Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Nature ; 626(7997): 160-168, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38233524

RESUMEN

Guillain-Barré syndrome (GBS) is a rare heterogenous disorder of the peripheral nervous system, which is usually triggered by a preceding infection, and causes a potentially life-threatening progressive muscle weakness1. Although GBS is considered an autoimmune disease, the mechanisms that underlie its distinct clinical subtypes remain largely unknown. Here, by combining in vitro T cell screening, single-cell RNA sequencing and T cell receptor (TCR) sequencing, we identify autoreactive memory CD4+ cells, that show a cytotoxic T helper 1 (TH1)-like phenotype, and rare CD8+ T cells that target myelin antigens of the peripheral nerves in patients with the demyelinating disease variant. We characterized more than 1,000 autoreactive single T cell clones, which revealed a polyclonal TCR repertoire, short CDR3ß lengths, preferential HLA-DR restrictions and recognition of immunodominant epitopes. We found that autoreactive TCRß clonotypes were expanded in the blood of the same patient at distinct disease stages and, notably, that they were shared in the blood and the cerebrospinal fluid across different patients with GBS, but not in control individuals. Finally, we identified myelin-reactive T cells in the nerve biopsy from one patient, which indicates that these cells contribute directly to disease pathophysiology. Collectively, our data provide clear evidence of autoreactive T cell immunity in a subset of patients with GBS, and open new perspectives in the field of inflammatory peripheral neuropathies, with potential impact for biomedical applications.


Asunto(s)
Autoinmunidad , Linfocitos T CD8-positivos , Síndrome de Guillain-Barré , Nervios Periféricos , Enfermedades del Sistema Nervioso Periférico , Células TH1 , Humanos , Biopsia , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Síndrome de Guillain-Barré/sangre , Síndrome de Guillain-Barré/líquido cefalorraquídeo , Síndrome de Guillain-Barré/etiología , Síndrome de Guillain-Barré/inmunología , Antígenos HLA-DR/inmunología , Epítopos Inmunodominantes/inmunología , Vaina de Mielina/inmunología , Nervios Periféricos/inmunología , Nervios Periféricos/patología , Enfermedades del Sistema Nervioso Periférico/complicaciones , Enfermedades del Sistema Nervioso Periférico/inmunología , Enfermedades del Sistema Nervioso Periférico/patología , Receptores de Antígenos de Linfocitos T/inmunología , Células TH1/inmunología , Células TH1/patología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/patología , Memoria Inmunológica
2.
Cell Mol Life Sci ; 81(1): 315, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066803

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is a disabling side effect of cancer chemotherapy that can often limit treatment options for cancer patients or have life-long neurodegenerative consequences that reduce the patient's quality of life. CIPN is caused by the detrimental actions of various chemotherapeutic agents on peripheral axons. Currently, there are no approved preventative measures or treatment options for CIPN, highlighting the need for the discovery of novel therapeutics and improving our understanding of disease mechanisms. In this study, we utilized human-induced pluripotent stem cell (hiPSC)-derived motor neurons as a platform to mimic axonal damage after treatment with vincristine, a chemotherapeutic used for the treatment of breast cancers, osteosarcomas, and leukemia. We screened a total of 1902 small molecules for neuroprotective properties in rescuing vincristine-induced axon growth deficits. From our primary screen, we identified 38 hit compounds that were subjected to secondary dose response screens. Six compounds showed favorable pharmacological profiles - AZD7762, A-674563, Blebbistatin, Glesatinib, KW-2449, and Pelitinib, all novel neuroprotectants against vincristine toxicity to neurons. In addition, four of these six compounds also showed efficacy against vincristine-induced growth arrest in human iPSC-derived sensory neurons. In this study, we utilized high-throughput screening of a large library of compounds in a therapeutically relevant assay. We identified several novel compounds that are efficacious in protecting different neuronal subtypes from the toxicity induced by a common chemotherapeutic agent, vincristine which could have therapeutic potential in the clinic.


Asunto(s)
Células Madre Pluripotentes Inducidas , Fármacos Neuroprotectores , Vincristina , Vincristina/farmacología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Fármacos Neuroprotectores/farmacología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Neuronas Motoras/metabolismo , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Células Cultivadas , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/patología , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico
3.
Muscle Nerve ; 69(4): 409-415, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38323736

RESUMEN

INTRODUCTION: Magnetic resonance neurography (MRN) and myography (MRM) are emerging imaging methods for detecting diseases of the peripheral nerve system (PNS). Most patients with PNS diseases also undergo needle electromyography (EMG). This study examined whether EMG led to lesions that were detectable using MRN/MRM and whether these lesions could impair image interpretation. METHODS: Ten patients who underwent clinically indicated EMG were recruited. MRN/MRM was performed before and 2-6 h after EMG, and if achievable, 2-3 days later. T2 signal intensity (SI) of the tibialis anterior muscle (TA) was quantified, and sizes and SI of the new lesions were measured. Visual rating was performed independently by three neuroradiologists. RESULTS: T2 lesions at the site of needle insertion, defined as focal edema, were detectable in 9/10 patients. The mean edema size was 31.72 mm2 (SD = 14.42 mm2 ) at the first follow-up. Susceptibility-weighted imaging lesions, defined as (micro) hematomas were detected in 5/10 patients (mean size, 23.85 mm2 [SD = 12.59 mm2 ]). General muscle SI of the TA did not differ between pre- and post-EMG examinations. Lesions size was relatively small, and the readers described image interpretation as not impaired by these lesions. DISCUSSION: This study showed that focal edema and hematomas frequently occurred after needle EMG and could be observed using MRN/MRM. As general muscle SI was not affected and image interpretation was not impaired, we concluded that needle EMG did not interfere with MRN/MRM.


Asunto(s)
Enfermedades del Sistema Nervioso Periférico , Humanos , Electromiografía , Enfermedades del Sistema Nervioso Periférico/patología , Imagen por Resonancia Magnética/métodos , Miografía , Edema , Hematoma
4.
Muscle Nerve ; 69(2): 185-198, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38112169

RESUMEN

INTRODUCTION/AIMS: Diagnosis of small-fiber neuropathy (SFN) is hampered by its subjective symptoms and signs. Confirmatory testing is insufficiently available and expensive, so predictive examinations have value. However, few support the 2020 SFN consensus-case-definition requirements or were validated for non-diabetes neuropathies. Thus we developed the Massachusetts General Hospital Neuropathy Exam Tool (MAGNET) and measured diagnostic performance in 160 symptomatic patients evaluated for length-dependent SFN from any cause and 37 healthy volunteers. METHODS: We compared prevalences of abnormalities (vital signs, pupil responses, lower-limb appearance, pin, light touch, vibration and position sensitivity, great-toe strength, muscle stretch reflexes), and validated diagnostic performance against objective SFN tests: lower-leg skin-biopsy epidermal neurite densities and autonomic function testing (AFT). Sensitivity/specificity, feasibility, test-retest and inter-rater reliability, and convergence with the Utah Early Neuropathy Scale were calculated. RESULTS: Patients' ages averaged 48.5 ± 14.7 years and 70.6% were female. Causes of neuropathy varied, remaining unknown in 59.5%. Among the 46 with abnormal skin biopsies, the most prevalent abnormality was reduced pin sharpness at the toes (71.7%). Inter-rater reliability, test-retest reliability, and convergent validity excelled (range = 91.3-95.6%). Receiver operating characteristics comparing all symptomatic patients versus healthy controls indicated that a MAGNET threshold score of 14 maximized predictive accuracy for skin biopsies (0.74) and a 30 cut-off maximized accuracy for predicting AFT (0.60). Analyzing patients with any abnormal neuropathy-test results identified areas-under-the-curves of 0.87-0.89 for predicting a diagnostic result, accuracy = 0.80-0.89, and Youden's index = 0.62. Overall, MAGNET was 80%-85% accurate for stratifying patients with abnormal versus normal neuropathy test results. DISCUSSION: MAGNET quickly generates research-quality metrics during clinical examinations.


Asunto(s)
Enfermedades del Sistema Nervioso Periférico , Neuropatía de Fibras Pequeñas , Humanos , Femenino , Masculino , Reproducibilidad de los Resultados , Hospitales Generales , Imanes , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/patología , Neuropatía de Fibras Pequeñas/patología , Piel/patología , Biopsia
5.
J Peripher Nerv Syst ; 29(2): 135-160, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38600691

RESUMEN

Nerve conduction studies are usually the first diagnostic step in peripheral nerve disorders and their results are the basis for planning further investigations. However, there are some commonplaces in the interpretation of electrodiagnostic findings in peripheral neuropathies that, although useful in the everyday practice, may be misleading: (1) conduction block and abnormal temporal dispersion are distinctive features of acquired demyelinating disorders; (2) hereditary neuropathies are characterized by uniform slowing of conduction velocity; (3) axonal neuropathies are simply diagnosed by reduced amplitude of motor and sensory nerve action potentials with normal or slightly slow conduction velocity. In this review, we reappraise the occurrence of uniform and non-uniform conduction velocity slowing, conduction block and temporal dispersion in demyelinating, dysmyelinating and axonal neuropathies attempting, with a translational approach, a correlation between electrophysiological and pathological features as derived from sensory nerve biopsy in patients and animal models. Additionally, we provide some hints to navigate in this complex field.


Asunto(s)
Enfermedades Desmielinizantes , Conducción Nerviosa , Enfermedades del Sistema Nervioso Periférico , Humanos , Conducción Nerviosa/fisiología , Enfermedades Desmielinizantes/fisiopatología , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/diagnóstico , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/patología , Animales , Axones/fisiología , Axones/patología , Potenciales de Acción/fisiología , Electrodiagnóstico
6.
Support Care Cancer ; 32(1): 85, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38177894

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is a treatment-limiting adverse effect of anticancer therapy that complicates the lifestyle of many cancer survivors. There is currently no gold-standard for the assessment or management of CIPN. Subsequently, understanding the underlying mechanisms that lead to the development of CIPN is essential for finding better pharmacological therapy. Therapy-induced senescence (TIS) is a form of senescence that is triggered in malignant and non-malignant cells in response to the exposure to chemotherapy. Recent evidence has also suggested that TIS develops in the dorsal root ganglia of rodent models of CIPN. Interestingly, several components of the senescent phenotype are commensurate with the currently established primary processes implicated in the pathogenesis of CIPN including mitochondrial dysfunction, oxidative stress, and neuroinflammation. In this article, we review the literature that supports the hypothesis that TIS could serve as a holistic mechanism leading to CIPN, and we propose the potential for investigating senotherapeutics as means to mitigate CIPN in cancer survivors.


Asunto(s)
Antineoplásicos , Supervivientes de Cáncer , Enfermedades del Sistema Nervioso Periférico , Humanos , Antineoplásicos/efectos adversos , Enfermedades del Sistema Nervioso Periférico/patología , Estrés Oxidativo
7.
Alcohol Alcohol ; 59(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38469882

RESUMEN

AIMS: Chronic alcohol consumption is well known to cause peripheral neuropathy, affecting both small and large nerve fibers. The aim of this study was to correlate biochemical and neurophysiological findings and investigate possible biomarkers and risk factors for pathogenetic mechanisms of neuropathy in patients diagnosed with alcohol use disorder (AUD). METHODS: Ninety patients diagnosed with AUD were enrolled in this prospective study over a period of 3 years. Serum biochemical parameters, as well as thiamine blood levels, were determined upon admission. Every subject was assessed by clinical neurological examination, followed by Nerve Conduction Studies, Quantitative Sensory Testing, and Sympathetic Skin Response. Fifty age and gender-matched patients without a diagnosis of AUD were used as the control group. RESULTS: Peripheral neuropathy was diagnosed in 54 patients (60%). Among them, pure large fiber neuropathy was found in 18 patients, pure small fiber neuropathy in 12 patients, and both large and small fiber neuropathy was diagnosed in 24 patients. Elevated liver enzymes and fasting glucose levels upon admission were significantly correlated with neuropathy. Lower blood thiamine levels (than reference) were found in seven patients and were not correlated with neuropathy. CONCLUSIONS: Our study suggests that alcohol-related liver dysfunction and hyperglycemia may contribute as risk factors of peripheral neuropathy in patients diagnosed with AUD, while blood thiamine levels do not correlate with neuropathy. Moreover, we suggest that liver enzymes and the De Ritis ratio could be potentially used as biomarkers for the incidence and severity of alcohol-related neuropathy.


Asunto(s)
Alcoholismo , Hepatopatías , Enfermedades del Sistema Nervioso Periférico , Neuropatía de Fibras Pequeñas , Humanos , Tiamina , Alcoholismo/complicaciones , Alcoholismo/diagnóstico , Neuropatía de Fibras Pequeñas/complicaciones , Estudios Prospectivos , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/etiología , Enfermedades del Sistema Nervioso Periférico/patología , Consumo de Bebidas Alcohólicas/efectos adversos , Hepatopatías/complicaciones , Biomarcadores , Ayuno , Glucosa
8.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38396973

RESUMEN

Autoimmune autonomic ganglionopathy (AAG) is a disease of autonomic failure caused by ganglionic acetylcholine receptor (gAChR) autoantibodies. Although the detection of autoantibodies is important for distinguishing the disease from other neuropathies that present with autonomic dysfunction, other factors are important for accurate diagnosis. Here, we provide a comprehensive review of the clinical features of AAG, highlighting differences in clinical course, clinical presentation, and laboratory findings from other neuropathies presenting with autonomic symptoms. The first step in diagnosing AAG is careful history taking, which should reveal whether the mode of onset is acute or chronic, followed by an examination of the time course of disease progression, including the presentation of autonomic and extra-autonomic symptoms. AAG is a neuropathy that should be differentiated from other neuropathies when the patient presents with autonomic dysfunction. Immune-mediated neuropathies, such as acute autonomic sensory neuropathy, are sometimes difficult to differentiate, and therefore, differences in clinical and laboratory findings should be well understood. Other non-neuropathic conditions, such as postural orthostatic tachycardia syndrome, chronic fatigue syndrome, and long COVID, also present with symptoms similar to those of AAG. Although often challenging, efforts should be made to differentiate among the disease candidates.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Enfermedades Autoinmunes , Enfermedades del Sistema Nervioso Autónomo , Enfermedades del Sistema Nervioso Periférico , Humanos , Ganglios Autónomos , Síndrome Post Agudo de COVID-19 , Sistema Nervioso Autónomo , Enfermedades del Sistema Nervioso Autónomo/diagnóstico , Enfermedades del Sistema Nervioso Autónomo/etiología , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/patología , Enfermedades del Sistema Nervioso Periférico/patología , Autoanticuerpos
9.
Brain Nerve ; 76(5): 473-479, 2024 May.
Artículo en Japonés | MEDLINE | ID: mdl-38741485

RESUMEN

Neuropathological findings rarely lead to a definitive diagnosis of autoimmune and inflammatory peripheral nerve diseases, and indications for invasive nerve biopsy with subsequent disability should be carefully determined. In addition to disease-specific pathological findings, identifying findings that facilitate differential diagnosis in clinical practice is necessary. This article reviews the neuropathological findings that are valuable in the differential diagnosis of autoimmune and inflammatory peripheral nerve diseases.


Asunto(s)
Enfermedades del Sistema Nervioso Periférico , Humanos , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/patología , Diagnóstico Diferencial , Biopsia , Neuropatología
10.
Neurotoxicology ; 101: 46-53, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316190

RESUMEN

Adeno-associated virus (AAV)-based vectors are commonly used for delivering transgenes in gene therapy studies, but they are also known to cause dorsal root ganglia (DRG) and peripheral nerve toxicities in animals. However, the functional implications of these pathologic findings and their time course remain unclear. At 2, 4, 6, and 8 weeks following a single dose of an AAV9 vector carrying human frataxin transgene in rats, non-standard functional assessments, including von Frey filament, electrophysiology, and Rotarod tests, were conducted longitudinally to measure allodynia, nerve conduction velocity, and coordination, respectively. Additionally, DRGs, peripheral nerves, brain and spinal cord were evaluated histologically and circulating neurofilament light chain (NfL) was quantified at 1, 2, 4, and 8 weeks, respectively. At 2 and 4 weeks after dosing, minimal-to-moderate nerve fiber degeneration and neuronal degeneration were observed in the DRGs in some of the AAV9 vector-dosed animals. At 8 weeks, nerve fiber degeneration was observed in DRGs, with or without neuronal degeneration, and in sciatic nerves of all AAV9 vector-dosed animals. NfL values were higher in AAV9 vector-treated animals at weeks 4 and 8 compared with controls. However, there were no significant differences in the three functional endpoints evaluated between the AAV9 vector- and vehicle-dosed animals, or in a longitudinal comparison between baseline (predose), 4, and 8 week values in the AAV9 vector-dose animals. These findings demonstrate that there is no detectable functional consequence to the minimal-to-moderate neurodegeneration observed with our AAV9 vector treatment in rats, suggesting a functional tolerance or reserve for loss of DRG neurons after systemic administration of AAV9 vector.


Asunto(s)
Ganglios Espinales , Enfermedades del Sistema Nervioso Periférico , Humanos , Ratas , Animales , Ganglios Espinales/patología , Fibras Nerviosas , Nervio Ciático , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/patología , Neuronas
11.
Adv Biol (Weinh) ; 8(5): e2400020, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38548657

RESUMEN

Understanding the intricate processes of neuronal growth, degeneration, and neurotoxicity is paramount for unraveling nervous system function and holds significant promise in improving patient outcomes, especially in the context of chemotherapy-induced peripheral neuropathy (CIPN). These processes are influenced by a broad range of entwined events facilitated by chemical, electrical, and mechanical signals. The progress of each process is inherently linked to phenotypic changes in cells. Currently, the primary means of demonstrating morphological changes rely on measurements of neurite outgrowth and axon length. However, conventional techniques for monitoring these processes often require extensive preparation to enable manual or semi-automated measurements. Here, a label-free and non-invasive approach is employed for monitoring neuronal differentiation and degeneration using quantitative phase imaging (QPI). Operating on unlabeled specimens and offering little to no phototoxicity and photobleaching, QPI delivers quantitative maps of optical path length delays that provide an objective measure of cellular morphology and dynamics. This approach enables the visualization and quantification of axon length and other physical properties of dorsal root ganglion (DRG) neuronal cells, allowing greater understanding of neuronal responses to stimuli simulating CIPN conditions. This research paves new avenues for the development of more effective strategies in the clinical management of neurotoxicity.


Asunto(s)
Axones , Diferenciación Celular , Ganglios Espinales , Animales , Ganglios Espinales/patología , Ganglios Espinales/citología , Axones/patología , Neuronas/patología , Humanos , Ratones , Enfermedades del Sistema Nervioso Periférico/patología , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Imágenes de Fase Cuantitativa
12.
Cells ; 13(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38786023

RESUMEN

Parkinson's disease (PD) is the second-most common neurodegenerative disorder worldwide and is diagnosed based on motor impairments. Non-motor symptoms are also well-recognised in this disorder, and peripheral neuropathy is a frequent but poorly appreciated non-motor sign. Studying how central and peripheral sensory systems are affected can contribute to the development of targeted therapies and deepen our understanding of the pathophysiology of PD. Although the cause of sporadic PD is unknown, chronic exposure to the pesticide rotenone in humans increases the risk of developing the disease. Here, we aimed to investigate whether peripheral neuropathy is present in a traditional model of PD. Mice receiving intrastriatal rotenone showed greatly reduced dopamine terminals in the striatum and a reduction in tyrosine hydroxylase-positive neurons in the Substantia nigra pars compacta and developed progressive motor impairments in hindlimb stepping and rotarod but no change in spontaneous activity. Interestingly, repeated testing using gold-standard protocols showed no change in gut motility, a well-known non-motor symptom of PD. Importantly, we did not observe any change in heat, cold, or touch sensitivity, again based upon repeated testing with well-validated protocols that were statistically well powered. Therefore, this traditional model fails to replicate PD, and our data again reiterate the importance of the periphery to the disorder.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Parkinson , Rotenona , Animales , Ratones , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/patología , Rotenona/farmacología , Ratones Endogámicos C57BL , Masculino , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Enfermedades del Sistema Nervioso Periférico/patología , Cuerpo Estriado/patología , Cuerpo Estriado/metabolismo , Dopamina/metabolismo
13.
Sci Rep ; 14(1): 10374, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710787

RESUMEN

To elucidate the neurological features of Hansen disease. The medical records of patients with confirmed Hansen disease transferred from the neurology department were reviewed, and all medical and neurological manifestations of Hansen disease were assessed. Eleven patients with confirmed Hansen disease, 10 with newly detected Hansen disease and 1 with relapsed Hansen disease, who visited neurology departments were enrolled. The newly detected patients with Hansen disease were classified as having lepromatous leprosy (LL, n = 1), borderline lepromatous leprosy (BL, n = 2), borderline leprosy (BB, n = 2), borderline tuberculoid leprosy (BT, n = 1), tuberculoid leprosy (TT, n = 2), or pure neural leprosy (PNL, n = 2). All of the patients with confirmed Hansen were diagnosed with peripheral neuropathy (100.00%, 11/11). The symptoms and signs presented were mainly limb numbness (100.00%, 11/11), sensory and motor dysfunction (100.00%, 11/11), decreased muscle strength (90.90%, 10/11), and skin lesions (81.81%, 9/11). Nerve morphological features in nerve ultrasonography (US) included peripheral nerve asymmetry and segmental thickening (100.00%, 9/9). For neuro-electrophysiology feature, the frequency of no response of sensory nerves was significantly higher than those of motor nerves [(51.21% 42/82) vs (24.70%, 21/85)(P = 0.0183*)] by electrodiagnostic (EDX) studies. Nerve histological features in nerve biopsy analysis included demyelination (100.00%, 5/5) and axonal damage (60.00%, 3/5). In addition to confirmed diagnoses by acid-fast bacteria (AFB) staining (54.54%, 6/11) and skin pathology analysis (100.00%, 8/8), serology and molecular technology were positive in 36.36% (4/11) and 100.00% (11/11) of confirmed patients of Hansen disease, respectively. It is not uncommon for patients of Hansen disease to visit neurology departments due to peripheral neuropathy. The main pathological features of affected nerves are demyelination and axonal damage. The combination of nerve US, EDX studies, nerve biopsy, and serological and molecular tests can improve the diagnosis of Hansen disease.


Asunto(s)
Lepra , Enfermedades del Sistema Nervioso Periférico , Humanos , Masculino , Femenino , Estudios Retrospectivos , Adulto , Persona de Mediana Edad , Lepra/patología , Lepra/diagnóstico , Lepra/complicaciones , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/patología , Anciano , Adulto Joven
14.
Genes (Basel) ; 15(4)2024 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-38674419

RESUMEN

Autosomal recessive Nonaka distal myopathy is a rare autosomal recessive genetic disease characterized by progressive degeneration of the distal muscles, causing muscle weakness and decreased grip strength. It is primarily associated with mutations in the GNE gene, which encodes a key enzyme of sialic acid biosynthesis (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase). This study was performed to find GNE mutations in six independent distal myopathy patients with or without peripheral neuropathy using whole-exome sequencing (WES). In silico pathogenic prediction and simulation of 3D structural changes were performed for the mutant GNE proteins. As a result, we identified five pathogenic or likely pathogenic missense variants: c.86T>C (p.Met29Thr), c.527A>T (p.Asp176Val), c.782T>C (p.Met261Thr), c.1714G>C (p.Val572Leu), and c.1771G>A (p.Ala591Thr). Five affected individuals showed compound heterozygous mutations, while only one patient revealed a homozygous mutation. Two patients revealed unreported combinations of combined heterozygous mutations. We observed some specific clinical features, such as complex phenotypes of distal myopathy with distal hereditary peripheral neuropathy, an earlier onset of weakness in legs than that of hands, and clinical heterogeneity between two patients with the same set of compound heterozygous mutations. Our findings on these genetic causes expand the clinical spectrum associated with the GNE mutations and can help prepare therapeutic strategies.


Asunto(s)
Miopatías Distales , Humanos , Miopatías Distales/genética , Miopatías Distales/patología , Masculino , Femenino , Adulto , República de Corea , Secuenciación del Exoma , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/patología , Mutación Missense , Persona de Mediana Edad , Complejos Multienzimáticos/genética , Linaje , Mutación , Genes Recesivos
15.
Curr Opin Neurobiol ; 87: 102884, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852438

RESUMEN

Peripheral neuropathy is a common neurodegenerative condition characterized by numbness, tingling, pain, and weakness that frequently starts in the distal limbs. Arising from multiple etiologies, many peripheral neuropathies exhibit a slowly progressive course due to axon degeneration for which no effective treatments exist. During the past decade, numerous crucial insights into mechanisms of axon degeneration in peripheral neuropathies emerged from experiments involving nerve-cutting procedures, revealing the central role of the SARM1 axon degeneration pathway in both. Here I review commonalities and differences in the role of SARM1 after nerve cut and in several acquired and inherited peripheral neuropathies. This new knowledge now paves the way for the development of therapeutics that directly address root causes of various kinds of neuropathies.


Asunto(s)
Proteínas del Dominio Armadillo , Proteínas del Citoesqueleto , Enfermedades del Sistema Nervioso Periférico , Humanos , Proteínas del Dominio Armadillo/metabolismo , Proteínas del Dominio Armadillo/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Enfermedades del Sistema Nervioso Periférico/patología , Enfermedades del Sistema Nervioso Periférico/genética , Animales , Axones/patología , Axones/metabolismo , Axones/fisiología
16.
Signal Transduct Target Ther ; 9(1): 32, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38351062

RESUMEN

The appropriate and specific response of nerve cells to various external cues is essential for the establishment and maintenance of neural circuits, and this process requires the proper recruitment of adaptor molecules to selectively activate downstream pathways. Here, we identified that DOK6, a member of the Dok (downstream of tyrosine kinases) family, is required for the maintenance of peripheral axons, and that loss of Dok6 can cause typical peripheral neuropathy symptoms in mice, manifested as impaired sensory, abnormal posture, paw deformities, blocked nerve conduction, and dysmyelination. Furthermore, Dok6 is highly expressed in peripheral neurons but not in Schwann cells, and genetic deletion of Dok6 in peripheral neurons led to typical peripheral myelin outfolding, axon destruction, and hindered retrograde axonal transport. Specifically, DOK6 acts as an adaptor protein for selectivity-mediated neurotrophic signal transduction and retrograde transport for TrkC and Ret but not for TrkA and TrkB. DOK6 interacts with certain proteins in the trafficking machinery and controls their phosphorylation, including MAP1B, Tau and Dynein for axonal transport, and specifically activates the downstream ERK1/2 kinase pathway to maintain axonal survival and homeostasis. This finding provides new clues to potential insights into the pathogenesis and treatment of hereditary peripheral neuropathies and other degenerative diseases.


Asunto(s)
Enfermedades del Sistema Nervioso Periférico , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Axones/metabolismo , Axones/patología , Neuronas/metabolismo , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/metabolismo , Enfermedades del Sistema Nervioso Periférico/patología , Transducción de Señal/genética
17.
Exp Mol Med ; 56(6): 1348-1364, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38825644

RESUMEN

Inherited peripheral neuropathies (IPNs) are a group of diseases associated with mutations in various genes with fundamental roles in the development and function of peripheral nerves. Over the past 10 years, significant advances in identifying molecular disease mechanisms underlying axonal and myelin degeneration, acquired from cellular biology studies and transgenic fly and rodent models, have facilitated the development of promising treatment strategies. However, no clinical treatment has emerged to date. This lack of treatment highlights the urgent need for more biologically and clinically relevant models recapitulating IPNs. For both neurodevelopmental and neurodegenerative diseases, patient-specific induced pluripotent stem cells (iPSCs) are a particularly powerful platform for disease modeling and preclinical studies. In this review, we provide an update on different in vitro human cellular IPN models, including traditional two-dimensional monoculture iPSC derivatives, and recent advances in more complex human iPSC-based systems using microfluidic chips, organoids, and assembloids.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Animales , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/patología , Enfermedades del Sistema Nervioso Periférico/terapia , Organoides/metabolismo , Modelos Biológicos
18.
Int J Pharm ; 652: 123839, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38266944

RESUMEN

BACKGROUND: Chemotherapy-induced peripheral neuropathy (CIPN) is a serious adverse effect of cisplatin. The current study aimed to determine whether PEGylated nanoliposomal cisplatin can limit CIPN in an animal model. METHODS: Cisplatin-loaded PEGylated liposome nanoparticles (Cis-PL) were produced as a combination of lecithin, cholesterol, and DSPE-mPEG2000 in a molar ratio of 50:45:5 and were characterized by polydispersity index (PDI), zeta potential, Field emission scanning electron microscopy (FESEM) analysis, as well as encapsulation efficiency (EE). Fifteen male rats were provided and randomly divided into 3 groups including Cis-PL group, cisplatin group, and control group. Behavioural tests (hot-plate test and acetone drop test) were used for evaluating CIPN. Moreover, oxidative stress markers and histopathological analysis were applied. Treatment-related toxicity was assessed by haematological analysis as well as liver and renal function tests. RESULTS: Cis-PL had an average particle size of 125.4, PDI of 0.127, and zeta potential of -40.9 mV. Moreover, the Cis-PL exhibited a high EE as well as low levels of leakage rate at 25 °C. In a hot-plate test, paw withdrawal latency was longer in Cis-PL group in comparison to rats treated with cisplatin. A lower number of withdrawal responses was detected during acetone drop test in Cis-PL group than in cisplatin-treated rats. Assessment of oxidative stress markers showed that Cis-PL could improve oxidative stress. Additionally, histopathological assessment demonstrated that the number of satellite cells was significantly reduced in the dorsal root ganglion (DRG) of Cis-PL-treated rats compared with those treated with cisplatin. The cisplatin group had elevated white blood cells counts, reduced platelet counts, and higher levels of bilirubin, ALT (alanine aminotransferase, and AST (aspartate aminotransferase), and creatinine compared with the control group, which was ameliorated in Cis-PL group. CONCLUSIONS: Data from the current study support the previous hypothesis that Cisplatin-loaded PEGylated liposome could be a promising solution for CIPN in the future by modulating oxidative stress and preventing glial cell activation in DRG, suggesting further clinical studies to investigate the efficacy of this agent and its potential application in clinical practice.


Asunto(s)
Antineoplásicos , Enfermedades del Sistema Nervioso Periférico , Ratas , Masculino , Animales , Cisplatino/toxicidad , Liposomas , Acetona , Antineoplásicos/toxicidad , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/patología , Polietilenglicoles/efectos adversos
19.
Mol Neurobiol ; 61(8): 5916-5927, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38252384

RESUMEN

Diabetic and chemotherapy-induced peripheral neuropathies are known for long-term complications that are associated with uncontrolled hyperglycemia and cancer treatment, respectively. Peripheral neuropathy often requires long-term therapy and could persist after treatment provoking detrimental effects on the patient's quality of life. Despite continuous drug discoveries, development of efficient therapies is still needed for the significant management of diabetic and chemotherapy-induced peripheral neuropathy. Exosomes are nanosized extracellular vesicles that show great promise recently in tissue regeneration and injury repair compared to their parent stem cells. Herein, we provided a summary for the use of mesenchymal stem cell-derived exosomes in diabetic and chemotherapy-induced peripheral neuropathy in addition to recent advancements and ways proposed for the enhancement of their efficacy in these diseases.


Asunto(s)
Neuropatías Diabéticas , Exosomas , Células Madre Mesenquimatosas , Enfermedades del Sistema Nervioso Periférico , Exosomas/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Animales , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/terapia , Enfermedades del Sistema Nervioso Periférico/patología , Neuropatías Diabéticas/terapia , Antineoplásicos/efectos adversos
20.
Transl Res ; 270: 24-41, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38556110

RESUMEN

Peripheral neuropathy (PN) is a severe and frequent complication of obesity, prediabetes, and type 2 diabetes characterized by progressive distal-to-proximal peripheral nerve degeneration. However, a comprehensive understanding of the mechanisms underlying PN, and whether these mechanisms change during PN progression, is currently lacking. Here, gene expression data were obtained from distal (sciatic nerve; SCN) and proximal (dorsal root ganglia; DRG) injury sites of a high-fat diet (HFD)-induced mouse model of obesity/prediabetes at early and late disease stages. Self-organizing map and differentially expressed gene analyses followed by pathway enrichment analysis identified genes and pathways altered across disease stage and injury site. Pathways related to immune response, inflammation, and glucose and lipid metabolism were consistently dysregulated with HFD-induced PN, irrespective of injury site. However, regulation of oxidative stress was unique to the SCN while dysregulated Hippo and Notch signaling were only observed in the DRG. The role of the immune system and inflammation in disease progression was supported by an increase in the percentage of immune cells in the SCN with PN progression. Finally, when comparing these data to transcriptomic signatures from human patients with PN, we observed conserved pathways related to metabolic dysregulation across species, highlighting the translational relevance of our mouse data. Our findings demonstrate that PN is associated with distinct site-specific molecular re-programming in the peripheral nervous system, identifying novel, clinically relevant therapeutic targets.


Asunto(s)
Ganglios Espinales , Perfilación de la Expresión Génica , Ratones Endogámicos C57BL , Estado Prediabético , Nervio Ciático , Animales , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Estado Prediabético/metabolismo , Estado Prediabético/genética , Estado Prediabético/patología , Masculino , Nervio Ciático/metabolismo , Nervio Ciático/lesiones , Nervio Ciático/patología , Ratones , Dieta Alta en Grasa/efectos adversos , Transcriptoma , Humanos , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/patología , Enfermedades del Sistema Nervioso Periférico/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda