Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Hepatology ; 62(6): 1858-69, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26126491

RESUMEN

UNLABELLED: Keratins, among other cytoskeletal intermediate filament proteins, are mutated at a highly conserved arginine with consequent severe disease phenotypes due to disruption of keratin filament organization. We screened a kinase inhibitor library, using A549 cells that are transduced with a lentivirus keratin 18 (K18) construct, to identify compounds that normalize filament disruption due to K18 Arg90Cys mutation at the conserved arginine. High-throughput screening showed that PKC412, a multikinase inhibitor, ameliorated K18 Arg90Cys-mediated keratin filament disruption in cells and in the livers of previously described transgenic mice that overexpress K18 Arg90Cys. Furthermore, PKC412 protected cultured A549 cells that express mutant or wild-type K18 and mouse livers of the K18 Arg90Cys-overexpressing transgenic mice from Fas-induced apoptosis. Proteomic analysis of proteins that associated with keratins after exposure of K18-expressing A549 cells to PKC412 showed that nonmuscle myosin heavy chain-IIA (NMHC-IIA) partitions with the keratin fraction. The nonmuscle myosin-IIA (NM-IIA) association with keratins was confirmed by immune staining and by coimmunoprecipitation. The keratin-myosin association is myosin dephosphorylation-dependent; occurs with K8, the obligate K18 partner; is enhanced by PKC412 in cells and mouse liver; and is blocked by hyperphosphorylation conditions in cultured cells and mouse liver. Furthermore, NMHC-IIA knockdown inhibits PKC412-mediated normalization of K18 R90C filaments. CONCLUSION: The inhibitor PKC412 normalizes K18 Arg90Cys mutation-induced filament disruption and disorganization by enhancing keratin association with NM-IIA in a myosin dephosphorylation-regulated manner. Targeting of intermediate filament disorganization by compounds that alter keratin interaction with their associated proteins offers a potential novel therapeutic approach for keratin and possibly other intermediate filament protein-associated diseases.


Asunto(s)
Filamentos Intermedios/genética , Queratinas/metabolismo , Hepatopatías/genética , Mutación , Miosinas/metabolismo , Estaurosporina/análogos & derivados , Animales , Ratones , Ratones Transgénicos , Unión Proteica , Estaurosporina/fisiología
2.
Eur J Pharmacol ; 376(3): 315-20, 1999 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-10448893

RESUMEN

It is well known that inhibition of myosin phosphatase induces smooth muscle contraction in the absence of Ca2+. We characterized the kinase(s) which plays a role in Ca2+-independent, microcystin-LR-induced contraction in permeabilized smooth muscle of the rabbit portal vein. Assessments of various protein kinase inhibitors revealed this kinase(s) (1) was sensitive to staurosporine (1 microM), but resistant to other agents including wortmannin (10 microM), Y-27632 ((R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide+ ++, 100 microM). HA1077 (1-(5-isoquinolinylsulfonyl)-homopiperazine, 100 microM), H-7 (1-(5-isoquinolinylsulfonyl)-2-methylpiperazine, 100 microM), and calphostin C (100 microM), and (2) induced phosphorylation of 20 kDa myosin light chain at serine-19. We concluded that other kinases exist which phosphorylate myosin light chain at serine-19 and induce Ca2+-independent smooth muscle contraction, distinct from Rho-associated kinase, myosin light chain kinase, and protein kinase C.


Asunto(s)
Amidas/farmacología , Inhibidores Enzimáticos/farmacología , Contracción Muscular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Quinasa de Cadena Ligera de Miosina/efectos de los fármacos , Piridinas/farmacología , Factor Rho/efectos de los fármacos , Animales , Masculino , Microcistinas , Contracción Muscular/fisiología , Músculo Liso Vascular/fisiología , Quinasa de Cadena Ligera de Miosina/metabolismo , Péptidos Cíclicos/farmacología , Fosforilación/efectos de los fármacos , Conejos , Factor Rho/metabolismo , Estaurosporina/fisiología , Vasoconstrictores/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda