Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
2.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37834060

RESUMEN

GM2 gangliosidoses are a group of neurodegenerative lysosomal storage disorders that are characterized by the accumulation of GM2 gangliosides (GM2), leading to rapid neurological decline and death. The hydrolysis of GM2 requires the specific synthesis, processing, and combination of products of three genes-HEXA, HEXB, and GM2A-within the cell's lysosomes. Mutations in these genes result in Tay-Sachs disease, Sandhoff disease, or AB-variant GM2 gangliosidosis (ABGM2), respectively. ABGM2, the rarest of the three types, is characterized by a mutation in the GM2A gene, which encodes the GM2 activator (GM2A) protein. Being a monogenic disease, gene therapy is a plausible and likely effective method of treatment for ABGM2. This study aimed at assessing the effects of administering a one-time intravenous treatment of single-stranded Adeno-associated virus serotype 9 (ssAAV9)-GM2A viral vector at a dose of 1 × 1014 vector genomes (vg) per kilogram per mouse in an ABGM2 mouse model (Gm2a-/-). ssAAV9-GM2A was administered at 1-day (neonatal) or 6-weeks of age (adult-stage). The results demonstrated that, in comparison to Gm2a-/- mice that received a vehicle injection, the treated mice had reduced GM2 accumulation within the central nervous system and had long-term persistence of vector genomes in the brain and liver. This proof-of-concept study is a step forward towards the development of a clinically therapeutic approach for the treatment of patients with ABGM2.


Asunto(s)
Gangliosidosis GM2 , Enfermedad de Tay-Sachs , Humanos , Animales , Ratones , Dependovirus/genética , Serogrupo , Enfermedad de Tay-Sachs/terapia , Gangliosidosis GM2/genética , Gangliosidosis GM2/terapia , Proteína Activadora de G (M2)/genética , Terapia Genética
3.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36142595

RESUMEN

The gangliosidoses GM2 are a group of pathologies mainly affecting the central nervous system due to the impaired GM2 ganglioside degradation inside the lysosome. Under physiological conditions, GM2 ganglioside is catabolized by the ß-hexosaminidase A in a GM2 activator protein-dependent mechanism. In contrast, uncharged substrates such as globosides and some glycosaminoglycans can be hydrolyzed by the ß-hexosaminidase B. Monogenic mutations on HEXA, HEXB, or GM2A genes arise in the Tay-Sachs (TSD), Sandhoff (SD), and AB variant diseases, respectively. In this work, we validated a CRISPR/Cas9-based gene editing strategy that relies on a Cas9 nickase (nCas9) as a potential approach for treating GM2 gangliosidoses using in vitro models for TSD and SD. The nCas9 contains a mutation in the catalytic RuvC domain but maintains the active HNH domain, which reduces potential off-target effects. Liposomes (LPs)- and novel magnetoliposomes (MLPs)-based vectors were used to deliver the CRISPR/nCas9 system. When LPs were used as a vector, positive outcomes were observed for the ß-hexosaminidase activity, glycosaminoglycans levels, lysosome mass, and oxidative stress. In the case of MLPs, a high cytocompatibility and transfection ratio was observed, with a slight increase in the ß-hexosaminidase activity and significant oxidative stress recovery in both TSD and SD cells. These results show the remarkable potential of CRISPR/nCas9 as a new alternative for treating GM2 gangliosidoses, as well as the superior performance of non-viral vectors in enhancing the potency of this therapeutic approach.


Asunto(s)
Gangliosidosis GM2 , Enfermedad de Tay-Sachs , Desoxirribonucleasa I/metabolismo , Fibroblastos/metabolismo , Proteína Activadora de G (M2) , Gangliósido G(M2)/genética , Gangliósido G(M2)/metabolismo , Gangliosidosis GM2/genética , Gangliosidosis GM2/metabolismo , Gangliosidosis GM2/terapia , Edición Génica , Globósidos/metabolismo , Glicosaminoglicanos/metabolismo , Hexosaminidasa A/metabolismo , Humanos , Lipopolisacáridos/metabolismo , Liposomas/metabolismo , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/metabolismo , Enfermedad de Tay-Sachs/terapia , beta-N-Acetilhexosaminidasas/metabolismo
4.
Mol Ther ; 28(10): 2150-2160, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32592687

RESUMEN

The GM2 gangliosidoses, Tay-Sachs disease (TSD) and Sandhoff disease (SD), are fatal lysosomal storage disorders caused by mutations in the HEXA and HEXB genes, respectively. These mutations cause dysfunction of the lysosomal enzyme ß-N-acetylhexosaminidase A (HexA) and accumulation of GM2 ganglioside (GM2) with ensuing neurodegeneration, and death by 5 years of age. Until recently, the most successful therapy was achieved by intracranial co-delivery of monocistronic adeno-associated viral (AAV) vectors encoding Hex alpha and beta-subunits in animal models of SD. The blood-brain barrier crossing properties of AAV9 enables systemic gene therapy; however, the requirement of co-delivery of two monocistronic AAV vectors to overexpress the heterodimeric HexA protein has prevented the use of this approach. To address this need, we developed multiple AAV constructs encoding simultaneously HEXA and HEXB using AAV9 and AAV-PHP.B and tested their therapeutic efficacy in 4- to 6-week-old SD mice after systemic administration. Survival and biochemical outcomes revealed superiority of the AAV vector design using a bidirectional CBA promoter with equivalent dose-dependent outcomes for both capsids. AAV-treated mice performed normally in tests of motor function, CNS GM2 ganglioside levels were significantly reduced, and survival increased by >4-fold with some animals surviving past 2 years of age.


Asunto(s)
Dependovirus/genética , Terapia Genética , Vectores Genéticos/genética , Enfermedad de Sandhoff/terapia , Animales , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Gangliósido G(M2)/metabolismo , Expresión Génica , Predisposición Genética a la Enfermedad , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Ratones , Mutación , Enfermedad de Sandhoff/genética , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/metabolismo , Enfermedad de Tay-Sachs/terapia , Transgenes , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/metabolismo
5.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201771

RESUMEN

GM2 gangliosidosis disorders are a group of neurodegenerative diseases that result from a functional deficiency of the enzyme ß-hexosaminidase A (HexA). HexA consists of an α- and ß-subunit; a deficiency in either subunit results in Tay-Sachs Disease (TSD) or Sandhoff Disease (SD), respectively. Viral vector gene transfer is viewed as a potential method of treating these diseases. A recently constructed isoenzyme to HexA, called HexM, has the ability to effectively catabolize GM2 gangliosides in vivo. Previous gene transfer studies have revealed that the scAAV9-HEXM treatment can improve survival in the murine SD model. However, it is speculated that this treatment could elicit an immune response to the carrier capsid and "non-self"-expressed transgene. This study was designed to assess the immunocompetence of TSD and SD mice, and test the immune response to the scAAV9-HEXM gene transfer. HexM vector-treated mice developed a significant anti-HexM T cell response and antibody response. This study confirms that TSD and SD mouse models are immunocompetent, and that gene transfer expression can create an immune response in these mice. These mouse models could be utilized for investigating methods of mitigating immune responses to gene transfer-expressed "non-self" proteins, and potentially improve treatment efficacy.


Asunto(s)
Dependovirus/genética , Gangliósido G(M2)/metabolismo , Vectores Genéticos/administración & dosificación , Inmunidad/inmunología , Enfermedad de Sandhoff/inmunología , Enfermedad de Tay-Sachs/inmunología , Cadena alfa de beta-Hexosaminidasa/genética , Animales , Modelos Animales de Enfermedad , Femenino , Terapia Genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedad de Sandhoff/genética , Enfermedad de Sandhoff/terapia , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/terapia
6.
Gene Ther ; 27(5): 226-236, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31896760

RESUMEN

The GM2-gangliosidoses are neurological diseases causing premature death, thus developing effective treatment protocols is urgent. GM2-gangliosidoses result from deficiency of a lysosomal enzyme ß-hexosaminidase (Hex) and subsequent accumulation of GM2 gangliosides. Genetic changes in HEXA, encoding the Hex α subunit, or HEXB, encoding the Hex ß subunit, causes Tay-Sachs disease and Sandhoff disease, respectively. Previous studies have showed that a modified human Hex µ subunit (HEXM) can treat both Tay-Sachs and Sandhoff diseases by forming a homodimer to degrade GM2 gangliosides. To this end, we applied this HEXM subunit in our PS813 gene editing system to treat neonatal Sandhoff mice. Through AAV delivery of the CRISPR system, a promoterless HEXM cDNA will be integrated into the albumin safe harbor locus, and lysosomal enzyme will be expressed and secreted from edited hepatocytes. 4 months after the i.v. of AAV vectors, plasma MUGS and MUG activities reached up to 144- and 17-fold of wild-type levels (n = 10, p < 0.0001), respectively. More importantly, MUGS and MUG activities in the brain also increased significantly compared with untreated Sandhoff mice (p < 0.001). Further, HPLC-MS/MS analysis showed that GM2 gangliosides in multiple tissues, except the brain, of treated mice were reduced to normal levels. Rotarod analysis showed that coordination and motor memory of treated mice were improved (p < 0.05). Histological analysis of H&E stained tissues showed reduced cellular vacuolation in the brain and liver of treated Sandhoff mice. These results demonstrate the potential of developing a treatment of in vivo genome editing for Tay-Sachs and Sandhoff patients.


Asunto(s)
Enfermedad de Sandhoff , Enfermedad de Tay-Sachs , Animales , Modelos Animales de Enfermedad , Edición Génica , Humanos , Ratones , Enfermedad de Sandhoff/genética , Enfermedad de Sandhoff/terapia , Espectrometría de Masas en Tándem , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/terapia , beta-N-Acetilhexosaminidasas/genética
7.
J Gene Med ; 22(9): e3205, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32335981

RESUMEN

BACKGROUND: Tay-Sachs and Sandhoff disease are debilitating genetic diseases that affect the central nervous system leading to neurodegeneration through the accumulation of GM2 gangliosides. There are no cures for these diseases and treatments do not alleviate all symptoms. Hematopoietic stem cell gene therapy offers a promising treatment strategy for delivering wild-type enzymes to affected cells. By genetically modifying hematopoietic stem cells to express wild-type HexA and HexB, systemic delivery of functional enzyme can be achieved. METHODS: Primary human hematopoietic stem/progenitor cells and Tay-Sachs affected cells were used to evaluate the functionality of the vector. An immunodeficient and humanized mouse model of Sandhoff disease was used to evaluate whether the HexA/HexB lentiviral vector transduced cells were able to improve the phenotypes associated with Sandhoff disease. An immunodeficient NOD-RAG1-/-IL2-/- (NRG) mouse model was used to evaluate whether the HexA/HexB vector transduced human CD34+ cells were able to engraft and undergo normal multilineage hematopoiesis. RESULTS: HexA/HexB lentiviral vector transduced cells demonstrated strong expression of HexA and HexB and restored enzyme activity in Tay-Sachs affected cells. Upon transplantation into a humanized Sandhoff disease mouse model, improved motor and behavioral skills were observed. Decreased GM2 gangliosides were observed in the brains of HexA/HexB vector transduced cell transplanted mice. Increased peripheral blood levels of HexB was also observed in transplanted mice. Normal hematopoiesis in the peripheral blood and various lymphoid organs was also observed in transplanted NRG mice. CONCLUSIONS: These results highlight the potential use of stem cell gene therapy as a treatment strategy for Tay-Sachs and Sandhoff disease.


Asunto(s)
Antígenos CD34/genética , Actividad Motora/genética , Enfermedad de Sandhoff/genética , Enfermedad de Tay-Sachs/genética , Animales , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Vectores Genéticos/farmacología , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Proteínas de Homeodominio/genética , Humanos , Interleucina-2/genética , Lentivirus/genética , Ratones , Ratones Endogámicos NOD , Enfermedad de Sandhoff/patología , Enfermedad de Sandhoff/terapia , Enfermedad de Tay-Sachs/patología , Enfermedad de Tay-Sachs/terapia , Cadena alfa de beta-Hexosaminidasa/genética , Cadena beta de beta-Hexosaminidasa/genética
8.
Int J Mol Sci ; 21(18)2020 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-32961778

RESUMEN

Glycosphingolipids (GSLs) are a specialized class of membrane lipids composed of a ceramide backbone and a carbohydrate-rich head group. GSLs populate lipid rafts of the cell membrane of eukaryotic cells, and serve important cellular functions including control of cell-cell signaling, signal transduction and cell recognition. Of the hundreds of unique GSL structures, anionic gangliosides are the most heavily implicated in the pathogenesis of lysosomal storage diseases (LSDs) such as Tay-Sachs and Sandhoff disease. Each LSD is characterized by the accumulation of GSLs in the lysosomes of neurons, which negatively interact with other intracellular molecules to culminate in cell death. In this review, we summarize the biosynthesis and degradation pathways of GSLs, discuss how aberrant GSL metabolism contributes to key features of LSD pathophysiology, draw parallels between LSDs and neurodegenerative proteinopathies such as Alzheimer's and Parkinson's disease and lastly, discuss possible therapies for patients.


Asunto(s)
Gangliósidos/metabolismo , Glicoesfingolípidos/metabolismo , Lisosomas/metabolismo , Enfermedad de Sandhoff/metabolismo , Enfermedad de Tay-Sachs/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/terapia , Animales , Humanos , Lisosomas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/terapia , Enfermedad de Sandhoff/patología , Enfermedad de Sandhoff/terapia , Enfermedad de Tay-Sachs/patología , Enfermedad de Tay-Sachs/terapia
9.
Int J Mol Sci ; 18(12)2017 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-29186855

RESUMEN

Sphingolipids, long thought to be passive components of biological membranes with merely a structural role, have proved throughout the past decade to be major players in the pathogenesis of many human diseases. The study and characterization of several genetic disorders like Fabry's and Tay Sachs, where sphingolipid metabolism is disrupted, leading to a systemic array of clinical symptoms, have indeed helped elucidate and appreciate the importance of sphingolipids and their metabolites as active signaling molecules. In addition to being involved in dynamic cellular processes like apoptosis, senescence and differentiation, sphingolipids are implicated in critical physiological functions such as immune responses and pathophysiological conditions like inflammation and insulin resistance. Interestingly, the kidneys are among the most sensitive organ systems to sphingolipid alterations, rendering these molecules and the enzymes involved in their metabolism, promising therapeutic targets for numerous nephropathic complications that stand behind podocyte injury and renal failure.


Asunto(s)
Enfermedad de Fabry/metabolismo , Enfermedades Renales/metabolismo , Podocitos/metabolismo , Esfingolípidos/metabolismo , Enfermedad de Tay-Sachs/metabolismo , Animales , Enfermedad de Fabry/genética , Enfermedad de Fabry/terapia , Humanos , Enfermedades Renales/genética , Enfermedades Renales/terapia , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/terapia , Investigación Biomédica Traslacional
10.
Hum Mol Genet ; 22(10): 1994-2009, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23393155

RESUMEN

Loss-of-function diseases are often caused by destabilizing mutations that lead to protein misfolding and degradation. Modulating the innate protein homeostasis (proteostasis) capacity may lead to rescue of native folding of the mutated variants, thereby ameliorating the disease phenotype. In lysosomal storage disorders (LSDs), a number of highly prevalent alleles have missense mutations that do not impair the enzyme's catalytic activity but destabilize its native structure, resulting in the degradation of the misfolded protein. Enhancing the cellular folding capacity enables rescuing the native, biologically functional structure of these unstable mutated enzymes. However, proteostasis modulators specific for the lysosomal system are currently unknown. Here, we investigate the role of the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and function, in modulating lysosomal proteostasis in LSDs. We show that TFEB activation results in enhanced folding, trafficking and lysosomal activity of a severely destabilized glucocerebrosidase (GC) variant associated with the development of Gaucher disease (GD), the most common LSD. TFEB specifically induces the expression of GC and of key genes involved in folding and lysosomal trafficking, thereby enhancing both the pool of mutated enzyme and its processing through the secretory pathway. TFEB activation also rescues the activity of a ß-hexosaminidase mutant associated with the development of another LSD, Tay-Sachs disease, thus suggesting general applicability of TFEB-mediated proteostasis modulation to rescue destabilizing mutations in LSDs. In summary, our findings identify TFEB as a specific regulator of lysosomal proteostasis and suggest that TFEB may be used as a therapeutic target to rescue enzyme homeostasis in LSDs.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Regulación de la Expresión Génica/fisiología , Homeostasis/fisiología , Lisosomas/metabolismo , Pliegue de Proteína , Proteolisis , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Células Cultivadas , Fibroblastos , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/metabolismo , Enfermedad de Gaucher/terapia , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Humanos , Lisosomas/genética , Mutación , Transporte de Proteínas/fisiología , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/metabolismo , Enfermedad de Tay-Sachs/terapia
11.
Nat Med ; 28(2): 251-259, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35145305

RESUMEN

Tay-Sachs disease (TSD) is an inherited neurological disorder caused by deficiency of hexosaminidase A (HexA). Here, we describe an adeno-associated virus (AAV) gene therapy expanded-access trial in two patients with infantile TSD (IND 18225) with safety as the primary endpoint and no secondary endpoints. Patient TSD-001 was treated at 30 months with an equimolar mix of AAVrh8-HEXA and AAVrh8-HEXB administered intrathecally (i.t.), with 75% of the total dose (1 × 1014 vector genomes (vg)) in the cisterna magna and 25% at the thoracolumbar junction. Patient TSD-002 was treated at 7 months by combined bilateral thalamic (1.5 × 1012 vg per thalamus) and i.t. infusion (3.9 × 1013 vg). Both patients were immunosuppressed. Injection procedures were well tolerated, with no vector-related adverse events (AEs) to date. Cerebrospinal fluid (CSF) HexA activity increased from baseline and remained stable in both patients. TSD-002 showed disease stabilization by 3 months after injection with ongoing myelination, a temporary deviation from the natural history of infantile TSD, but disease progression was evident at 6 months after treatment. TSD-001 remains seizure-free at 5 years of age on the same anticonvulsant therapy as before therapy. TSD-002 developed anticonvulsant-responsive seizures at 2 years of age. This study provides early safety and proof-of-concept data in humans for treatment of patients with TSD by AAV gene therapy.


Asunto(s)
Enfermedad de Tay-Sachs , Anticonvulsivantes , Dependovirus/genética , Terapia Genética , Humanos , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/terapia
12.
Hum Gene Ther ; 31(11-12): 617-625, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32363942

RESUMEN

Thalamic infusion of adeno-associated viral (AAV) vectors has been shown to have therapeutic effects in neuronopathic lysosomal storage diseases. Preclinical studies in sheep model of Tay-Sachs disease demonstrated that bilateral thalamic injections of AAV gene therapy are required for maximal benefit. Translation of thalamic injection to patients carries risks in that (1) it has never been done in humans, and (2) dosing scale-up based on brain weight from animals to humans requires injection of larger volumes. To increase the safety margin of this infusion, a flexible cannula was selected to enable simultaneous bilateral thalamic infusion in infants while monitoring by imaging and/or to enable awake infusions for injection of large volumes at low infusion rates. In this study, we tested various infusion volumes (200-800 µL) and rates (0.5-5 µL/min) to determine the maximum tolerated combination of injection parameters. Animals were followed for ∼1 month postinjection with magnetic resonance imaging (MRI) performed at 14 and 28 days. T1-weighted MRI was used to quantify thalamic damage followed by histopathological assessment of the brain. Trends in data show that infusion volumes of 800 µL (2 × the volume required in sheep based on thalamic size) resulted in larger lesions than lower volumes, where the long infusion times (between 13 and 26 h) could have contributed to the generation of larger lesions. The target volume (400 µL, projected to be sufficient to cover most of the sheep thalamus) created the smallest lesion size. Cannula placement alone did result in damage, but this is likely associated with an inherent limitation of its use in a small brain due to the length of the distal rigid portion and lack of stable fixation. An injection rate of 5 µL/min at a volume ∼1/3 of the thalamus (400-600 µL) appears to be well tolerated in sheep both clinically and histopathologically.


Asunto(s)
Terapia Genética/métodos , Inyecciones/métodos , Enfermedad de Tay-Sachs/terapia , Tálamo/patología , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Masculino , Ovinos , Enfermedad de Tay-Sachs/genética
13.
Subcell Biochem ; 49: 567-88, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18751927

RESUMEN

A review is presented of the major clinical features of a number of glycolipidoses including Fabry, Gaucher, Tay-Sachs, metachromatic leukodystrophy as well as CeroidLipofucinosis and Sjogren-Larsson syndrome. The possibilities offered by lipidomics for diagnosis and follow-up after enzyme replacement therapy are presented from a practical perspective. The contribution of HPLC coupled with tandem mass spectrometry has considerably simplified the detection and assay of abnormal metabolites. Corresponding internal standards consisting of weighed mixtures of the stable-isotope labeled metabolites required to calibrate and quantitate lipid components of these orphan diseases standards have yet to become commercially available. A lipidomics approach has been found to compare favorably with DNA-sequence analysis for the rapid diagnosis of pre-birth syndromes resulting from these multiple gene defects. The method also seems to be suitable for screening applications in terms of a high throughput combined with a low rate of false diagnoses based on the wide differences in metabolite concentrations found in affected patients as compared with normal subjects. The practical advantages of handling samples for lipidomic diagnoses as compared to enzyme assay are presented for application to diagnosis during pregnancy.


Asunto(s)
Terapia Enzimática , Genómica/métodos , Lipidosis/diagnóstico , Lípidos/química , Enfermedad de Fabry/diagnóstico , Enfermedad de Fabry/fisiopatología , Enfermedad de Fabry/terapia , Enfermedad de Gaucher/diagnóstico , Enfermedad de Gaucher/fisiopatología , Enfermedad de Gaucher/terapia , Humanos , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/fisiopatología , Leucodistrofia Metacromática/terapia , Lipidosis/enzimología , Lipidosis/terapia , Lipofuscinosis Ceroideas Neuronales/diagnóstico , Lipofuscinosis Ceroideas Neuronales/fisiopatología , Lipofuscinosis Ceroideas Neuronales/terapia , Síndrome de Sjögren-Larsson/diagnóstico , Síndrome de Sjögren-Larsson/fisiopatología , Síndrome de Sjögren-Larsson/terapia , Enfermedad de Tay-Sachs/diagnóstico , Enfermedad de Tay-Sachs/fisiopatología , Enfermedad de Tay-Sachs/terapia
14.
Hum Gene Ther ; 29(3): 312-326, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28922945

RESUMEN

Tay-Sachs disease (TSD) is a fatal neurodegenerative disorder caused by a deficiency of the enzyme hexosaminidase A (HexA). TSD also occurs in sheep, the only experimental model of TSD that has clinical signs of disease. The natural history of sheep TSD was characterized using serial neurological evaluations, 7 Tesla magnetic resonance imaging, echocardiograms, electrodiagnostics, and cerebrospinal fluid biomarkers. Intracranial gene therapy was also tested using AAVrh8 monocistronic vectors encoding the α-subunit of Hex (TSD α) or a mixture of two vectors encoding both the α and ß subunits separately (TSD α + ß) injected at high (1.3 × 1013 vector genomes) or low (4.2 × 1012 vector genomes) dose. Delay of symptom onset and/or reduction of acquired symptoms were noted in all adeno-associated virus-treated sheep. Postmortem evaluation showed superior HexA and vector genome distribution in the brain of TSD α + ß sheep compared to TSD α sheep, but spinal cord distribution was low in all groups. Isozyme analysis showed superior HexA formation after treatment with both vectors (TSD α + ß), and ganglioside clearance was most widespread in the TSD α + ß high-dose sheep. Microglial activation and proliferation in TSD sheep-most prominent in the cerebrum-were attenuated after gene therapy. This report demonstrates therapeutic efficacy for TSD in the sheep brain, which is on the same order of magnitude as a child's brain.


Asunto(s)
Dependovirus , Terapia Genética , Enfermedad de Tay-Sachs/terapia , Cadena alfa de beta-Hexosaminidasa/biosíntesis , Cadena beta de beta-Hexosaminidasa/biosíntesis , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/enzimología , Modelos Animales de Enfermedad , Ecocardiografía , Humanos , Imagen por Resonancia Magnética , Microglía/enzimología , Ovinos , Enfermedad de Tay-Sachs/diagnóstico por imagen , Enfermedad de Tay-Sachs/enzimología , Enfermedad de Tay-Sachs/genética , Cadena alfa de beta-Hexosaminidasa/genética , Cadena beta de beta-Hexosaminidasa/genética
15.
Orphanet J Rare Dis ; 13(1): 152, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30220252

RESUMEN

BACKGROUND: Tay-Sachs disease (TSD) is a rare neurodegenerative disorder caused by autosomal recessive mutations in the HEXA gene on chromosome 15 that encodes ß-hexosaminidase. Deficiency in HEXA results in accumulation of GM2 ganglioside, a glycosphingolipid, in lysosomes. Currently, there is no effective treatment for TSD. RESULTS: We generated induced pluripotent stem cells (iPSCs) from two TSD patient dermal fibroblast lines and further differentiated them into neural stem cells (NSCs). The TSD neural stem cells exhibited a disease phenotype of lysosomal lipid accumulation. The Tay-Sachs disease NSCs were then used to evaluate the therapeutic effects of enzyme replacement therapy (ERT) with recombinant human Hex A protein and two small molecular compounds: hydroxypropyl-ß-cyclodextrin (HPßCD) and δ-tocopherol. Using this disease model, we observed reduction of lipid accumulation by employing enzyme replacement therapy as well as by the use of HPßCD and δ-tocopherol. CONCLUSION: Our results demonstrate that the Tay-Sachs disease NSCs possess the characteristic phenotype to serve as a cell-based disease model for study of the disease pathogenesis and evaluation of drug efficacy. The enzyme replacement therapy with recombinant Hex A protein and two small molecules (cyclodextrin and tocopherol) significantly ameliorated lipid accumulation in the Tay-Sachs disease cell model.


Asunto(s)
Células-Madre Neurales/citología , Enfermedad de Tay-Sachs/tratamiento farmacológico , Enfermedad de Tay-Sachs/terapia , 2-Hidroxipropil-beta-Ciclodextrina/uso terapéutico , Diferenciación Celular/fisiología , Línea Celular , Terapia de Reemplazo Enzimático/métodos , Femenino , Técnica del Anticuerpo Fluorescente , Gangliosidosis GM2/metabolismo , Hexosaminidasa A/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Masculino , Repeticiones de Microsatélite/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Pichia/metabolismo , Espectrometría de Masas en Tándem , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/metabolismo , Tocoferoles/uso terapéutico
16.
Curr Gene Ther ; 18(2): 68-89, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29618308

RESUMEN

Tay-Sachs disease, caused by impaired ß-N-acetylhexosaminidase activity, was the first GM2 gangliosidosis to be studied and one of the most severe and earliest lysosomal diseases to be described. The condition, associated with the pathological build-up of GM2 ganglioside, has acquired almost iconic status and serves as a paradigm in the study of lysosomal storage diseases. Inherited as a classical autosomal recessive disorder, this global disease of the nervous system induces developmental arrest with regression of attained milestones; neurodegeneration progresses rapidly to cause premature death in young children. There is no effective treatment beyond palliative care, and while the genetic basis of GM2 gangliosidosis is well established, the molecular and cellular events, from diseasecausing mutations and glycosphingolipid storage to disease manifestations, remain to be fully delineated. Several therapeutic approaches have been attempted in patients, including enzymatic augmentation, bone marrow transplantation, enzyme enhancement, and substrate reduction therapy. Hitherto, none of these stratagems has materially altered the course of the disease. Authentic animal models of GM2 gangliodidosis have facilitated in-depth evaluation of innovative applications such as gene transfer, which in contrast to other interventions, shows great promise. This review outlines current knowledge pertaining the pathobiology as well as potential innovative treatments for the GM2 gangliosidoses.


Asunto(s)
Trasplante de Médula Ósea , Terapia de Reemplazo Enzimático , Terapia Genética , Enfermedad de Sandhoff/genética , Enfermedad de Sandhoff/terapia , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/terapia , Animales , Modelos Animales de Enfermedad , Glicoesfingolípidos/metabolismo , Humanos , Lactante , Lisosomas/enzimología , Lisosomas/genética , Lisosomas/patología , Ratones , Mutación , Enfermedades Raras , Enfermedad de Sandhoff/enzimología , Enfermedad de Sandhoff/patología , Enfermedad de Tay-Sachs/enzimología , Enfermedad de Tay-Sachs/patología , beta-N-Acetilhexosaminidasas/genética
17.
Clin Chim Acta ; 378(1-2): 38-41, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17196574

RESUMEN

BACKGROUND: GM2 gangliosidoses, including Tay-Sachs disease, Sandhoff disease and the AB variant, comprise deficiencies of beta-hexosaminidase isozymes and GM2 ganglioside activator protein associated with accumulation of GM2 ganglioside (GM2) in lysosomes and neurosomatic clinical manifestations. A simple assay system for intracellular quantification of GM2 is required to evaluate the therapeutic effects on GM2-gangliosidoses. METHODS: We newly established a cell-ELISA system involving anti-GM2 monoclonal antibodies for measuring GM2 storage in fibroblasts from Tay-Sachs and Sandhoff disease patients. RESULTS: We succeeded in detecting the corrective effect of enzyme replacement on elimination of GM2 in the cells with this ELISA system. CONCLUSIONS: This simple and sensitive system should be useful as additional diagnosis tool as well as therapeutic evaluation of GM2 gangliosidoses.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Ensayo de Inmunoadsorción Enzimática/métodos , Gangliósido G(M2)/análisis , Gangliosidosis GM2/terapia , Células Cultivadas , Fibroblastos/química , Gangliósido G(M2)/inmunología , Hexosaminidasa B , Humanos , Enfermedad de Sandhoff/terapia , Enfermedad de Tay-Sachs/terapia , Cadena beta de beta-Hexosaminidasa , beta-N-Acetilhexosaminidasas/uso terapéutico
18.
Nat Biotechnol ; 16(11): 1033-9, 1998 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-9831031

RESUMEN

Stable clones of neural stem cells (NSCs) have been isolated from the human fetal telencephalon. These self-renewing clones give rise to all fundamental neural lineages in vitro. Following transplantation into germinal zones of the newborn mouse brain they participate in aspects of normal development, including migration along established migratory pathways to disseminated central nervous system regions, differentiation into multiple developmentally and regionally appropriate cell types, and nondisruptive interspersion with host progenitors and their progeny. These human NSCs can be genetically engineered and are capable of expressing foreign transgenes in vivo. Supporting their gene therapy potential, secretory products from NSCs can correct a prototypical genetic metabolic defect in neurons and glia in vitro. The human NSCs can also replace specific deficient neuronal populations. Cryopreservable human NSCs may be propagated by both epigenetic and genetic means that are comparably safe and effective. By analogy to rodent NSCs, these observations may allow the development of NSC transplantation for a range of disorders.


Asunto(s)
Trasplante de Tejido Encefálico , Trasplante de Tejido Fetal , Neuronas/trasplante , Trasplante de Células Madre , Animales , Animales Recién Nacidos , Biotecnología , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/cirugía , Movimiento Celular , Células Cultivadas , Ingeniería Genética , Terapia Genética , Humanos , Ratones , Neuronas/citología , Neuronas/fisiología , Células Madre/citología , Células Madre/fisiología , Enfermedad de Tay-Sachs/enzimología , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/terapia , Trasplante Heterólogo , beta-N-Acetilhexosaminidasas/deficiencia , beta-N-Acetilhexosaminidasas/genética
20.
Curr Med Chem ; 24(39): 4368-4398, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28748763

RESUMEN

BACKGROUND: Induced Pluripotent Stem Cell (IPSC) Technology is the most advanced research as it offers an attractive alternative for establishing patient-specific IPSCs to recapitulate phenotypes of not only monogenic diseases (viz. Thalassaemia, Sickle cell anemia, Haemophilia, Tay-Sachs disease), but also late-onset polygenic diseases (viz. Parkinson's disease, Alzheimer's disease, schizophrenia). Over the hindsight, numerous studies of the past and current scientists have led to the production, maturation and understanding of induced pluripotent stem cell technology and its use in basic and clinical research. METHODS: A systematic search of peer-reviewed scientific literature and clinical trials in public databases were carried out to summarize the evidence on the use of IPSC. RESULTS: Current review sheds light upon the use of patient-derived iPSC models in drug toxicity, screening and discovery which have been derived after referring to more than 200 articles in literature. Furthermore, their use as disease models was also studied signifying the versatility of iPSC lines. CONCLUSION: Through this review, we describe the advent of iPSC technology, where we comprehensively cover the generation of iPSCs and their characterization along with their prospective applications using IPSC banks in disease modeling and drug screening.


Asunto(s)
Modelos Animales de Enfermedad , Células Madre Pluripotentes Inducidas , Trasplante de Células Madre , Enfermedad de Alzheimer/terapia , Anemia de Células Falciformes/terapia , Animales , Evaluación Preclínica de Medicamentos , Hemofilia A/terapia , Humanos , Enfermedad de Parkinson/terapia , Esquizofrenia/terapia , Enfermedad de Tay-Sachs/terapia , Talasemia/terapia
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda