides secreted from SCH activate CXCR7, a ß-arrestin-biased G-protein-coupled receptor (GPCR), to augment circadian oscillation of glucocorticoid levels in a paracrine manner. Furthermore, recapitulating this paracrine axis by subcutaneous administration of a synthetic CXCR7 ligand is sufficient to induce anxiolytic-like behavior. Adrenocortical ß-arrestin-biased GPCR signaling is a potential target for modulating circadian glucocorticoid oscillation and emotional behavior.


Asunto(s)
Ansiedad/metabolismo , Ritmo Circadiano , Glucocorticoides/metabolismo , Receptores CXCR/metabolismo , Glándulas Suprarrenales/citología , Glándulas Suprarrenales/metabolismo , Glándulas Suprarrenales/patología , Secuencia de Aminoácidos , Animales , Encefalinas/química , Encefalinas/genética , Encefalinas/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Proproteína Convertasa 2/genética , Proproteína Convertasa 2/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Alineación de Secuencia
2.
Mol Cell ; 77(3): 656-668.e5, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32004469

RESUMEN

Class B G protein-coupled receptors (GPCRs) are important therapeutic targets for major diseases. Here, we present structures of peptide and Gs-bound pituitary adenylate cyclase-activating peptide, PAC1 receptor, and corticotropin-releasing factor (CRF), (CRF1) receptor. Together with recently solved structures, these provide coverage of the major class B GPCR subfamilies. Diverse orientations of the extracellular domain to the receptor core in different receptors are at least partially dependent on evolutionary conservation in the structure and nature of peptide interactions. Differences in peptide interactions to the receptor core also influence the interlinked TM2-TM1-TM6/ECL3/TM7 domain, and this is likely important in their diverse signaling. However, common conformational reorganization of ECL2, linked to reorganization of ICL2, modulates G protein contacts. Comparison between receptors reveals ICL2 as a key domain forming dynamic G protein interactions in a receptor- and ligand-specific manner. This work advances our understanding of class B GPCR activation and Gs coupling.


Asunto(s)
Receptores de Hormona Liberadora de Corticotropina/ultraestructura , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/ultraestructura , Secuencia de Aminoácidos , Microscopía por Crioelectrón/métodos , Encefalinas , Humanos , Ligandos , Modelos Moleculares , Péptidos , Precursores de Proteínas , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestructura , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Transducción de Señal
3.
Nature ; 598(7882): 646-651, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34646022

RESUMEN

µ-Opioid peptide receptor (MOPR) stimulation alters respiration, analgesia and reward behaviour, and can induce substance abuse and overdose1-3. Despite its evident importance, the endogenous mechanisms for MOPR regulation of consummatory behaviour have remained unknown4. Here we report that endogenous MOPR regulation of reward consumption in mice acts through a specific dorsal raphe to nucleus accumbens projection. MOPR-mediated inhibition of raphe terminals is necessary and sufficient to determine consummatory response, while select enkephalin-containing nucleus accumbens ensembles are engaged prior to reward consumption, suggesting that local enkephalin release is the source of the endogenous MOPR ligand. Selective modulation of nucleus accumbens enkephalin neurons and CRISPR-Cas9-mediated disruption of enkephalin substantiate this finding. These results isolate a fundamental endogenous opioid circuit for state-dependent consumptive behaviour and suggest alternative mechanisms for opiate modulation of reward.


Asunto(s)
Analgésicos Opioides/farmacología , Núcleo Accumbens/fisiología , Receptores Opioides mu/fisiología , Recompensa , Animales , Encefalinas , Femenino , Masculino , Ratones , Ratones Noqueados
4.
Nature ; 580(7803): 376-380, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32296182

RESUMEN

Mechanosensory feedback from the digestive tract to the brain is critical for limiting excessive food and water intake, but the underlying gut-brain communication pathways and mechanisms remain poorly understood1-12. Here we show that, in mice, neurons in the parabrachial nucleus that express the prodynorphin gene (hereafter, PBPdyn neurons) monitor the intake of both fluids and solids, using mechanosensory signals that arise from the upper digestive tract. Most individual PBPdyn neurons are activated by ingestion as well as the stimulation of the mouth and stomach, which indicates the representation of integrated sensory signals across distinct parts of the digestive tract. PBPdyn neurons are anatomically connected to the digestive periphery via cranial and spinal pathways; we show that, among these pathways, the vagus nerve conveys stomach-distension signals to PBPdyn neurons. Upon receipt of these signals, these neurons produce aversive and sustained appetite-suppressing signals, which discourages the initiation of feeding and drinking (fully recapitulating the symptoms of gastric distension) in part via signalling to the paraventricular hypothalamus. By contrast, inhibiting the same population of PBPdyn neurons induces overconsumption only if a drive for ingestion exists, which confirms that these neurons mediate negative feedback signalling. Our findings reveal a neural mechanism that underlies the mechanosensory monitoring of ingestion and negative feedback control of intake behaviours upon distension of the digestive tract.


Asunto(s)
Ingestión de Alimentos , Retroalimentación , Neuronas/fisiología , Animales , Encefalinas/genética , Encefalinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Tracto Gastrointestinal Superior/fisiología
5.
Nature ; 568(7750): 93-97, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30918407

RESUMEN

Sodium is the main cation in the extracellular fluid and it regulates various physiological functions. Depletion of sodium in the body increases the hedonic value of sodium taste, which drives animals towards sodium consumption1,2. By contrast, oral sodium detection rapidly quenches sodium appetite3,4, suggesting that taste signals have a central role in sodium appetite and its satiation. Nevertheless, the neural mechanisms of chemosensory-based appetite regulation remain poorly understood. Here we identify genetically defined neural circuits in mice that control sodium intake by integrating chemosensory and internal depletion signals. We show that a subset of excitatory neurons in the pre-locus coeruleus express prodynorphin, and that these neurons are a critical neural substrate for sodium-intake behaviour. Acute stimulation of this population triggered robust ingestion of sodium even from rock salt, while evoking aversive signals. Inhibition of the same neurons reduced sodium consumption selectively. We further demonstrate that the oral detection of sodium rapidly suppresses these sodium-appetite neurons. Simultaneous in vivo optical recording and gastric infusion revealed that sodium taste-but not sodium ingestion per se-is required for the acute modulation of neurons in the pre-locus coeruleus that express prodynorphin, and for satiation of sodium appetite. Moreover, retrograde-virus tracing showed that sensory modulation is in part mediated by specific GABA (γ-aminobutyric acid)-producing neurons in the bed nucleus of the stria terminalis. This inhibitory neural population is activated by sodium ingestion, and sends rapid inhibitory signals to sodium-appetite neurons. Together, this study reveals a neural architecture that integrates chemosensory signals and the internal need to maintain sodium balance.


Asunto(s)
Regulación del Apetito/efectos de los fármacos , Regulación del Apetito/fisiología , Ingestión de Alimentos/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Sodio/farmacología , Gusto/efectos de los fármacos , Gusto/fisiología , Administración Oral , Animales , Regulación del Apetito/genética , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología , Encefalinas/metabolismo , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Homeostasis/efectos de los fármacos , Homeostasis/genética , Homeostasis/fisiología , Locus Coeruleus/citología , Locus Coeruleus/efectos de los fármacos , Locus Coeruleus/fisiología , Masculino , Ratones , Motivación/efectos de los fármacos , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Precursores de Proteínas/metabolismo , Respuesta de Saciedad/efectos de los fármacos , Respuesta de Saciedad/fisiología , Sodio/administración & dosificación , Gusto/genética
6.
Crit Care Med ; 52(6): 887-899, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38502804

RESUMEN

OBJECTIVES: Consensus regarding biomarkers for detection of infection-related organ dysfunction in the emergency department is lacking. We aimed to identify and validate biomarkers that could improve risk prediction for overt or incipient organ dysfunction when added to quick Sepsis-related Organ Failure Assessment (qSOFA) as a screening tool. DESIGN: In a large prospective multicenter cohort of adult patients presenting to the emergency department with a qSOFA score greater than or equal to 1, admission plasma levels of C-reactive protein, procalcitonin, adrenomedullin (either bioavailable adrenomedullin or midregional fragment of proadrenomedullin), proenkephalin, and dipeptidyl peptidase 3 were assessed. Least absolute shrinkage and selection operator regression was applied to assess the impact of these biomarkers alone or in combination to detect the primary endpoint of prediction of sepsis within 96 hours of admission. SETTING: Three tertiary emergency departments at German University Hospitals (Jena University Hospital and two sites of the Charité University Hospital, Berlin). PATIENTS: One thousand four hundred seventy-seven adult patients presenting with suspected organ dysfunction based on qSOFA score greater than or equal to 1. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The cohort was of moderate severity with 81% presenting with qSOFA = 1; 29.2% of these patients developed sepsis. Procalcitonin outperformed all other biomarkers regarding the primary endpoint (area under the curve for receiver operating characteristic [AUC-ROC], 0.86 [0.79-0.93]). Adding other biomarkers failed to further improve the AUC-ROC for the primary endpoint; however, they improved the model regarding several secondary endpoints, such as mortality, need for vasopressors, or dialysis. Addition of procalcitonin with a cutoff level of 0.25 ng/mL improved net (re)classification by 35.2% compared with qSOFA alone, with positive and negative predictive values of 60.7% and 88.7%, respectively. CONCLUSIONS: Biomarkers of infection and organ dysfunction, most notably procalcitonin, substantially improve early prediction of sepsis with added value to qSOFA alone as a simple screening tool on emergency department admission.


Asunto(s)
Biomarcadores , Servicio de Urgencia en Hospital , Puntuaciones en la Disfunción de Órganos , Polipéptido alfa Relacionado con Calcitonina , Sepsis , Humanos , Sepsis/diagnóstico , Sepsis/sangre , Biomarcadores/sangre , Masculino , Femenino , Estudios Prospectivos , Persona de Mediana Edad , Anciano , Polipéptido alfa Relacionado con Calcitonina/sangre , Adrenomedulina/sangre , Insuficiencia Multiorgánica/diagnóstico , Insuficiencia Multiorgánica/sangre , Insuficiencia Multiorgánica/etiología , Proteína C-Reactiva/análisis , Adulto , Encefalinas/sangre , Precursores de Proteínas
7.
Calcif Tissue Int ; 114(5): 524-534, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38506955

RESUMEN

Pre-proenkephalin 1 (Penk1) is a pro-neuropeptide that belongs to the typical opioid peptide's family, having analgesic properties. We previously found Penk1 to be the most downregulated gene in a whole gene profiling analysis performed in osteoblasts subjected to microgravity as a model of mechanical unloading. In this work, Penk1 downregulation was confirmed in the bones of two in vivo models of mechanical unloading: tail-suspended and botulinum toxin A (botox)-injected mice. Consistently, in the sera from healthy volunteers subjected to bed rest, we observed an inverse correlation between PENK1 and bed rest duration. These results prompted us to investigate a role for this factor in bone. Penk1 was highly expressed in mouse bone, but its global deletion failed to impact bone metabolism in vivo. Indeed, Penk1 knock out (Penk1-/-) mice did not show an overt bone phenotype compared to the WT littermates. Conversely, in vitro Penk1 gene expression progressively increased during osteoblast differentiation and its transient silencing in mature osteoblasts by siRNAs upregulated the transcription of the Sost1 gene encoding sclerostin, and decreased Wnt3a and Col1a1 mRNAs, suggesting an altered osteoblast activity due to an impairment of the Wnt pathway. In line with this, osteoblasts treated with the Penk1 encoded peptide, Met-enkephalin, showed an increase of Osx and Col1a1 mRNAs and enhanced nodule mineralization. Interestingly, primary osteoblasts isolated from Penk1-/- mice showed lower metabolic activity, ALP activity, and nodule mineralization, as well as a lower number of CFU-F compared to osteoblasts isolated from WT mice, suggesting that, unlike the transient inhibition, the chronic Penk1 deletion affects both osteoblast differentiation and activity. Taken together, these results highlight a role for Penk1 in the regulation of the response of the bone to mechanical unloading, potentially acting on osteoblast differentiation and activity in a cell-autonomous manner.


Asunto(s)
Regulación hacia Abajo , Encefalinas , Ratones Noqueados , Osteoblastos , Animales , Osteoblastos/metabolismo , Osteoblastos/efectos de los fármacos , Encefalinas/metabolismo , Encefalinas/genética , Ratones , Humanos , Masculino , Diferenciación Celular , Precursores de Proteínas/metabolismo , Precursores de Proteínas/genética , Ratones Endogámicos C57BL , Adulto
8.
Amino Acids ; 56(1): 18, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427104

RESUMEN

A series of 10 cyclic, biaryl analogs of enkephalin, with Tyr or Phe residues at positions 1 and 4, were synthesized according to the Miyaura borylation and Suzuki coupling methodology. Biaryl bridges formed by side chains of the two aromatic amino acid residues are of the meta-meta, meta-para, para-meta, and para-para configuration. Conformational properties of the peptides were studied by CD and NMR. CD studies allowed only to compare conformations of individual peptides while NMR investigations followed by XPLOR calculations provided detailed information on their conformation. Reliability of the XPLOR calculations was confirmed by quantum chemical ones performed for one of the analogs. No intramolecular hydrogen bonds were found in all the peptides. They are folded and adopt the type IV ß-turn conformation. Due to a large steric strain, the aromatic carbon atoms forming the biaryl bond are distinctly pyramidalized. Seven of the peptides were tested in vitro for their affinity for the µ-opioid receptor.


Asunto(s)
Encefalinas , Péptidos Cíclicos , Ciclización , Reproducibilidad de los Resultados , Encefalinas/química , Conformación Proteica , Péptidos Cíclicos/química
9.
Blood Purif ; 53(10): 773-780, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39068927

RESUMEN

INTRODUCTION: Enkephalins, endogenous opioid peptides, are involved in the regulation of renal function. One derived molecule, proenkephalin A, also known as penKid, has been demonstrated to be a reliable biomarker for kidney function and its plasma concentration correlates with measured glomerular filtration rate. penKid is used for prediction and diagnosis of AKI and need of renal replacement therapy (RRT). penKid has also been used to predict the successful weaning from RRT in patients with AKI. Whether the concentration of penKid is affected or not by RRT is a controversial point and there are no studies describing the kinetics of the molecule in such conditions. The low molecular weight (4.5 kDa) would imply free removal by the glomerulus and the dialysis membranes. During RRT, this reduction could not be detected in clinical practice due to the complex kinetics involving either low dialytic clearance or increased production in response to impaired kidney function. The aim of this study was to determine the sieving coefficient and the diffusive clearance of the penKid molecule in conditions of in vitro continuous veno-venous hemofiltration (CVVH) and continuous veno-venous hemodialysis (CVVHD), respectively, and also the penKid removal ratio in conditions of in vitro hemoadsorption (HA) using a synthetic microporous resin. METHODS: Blood spiked with a lyophilized penKid peptide solved in 20 mm dipotassium phosphate and 6 mm disodium EDTA [pH 8] to reach target concentrations is used as testing solution. In each experiment, the blood batch was adjusted at a volume of 1,000 mL, maintained at 37°, and continuously stirred. Samples were collected from blood, ultrafiltrate, and spent dialysate at different times during the experiments. Sieving, clearance, and removal ratio were calculated. RESULTS: Significant removal of penKid was observed in CVVH (sieving 1.04 ± 0.27), in CVVHD (clearance 23.08 ± 0.89), and in HA (removal ratio 76.1 ± 1% after 120 min). CONCLUSION: penKid is effectively removed by extracorporeal therapies. In presence of anuria, penKid generation kinetics can be calculated based on extracorporeal removal and volume variation. In steady state conditions, declining values may be the result of an initial renal function recovery and may suggest discontinuation and successful liberation from RRT.


Asunto(s)
Encefalinas , Precursores de Proteínas , Humanos , Encefalinas/sangre , Precursores de Proteínas/sangre , Cinética , Hemofiltración/métodos , Diálisis Renal/métodos , Terapia de Reemplazo Renal Continuo/métodos , Adsorción , Lesión Renal Aguda/terapia , Lesión Renal Aguda/sangre , Fragmentos de Péptidos/sangre
10.
J Reprod Dev ; 70(5): 327-337, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39155080

RESUMEN

In mammals, secretion of tonic (pulsatile) gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) is often suppressed during lactation. Suppression of GnRH/LH pulses in lactating dams is assumed to be caused by suckling stimuli and a chronic negative energy balance due to milk production. The present study aimed to investigate whether the central enkephalin-δ opioid receptor (DOR) signaling mediated the suppression of LH secretion by acute suckling stimuli and/or chronic negative energy balance due to milk production in rats during late lactation when dams were under a heavy energy demand. On postpartum day 16, the number of Penk (enkephalin mRNA)-expressing cells in the arcuate nucleus was significantly higher in lactating rats than in non-lactating control rats. Pulsatile LH secretion was suppressed in rats with chronic suckling or acute 1-h suckling stimuli 6 h after pup removal on day 16 of lactation. Central DOR antagonism significantly increased the mean LH concentrations and the baseline of LH pulses in rats with chronic suckling but not with acute suckling stimuli on day 16 of lactation. Besides, central κ opioid receptor (KOR) antagonism increased the amplitude of LH pulses in rats with the acute suckling stimuli on day 16 of lactation. These results suggest that central DOR signaling mediates the suppression of LH secretion caused by a negative energy balance in rats receiving chronic suckling during late lactation. On the other hand, central KOR signaling likely mediates acute suckling stimuli-induced suppression of LH secretion in rats during late lactation.


Asunto(s)
Animales Lactantes , Lactancia , Hormona Luteinizante , Receptores Opioides delta , Receptores Opioides kappa , Transducción de Señal , Animales , Femenino , Ratas , Núcleo Arqueado del Hipotálamo/metabolismo , Encefalinas/metabolismo , Hormona Luteinizante/metabolismo , Hormona Luteinizante/sangre , Naltrexona/farmacología , Naltrexona/análogos & derivados , Antagonistas de Narcóticos/farmacología , Ratas Wistar , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/metabolismo
11.
BMC Nephrol ; 25(1): 181, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778257

RESUMEN

BACKGROUND: Acute kidney injury (AKI) is a common complication in patients admitted to intensive care unit (ICU) and mortality rates for this condition are high. To reduce the high incidence of short-term mortality, reliable prognostic indicators are required to facilitate early diagnosis and treatment of AKI. We assessed the ability of plasma proenkephalin (p­PENK) and plasma neutrophil gelatinase-associated lipocalin (p­NGAL) to predict 28-day mortality in AKI patients in intensive care. METHODS: This prospective study, carried out between January 2019 and December 2019, comprised 150 patients (100 male) diagnosed with AKI after excluding 20 patients discharged within 24 h and those with missing hospitalization data. Blood samples were collected to determine admission p-PENK and p-NGAL levels. The study outcome was 28­day mortality. RESULTS: The mean patient age was 68 years (female, 33%). The average P­PENK and p­NGAL levels were 0.24 ng/µL and 223.70 ng/mL, respectively. P­PENK levels >0.36 ng/µL and p­NGAL levels >230.30 ng/mL were used as critical values to reliably indicate 28­day mortality for patients with AKI (adjusted hazard ratios 0.785 [95% confidence interval 0.706-0.865, P<0.001] and 0.700 [95% confidence interval 0.611-0.789, P<0.001], respectively). This association was significant for mortality in patients in intensive care with AKI. Baseline p-PENK (0.36 ng/µL) and p-NGAL (230.30 ng/mL) levels and their respective cut-off values showed clinical value in predicting 28-day mortality. CONCLUSION: Serum PENK and NGAL levels, when used in conjunction, improved the accuracy of predicting 28-day mortality in patients with AKI while retaining sensitivity and specificity.


Asunto(s)
Lesión Renal Aguda , Biomarcadores , Encefalinas , Unidades de Cuidados Intensivos , Lipocalina 2 , Humanos , Lesión Renal Aguda/sangre , Lesión Renal Aguda/mortalidad , Lesión Renal Aguda/diagnóstico , Masculino , Femenino , Lipocalina 2/sangre , Anciano , Estudios Prospectivos , Persona de Mediana Edad , Encefalinas/sangre , Biomarcadores/sangre , Precursores de Proteínas/sangre , Pronóstico , Valor Predictivo de las Pruebas , Anciano de 80 o más Años , Mortalidad Hospitalaria
12.
BMC Nephrol ; 25(1): 16, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200454

RESUMEN

BACKGROUND: Plasma proenkephalin A (PENK-A) is a precursor of active enkephalins. Higher blood concentrations have been associated with estimated glomerular filtration rate (eGFR) decline in European populations. Due to the significant disparity in incident chronic kidney disease (CKD) between White and Black people, we evaluated the association of PENK-A with incident CKD and other kidney outcomes among a biracial cohort in the U.S. METHODS: In a nested cohort of 4,400 participants among the REasons for Geographic And Racial Differences in Stroke, we determined the association between baseline PENK-A concentration and incident CKD using the creatinine-cystatin C CKD-EPI 2021 equation without race coefficient, significant eGFR decline, and incident albuminuria between baseline and a follow-up visit 9.4 years later. We tested for race and sex interactions. We used inverse probability sampling weights to account for the sampling design. RESULTS: At baseline, mean (SD) age was 64 (8) years, 49% were women, and 52% were Black participants. 8.5% developed CKD, 21% experienced ≥ 30% decline in eGFR and 18% developed albuminuria. There was no association between PENK-A and incident CKD and no difference by race or sex. However, higher PENK-A was associated with increased odds of progressive eGFR decline (OR: 1.12; 95% CI 1.00, 1.25). Higher PENK-A concentration was strongly associated with incident albuminuria among patients without diabetes mellitus (OR: 1.29; 95% CI 1.09, 1.53). CONCLUSION: While PENK-A was not associated with incident CKD, its associations with progression of CKD and incident albuminuria, among patients without diabetes, suggest that it might be a useful tool in the evaluation of kidney disease among White and Black patients.


Asunto(s)
Precursores de Proteínas , Insuficiencia Renal Crónica , Accidente Cerebrovascular , Humanos , Femenino , Persona de Mediana Edad , Masculino , Albuminuria/epidemiología , Factores Raciales , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/epidemiología , Accidente Cerebrovascular/epidemiología , Encefalinas
13.
Mediators Inflamm ; 2024: 5821996, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045230

RESUMEN

Background: Psoriasis is a noncontagious auto-inflammatory chronic skin disease. So far, some of the inflammatory genes were upregulated in mouse model of psoriasis. This study examined changes in skin mRNA expression of L-kynureninase (Kynu), cathelicidin antimicrobial peptide (Camp), beta-defensin 2 (Defb2), and proenkephalin (Penk) in a mouse model of imiquimod-induced psoriasis. Materials and Methods: Tree groups of C57BL/6 female mice were allocated. The imiquimod (IMQ) cream was administered to the mice dorsal skin of the two groups to induce psoriatic inflammation. In the treatment group, IMQ was administered 10 min after hydrogel-containing M7 anti-IL-17A aptamer treatment. Vaseline (Vas) was administered to the negative control group. The psoriatic skin lesions were evaluated based on the psoriasis area severity index (PASI) score, histopathology, and mRNA expression levels of Kynu, Camp, Defb2, and Penk using real-time PCR. In order to assess the systemic response, the spleen and lymph node indexes were also evaluated. Results: The PASI and epidermal thickness scores were 6.01 and 1.96, respectively, in the IMQ group, and they significantly decreased after aptamer administration to 1.15 and 0.90, respectively (P < 0.05). Spleen and lymph node indexes showed an increase in the IMQ group, followed by a slight decrease after aptamer treatment (P > 0.05). Additionally, the mRNA expression levels of Kynu, Defb2, Camp, and Penk genes in the IMQ-treated region showed a significant 2.70, 4.56, 3.29, and 2.61-fold increase relative to the Vas mice, respectively (P < 0.05). The aptamer-treated region exhibited a significant decrease in these gene expression levels (P < 0.05). A positive correlation was found between Kynu, Penk, and Camp expression levels and erythema, as well as Camp expression with PASI, scaling, and thickness (P < 0.05). Conclusion: According to our results, it seems that Kynu, Camp, and Penk can be considered appropriate markers for the evaluation of psoriasis in IMQ-induced psoriasis. Also, the anti-IL-17 aptamer downregulated these important genes in this mouse model.


Asunto(s)
Catelicidinas , Modelos Animales de Enfermedad , Encefalinas , Imiquimod , Ratones Endogámicos C57BL , Precursores de Proteínas , Psoriasis , beta-Defensinas , Psoriasis/inducido químicamente , Psoriasis/metabolismo , Animales , Ratones , Femenino , beta-Defensinas/metabolismo , beta-Defensinas/genética , Precursores de Proteínas/metabolismo , Precursores de Proteínas/genética , Encefalinas/metabolismo , Encefalinas/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Piel/metabolismo , Piel/patología , Piel/efectos de los fármacos , Biomarcadores/metabolismo
14.
J Neurosci ; 42(43): 8078-8094, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36104279

RESUMEN

The most caudal part of the striatum in rodents, the tail of the striatum (TS), has many features that distinguish it from the rostral striatum, such as its biased distributions of dopamine receptor subtypes, lack of striosomes and matrix compartmentalization, and involvement in sound-driven behaviors. However, information regarding the TS is still limited. We demonstrate in this article that the TS of the male mouse contains GABAergic neurons of a novel type that were detected immunohistochemically with the neurofilament marker SMI-32. Their somata were larger than cholinergic giant aspiny neurons, were located in a narrow space adjacent to the globus pallidus (GP), and extended long dendrites laterally toward the intermediate division (ID) of the trilaminar part of the TS, the region targeted by axons from the primary auditory cortex (A1). Although vesicular glutamate transporter 1-positive cortical axon terminals rarely contacted these TS large (TSL) neurons, glutamic acid decarboxylase-immunoreactive and enkephalin-immunoreactive boutons densely covered somata and dendrites of TSL neurons, forming symmetrical synapses. Analyses of GAD67-CrePR knock-in mice revealed that these axonal boutons originated from nearby medium spiny neurons (MSNs) in the ID. All MSNs examined in the ID in turn received inputs from the A1. Retrograde tracers injected into the rostral zona incerta and ventral medial nucleus of the thalamus labeled somata of TSL neurons. TSL neurons share many morphological features with GP neurons, but their strategically located dendrites receive inputs from closely located MSNs in the ID, suggesting faster responses than distant GP neurons to facilitate auditory-evoked, prompt disinhibition in their targets.SIGNIFICANCE STATEMENT This study describes a newly found population of neurons in the mouse striatum, the brain region responsible for appropriate behaviors. They are large GABAergic neurons located in the most caudal part of the striatum [tail of the striatum (TS)]. These TS large (TSL) neurons extended dendrites toward a particular region of the TS where axons from the primary auditory cortex (A1) terminated. These dendrites received direct synaptic inputs heavily from nearby GABAergic neurons of the striatum that in turn received inputs from the A1. TSL neurons sent axons to two subcortical regions outside basal ganglia, one of which is related to arousal. Specialized connectivity of TSL neurons suggests prompt disinhibitory actions on their targets to facilitate sound-evoked characteristic behaviors.


Asunto(s)
Dendritas , Glutamato Descarboxilasa , Masculino , Animales , Ratones , Dendritas/metabolismo , Glutamato Descarboxilasa/metabolismo , Neuronas GABAérgicas/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Sinapsis/metabolismo , Cuerpo Estriado/metabolismo , Axones/metabolismo , Encefalinas/metabolismo , Receptores Dopaminérgicos/metabolismo , Colinérgicos
15.
J Neurosci ; 42(42): 7862-7874, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36096670

RESUMEN

Peripheral neuropathic pain induced by the chemotherapeutic cisplatin can persist for months to years after treatment. Histone deacetylase 6 (HDAC6) inhibitors have therapeutic potential for cisplatin-induced neuropathic pain since they persistently reverse mechanical hypersensitivity and spontaneous pain in rodent models. Here, we investigated the mechanisms underlying reversal of mechanical hypersensitivity in male and female mice by a 2 week treatment with an HDAC6 inhibitor, administered 3 d after the last dose of cisplatin. Mechanical hypersensitivity in animals of both sexes treated with the HDAC6 inhibitor was temporarily reinstated by a single injection of the neutral opioid receptor antagonist 6ß-naltrexol or the peripherally restricted opioid receptor antagonist naloxone methiodide. These results suggest that tonic peripheral opioid ligand-receptor signaling mediates reversal of cisplatin-induced mechanical hypersensitivity after treatment with an HDAC6 inhibitor. Pointing to a specific role for δ opioid receptors (DORs), Oprd1 expression was decreased in DRG neurons following cisplatin administration, but normalized after treatment with an HDAC6 inhibitor. Mechanical hypersensitivity was temporarily reinstated in both sexes by a single injection of the DOR antagonist naltrindole. Consistently, HDAC6 inhibition failed to reverse cisplatin-induced hypersensitivity when DORs were genetically deleted from advillin+ neurons. Mechanical hypersensitivity was also temporarily reinstated in both sexes by a single injection of a neutralizing antibody against the DOR ligand met-enkephalin. In conclusion, we reveal that treatment with an HDAC6 inhibitor induces tonic enkephalin-DOR signaling in peripheral sensory neurons to suppress mechanical hypersensitivity.SIGNIFICANCE STATEMENT Over one-fourth of cancer survivors suffer from intractable painful chemotherapy-induced peripheral neuropathy (CIPN), which can last for months to years after treatment ends. HDAC6 inhibition is a novel strategy to reverse CIPN without negatively interfering with tumor growth, but the mechanisms responsible for persistent reversal are not well understood. We built on evidence that the endogenous opioid system contributes to the spontaneous, apparent resolution of pain caused by nerve damage or inflammation, referred to as latent sensitization. We show that blocking the δ opioid receptor or its ligand enkephalin unmasks CIPN in mice treated with an HDAC6 inhibitor (latent sensitization). Our work provides insight into the mechanisms by which treatment with an HDAC6 inhibitor apparently reverses CIPN.


Asunto(s)
Antineoplásicos , Neuralgia , Ratones , Masculino , Femenino , Animales , Histona Desacetilasa 6/metabolismo , Cisplatino/toxicidad , Receptores Opioides delta , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Antagonistas de Narcóticos/farmacología , Ligandos , Analgésicos Opioides/efectos adversos , Ratones Endogámicos C57BL , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Inhibidores de Histona Desacetilasas , Niacinamida , Antineoplásicos/toxicidad , Encefalina Metionina , Encefalinas , Anticuerpos Neutralizantes
16.
Mol Psychiatry ; 27(6): 2879-2900, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33990774

RESUMEN

The hippocampus contains a diverse array of inhibitory interneurons that gate information flow through local cortico-hippocampal circuits to regulate memory storage. Although most studies of interneurons have focused on their role in fast synaptic inhibition mediated by GABA release, different classes of interneurons express unique sets of neuropeptides, many of which have been shown to exert powerful effects on neuronal function and memory when applied pharmacologically. However, relatively little is known about whether and how release of endogenous neuropeptides from inhibitory cells contributes to their behavioral role in regulating memory formation. Here we report that vasoactive intestinal peptide (VIP)-expressing interneurons participate in social memory storage by enhancing information transfer from hippocampal CA3 pyramidal neurons to CA2 pyramidal neurons. Notably, this action depends on release of the neuropeptide enkephalin from VIP neurons, causing long-term depression of feedforward inhibition onto CA2 pyramidal cells. Moreover, VIP neuron activity in the CA2 region is increased selectively during exploration of a novel conspecific. Our findings, thus, enhance our appreciation of how GABAergic neurons can regulate synaptic plasticity and mnemonic behavior by demonstrating that such actions can be mediated by release of a specific neuropeptide, rather than through classic fast inhibitory transmission.


Asunto(s)
Interneuronas , Péptido Intestinal Vasoactivo , Encefalinas/farmacología , Neuronas GABAérgicas , Hipocampo , Interneuronas/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Péptido Intestinal Vasoactivo/farmacología , Péptido Intestinal Vasoactivo/fisiología
17.
Headache ; 63(5): 621-633, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37183526

RESUMEN

OBJECTIVE: The aim of this study was to evaluate whether elevating levels of enkephalin by inhibiting their degradation can attenuate stress-induced migraine-like behaviors in mice. BACKGROUND: Previous studies in animals have suggested the delta opioid receptor (DOR) as a novel migraine target. The primary endogenous ligands for DOR are enkephalins and their levels can be increased by pharmacological inhibition of enkephalinases; however, it is not clear whether enkephalinase inhibition can be efficacious in preclinical migraine models through activation of DOR or whether other opioid receptors might be involved. Further, it is not clear whether opioid receptors in the central nervous system are necessary for these effects. METHODS: This study used a model of repetitive restraint stress in mice that induces periorbital hypersensitivity and priming to the nitric oxide donor sodium nitroprusside (SNP; 0.1 mg/kg). Von Frey filaments were used to measure periorbital mechanical thresholds and grimace scores were evaluated by observing mouse facial features. Animals were treated with the dual enkephalinase inhibitor (DENKI) PL37. RESULTS: On day two post-stress, PL37 given to mice via either intravenous injection (10 mg/kg) or oral gavage (20 mg/kg) significantly attenuated stress-induced periorbital hypersensitivity and facial grimace responses. Additionally, both intravenous (10 mg/kg) and oral gavage (20 mg/kg) of PL37 prior to SNP (0.1 mg/kg) administration on day 14 post-stress significantly reduced SNP-induced facial hypersensitivity. Injection of the DOR antagonist naltrindole (0.1 mg/kg) but not the mu-opioid receptor antagonist CTAP (1 mg/kg) prior to PL37 treatment blocked the effects. Finally, pretreatment of mice with the peripherally restricted opioid receptor antagonist naloxone methiodide (5 mg/kg) blocked the effects of PL37. CONCLUSIONS: These data demonstrate that inhibiting enkephalinases, and thus protecting enkephalins from degradation, attenuates stress-induced migraine-like behavior via activation of peripheral DOR. Peripheral targeting of endogenous opioid signaling may be an effective therapeutic strategy for migraine.


Asunto(s)
Trastornos Migrañosos , Antagonistas de Narcóticos , Ratones , Animales , Antagonistas de Narcóticos/farmacología , Receptores Opioides delta , Neprilisina , Encefalinas/metabolismo , Encefalinas/farmacología , Receptores Opioides , Trastornos Migrañosos/tratamiento farmacológico
18.
Clin Chem Lab Med ; 61(1): 104-111, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36283061

RESUMEN

OBJECTIVES: Accurate determination of glomerular filtration rate (GFR) is important. Several endogenous biomarkers exist for estimating GFR, yet, they have limited accuracy, especially in the paediatric population. Proenkephalin A 119-159 (PENK) is a novel and promising GFR marker, but its relation with age in children remains unknown. Also, the value of PENK has never been validated against measured GFR (mGFR) in children when compared to traditional GFR markers including serum creatinine (SCr), SCr-based estimated GFR (eGFR) and cystatin C (cysC). METHODS: Critically ill children and term-born neonates were included in this single-centre, prospective study. Iohexol-based mGFR, SCr, and cysC were determined in each patient. eGFR was calculated using the bedside Schwartz equation, incorporating SCr and height. Spearman correlation coefficients were calculated to determine the correlation between mGFR and PENK, SCr, cysC and eGFR. RESULTS: For 97 patients (56 children and 41 neonates), mGFR, SCr, cysC and PENK levels were available. PENK levels were higher in young children and decreased to adult PENK reference values around two years of age. PENK levels were highly correlated with mGFR (ρ=-0.88, p<0.001), and similar to mGFR-eGFR correlation (ρ=-0.87, p<0.001). For cysC and SCr the correlation with mGFR was lower (ρ=-0.77 and ρ=-0.46, respectively. Both p<0.001). CONCLUSIONS: The correlation of PENK with mGFR was as good as SCr-based eGFR-mGFR correlation. To determine the added value of PENK in paediatric clinical care and prior to implementation, PENK reference values are needed and the development and validation of a paediatric PENK-based eGFR equation is necessary.


Asunto(s)
Enfermedad Crítica , Encefalinas , Tasa de Filtración Glomerular , Yohexol , Niño , Preescolar , Humanos , Recién Nacido , Biomarcadores , Creatinina , Estudios Prospectivos , Encefalinas/sangre
19.
Brain ; 145(8): 2664-2670, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-35411377

RESUMEN

The dual enkephalinase inhibitor PL37, a small molecule that protects enkephalins from rapid degradation, has demonstrated analgesic properties in animal pain models and in early human clinical trials. This study tested the antimigraine potential of PL37 on cutaneous mechanical hypersensitivity affecting cephalic regions in migraineurs. Using behavioural testing and c-Fos immunoreactivity in male rats, we investigated the effects of single (oral or intravenous) and repeated oral administration of PL37 on changes in cutaneous mechanical sensitivity and sensitization of the trigeminocervical complex induced by repeated administration of the nitric oxide donor, isosorbide dinitrate. In naïve rats, single or repeated administration of PL37 or vehicle had no effect on cephalic mechanical sensitivity. However, single oral PL37 treatment effectively inhibited isosorbide dinitrate-induced acute cephalic mechanical hypersensitivity. Single intravenous but not oral PL37 administration inhibited chronic cephalic mechanical hypersensitivity. Daily oral administration of PL37 prevented cephalic mechanical hypersensitivity and decreased touch-induced c-Fos expression in trigeminocervical complex following repeated isosorbide dinitrate administration. These data reveal the therapeutic potential of the dual enkephalinase inhibitor PL37 as an acute and prophylactic treatment for migraine. Protecting enkephalins from their degrading enzymes therefore appears to be an innovative approach to treat migraine.


Asunto(s)
Trastornos Migrañosos , Neprilisina , Animales , Encefalinas , Hiperalgesia , Dinitrato de Isosorbide , Masculino , Ratas
20.
Addict Biol ; 28(10): e13328, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37753570

RESUMEN

Cocaine predictive cues and contexts exert powerful control over behaviour and can incite cocaine seeking and taking. This type of conditioned behaviour is encoded within striatal circuits, and these circuits and behaviours are, in part, regulated by opioid peptides and receptors expressed in striatal medium spiny neurons. We previously showed that augmenting levels of the opioid peptide enkephalin in the striatum facilitates acquisition of cocaine conditioned place preference (CPP), while opioid receptor antagonists attenuate expression of cocaine CPP. However, whether striatal enkephalin is necessary for acquisition of cocaine CPP and maintenance during extinction remains unknown. To address this, we generated mice with a targeted deletion of enkephalin from dopamine D2-receptor expressing medium spiny neurons and tested them in a cocaine CPP paradigm. Low striatal enkephalin levels did not attenuate acquisition of CPP. However, expression of preference, assessed after acute administration of the opioid receptor antagonist naloxone, was blocked in females, regardless of genotype. When saline was paired with the cocaine context during extinction sessions, females, regardless of genotype, extinguished preference faster than males, and this was prevented by naloxone when paired with the cocaine context. We conclude that while striatal enkephalin is not necessary for acquisition, expression, or extinction of cocaine CPP, expression and extinction of cocaine preference in females is mediated by an opioid peptide other than striatal enkephalin. The unique sensitivity of females to opioid antagonists suggests sex should be a consideration when using these compounds in the treatment of cocaine use disorder.


Asunto(s)
Analgésicos Opioides , Cocaína , Femenino , Masculino , Animales , Ratones , Péptidos Opioides , Naloxona/farmacología , Antagonistas de Narcóticos , Recompensa , Encefalinas/genética , Cocaína/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda