Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Nature ; 629(8010): 53-57, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447669

RESUMEN

Local and low-redshift (z < 3) galaxies are known to broadly follow a bimodal distribution: actively star-forming galaxies with relatively stable star-formation rates and passive systems. These two populations are connected by galaxies in relatively slow transition. By contrast, theory predicts that star formation was stochastic at early cosmic times and in low-mass systems1-4. These galaxies transitioned rapidly between starburst episodes and phases of suppressed star formation, potentially even causing temporary quiescence-so-called mini-quenching events5,6. However, the regime of star-formation burstiness is observationally highly unconstrained. Directly observing mini-quenched galaxies in the primordial Universe is therefore of utmost importance to constrain models of galaxy formation and transformation7,8. Early quenched galaxies have been identified out to redshift z < 5 (refs. 9-12) and these are all found to be massive (M⋆ > 1010 M⊙) and relatively old. Here we report a (mini-)quenched galaxy at z = 7.3, when the Universe was only 700 Myr old. The JWST/NIRSpec spectrum is very blue (U-V = 0.16 ± 0.03 mag) but exhibits a Balmer break and no nebular emission lines. The galaxy experienced a short starburst followed by rapid quenching; its stellar mass (4-6 × 108 M⊙) falls in a range that is sensitive to various feedback mechanisms, which can result in perhaps only temporary quenching.


Asunto(s)
Galaxias , Factores de Tiempo , Estrellas Celestiales , Medio Ambiente Extraterrestre/química
2.
Nature ; 612(7939): 223-227, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477128

RESUMEN

Gamma-ray bursts (GRBs) are divided into two populations1,2; long GRBs that derive from the core collapse of massive stars (for example, ref. 3) and short GRBs that form in the merger of two compact objects4,5. Although it is common to divide the two populations at a gamma-ray duration of 2 s, classification based on duration does not always map to the progenitor. Notably, GRBs with short (≲2 s) spikes of prompt gamma-ray emission followed by prolonged, spectrally softer extended emission (EE-SGRBs) have been suggested to arise from compact object mergers6-8. Compact object mergers are of great astrophysical importance as the only confirmed site of rapid neutron capture (r-process) nucleosynthesis, observed in the form of so-called kilonovae9-14. Here we report the discovery of a possible kilonova associated with the nearby (350 Mpc), minute-duration GRB 211211A. The kilonova implies that the progenitor is a compact object merger, suggesting that GRBs with long, complex light curves can be spawned from merger events. The kilonova of GRB 211211A has a similar luminosity, duration and colour to that which accompanied the gravitational wave (GW)-detected binary neutron star (BNS) merger GW170817 (ref. 4). Further searches for GW signals coincident with long GRBs are a promising route for future multi-messenger astronomy.


Asunto(s)
Enanismo , Osteocondrodisplasias , Estrellas Celestiales , Humanos , Astronomía , Gravitación
3.
Nature ; 612(7939): 228-231, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477127

RESUMEN

Gamma-ray bursts (GRBs) are flashes of high-energy radiation arising from energetic cosmic explosions. Bursts of long (greater than two seconds) duration are produced by the core-collapse of massive stars1, and those of short (less than two seconds) duration by the merger of compact objects, such as two neutron stars2. A third class of events with hybrid high-energy properties was identified3, but never conclusively linked to a stellar progenitor. The lack of bright supernovae rules out typical core-collapse explosions4-6, but their distance scales prevent sensitive searches for direct signatures of a progenitor system. Only tentative evidence for a kilonova has been presented7,8. Here we report observations of the exceptionally bright GRB 211211A, which classify it as a hybrid event and constrain its distance scale to only 346 megaparsecs. Our measurements indicate that its lower-energy (from ultraviolet to near-infrared) counterpart is powered by a luminous (approximately 1042 erg per second) kilonova possibly formed in the ejecta of a compact object merger.


Asunto(s)
Estrellas Celestiales
4.
Nature ; 600(7890): 621-624, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34937892

RESUMEN

Magnetars are strongly magnetized, isolated neutron stars1-3 with magnetic fields up to around 1015 gauss, luminosities of approximately 1031-1036 ergs per second and rotation periods of about 0.3-12.0 s. Very energetic giant flares from galactic magnetars (peak luminosities of 1044-1047 ergs per second, lasting approximately 0.1 s) have been detected in hard X-rays and soft γ-rays4, and only one has been detected from outside our galaxy5. During such giant flares, quasi-periodic oscillations (QPOs) with low (less than 150 hertz) and high (greater than 500 hertz) frequencies have been observed6-9, but their statistical significance has been questioned10. High-frequency QPOs have been seen only during the tail phase of the flare9. Here we report the observation of two broad QPOs at approximately 2,132 hertz and 4,250 hertz in the main peak of a giant γ-ray flare11 in the direction of the NGC 253 galaxy12-17, disappearing after 3.5 milliseconds. The flare was detected on 15 April 2020 by the Atmosphere-Space Interactions Monitor instrument18,19 aboard the International Space Station, which was the only instrument that recorded the main burst phase (0.8-3.2 milliseconds) in the full energy range (50 × 103 to 40 × 106 electronvolts) without suffering from saturation effects such as deadtime and pile-up. Along with sudden spectral variations, these extremely high-frequency oscillations in the burst peak are a crucial component that will aid our understanding of magnetar giant flares.


Asunto(s)
Estrellas Celestiales , Atmósfera
5.
Nature ; 613(7943): 251, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36627423
6.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(1): 86-99, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38044129

RESUMEN

The tremendous tidal force that is linked to the supermassive black hole (SMBH) at the center of our galaxy is expected to strongly subdue star formation in its vicinity. Stars within 1'' from the SMBH thus likely formed further from the SMBH and migrated to their current positions. In this study, spectroscopic observations of the star S0-6/S10, one of the closest (projected distance from the SMBH of ≈0''.3) late-type stars were conducted. Using metal absorption lines in the spectra of S0-6, the radial velocity of S0-6 from 2014 to 2021 was measured, and a marginal acceleration was detected, which indicated that S0-6 is close to the SMBH. The S0-6 spectra were employed to determine its stellar parameters including temperature, chemical abundances ([M/H], [Fe/H], [α/Fe], [Ca/Fe], [Mg/Fe], [Ti/Fe]), and age. As suggested by the results of this study, S0-6 is very old (≳10 Gyr) and has an origin different from that of stars born in the central pc region.


Asunto(s)
Galaxias , Estrellas Celestiales , Temperatura
7.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(3): 190-233, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38462501

RESUMEN

The current understanding of the mechanism of core-collapse supernovae (CCSNe), one of the most energetic events in the universe associated with the death of massive stars and the main formation channel of compact objects such as neutron stars and black holes, is reviewed for broad readers from different disciplines of science who may not be familiar with the object. Therefore, we emphasize the physical aspects than the results of individual model simulations, although large-scale high-fidelity simulations have played the most important roles in the progress we have witnessed in the past few decades. It is now believed that neutrinos are the most important agent in producing the commonest type of CCSNe. The so-called neutrino-heating mechanism will be the focus of this review and its crucial ingredients in micro- and macrophysics and in numerics will be explained one by one. We will also try to elucidate the remaining issues.


Asunto(s)
Neutrones , Estrellas Celestiales
8.
Nature ; 602(7898): 583-584, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35197613
9.
Nature ; 542(7642): 456-460, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28230125

RESUMEN

One aim of modern astronomy is to detect temperate, Earth-like exoplanets that are well suited for atmospheric characterization. Recently, three Earth-sized planets were detected that transit (that is, pass in front of) a star with a mass just eight per cent that of the Sun, located 12 parsecs away. The transiting configuration of these planets, combined with the Jupiter-like size of their host star-named TRAPPIST-1-makes possible in-depth studies of their atmospheric properties with present-day and future astronomical facilities. Here we report the results of a photometric monitoring campaign of that star from the ground and space. Our observations reveal that at least seven planets with sizes and masses similar to those of Earth revolve around TRAPPIST-1. The six inner planets form a near-resonant chain, such that their orbital periods (1.51, 2.42, 4.04, 6.06, 9.1 and 12.35 days) are near-ratios of small integers. This architecture suggests that the planets formed farther from the star and migrated inwards. Moreover, the seven planets have equilibrium temperatures low enough to make possible the presence of liquid water on their surfaces.


Asunto(s)
Planetas , Estrellas Celestiales , Exobiología , Medio Ambiente Extraterrestre/química , Temperatura , Agua/análisis , Agua/química
10.
Nature ; 544(7650): 333-336, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28426003

RESUMEN

M dwarf stars, which have masses less than 60 per cent that of the Sun, make up 75 per cent of the population of the stars in the Galaxy. The atmospheres of orbiting Earth-sized planets are observationally accessible via transmission spectroscopy when the planets pass in front of these stars. Statistical results suggest that the nearest transiting Earth-sized planet in the liquid-water, habitable zone of an M dwarf star is probably around 10.5 parsecs away. A temperate planet has been discovered orbiting Proxima Centauri, the closest M dwarf, but it probably does not transit and its true mass is unknown. Seven Earth-sized planets transit the very low-mass star TRAPPIST-1, which is 12 parsecs away, but their masses and, particularly, their densities are poorly constrained. Here we report observations of LHS 1140b, a planet with a radius of 1.4 Earth radii transiting a small, cool star (LHS 1140) 12 parsecs away. We measure the mass of the planet to be 6.6 times that of Earth, consistent with a rocky bulk composition. LHS 1140b receives an insolation of 0.46 times that of Earth, placing it within the liquid-water, habitable zone. With 90 per cent confidence, we place an upper limit on the orbital eccentricity of 0.29. The circular orbit is unlikely to be the result of tides and therefore was probably present at formation. Given its large surface gravity and cool insolation, the planet may have retained its atmosphere despite the greater luminosity (compared to the present-day) of its host star in its youth. Because LHS 1140 is nearby, telescopes currently under construction might be able to search for specific atmospheric gases in the future.


Asunto(s)
Medio Ambiente Extraterrestre/química , Planetas , Estrellas Celestiales , Temperatura , Exobiología , Agua/análisis , Agua/química
11.
Nature ; 612(7939): 213-214, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477124
12.
Nature ; 612(7939): 363-366, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477136
13.
Proc Natl Acad Sci U S A ; 117(35): 21008-21010, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32817482

RESUMEN

The Late Devonian was a protracted period of low speciation resulting in biodiversity decline, culminating in extinction events near the Devonian-Carboniferous boundary. Recent evidence indicates that the final extinction event may have coincided with a dramatic drop in stratospheric ozone, possibly due to a global temperature rise. Here we study an alternative possible cause for the postulated ozone drop: a nearby supernova explosion that could inflict damage by accelerating cosmic rays that can deliver ionizing radiation for up to [Formula: see text] ky. We therefore propose that the end-Devonian extinctions were triggered by supernova explosions at [Formula: see text], somewhat beyond the "kill distance" that would have precipitated a full mass extinction. Such nearby supernovae are likely due to core collapses of massive stars; these are concentrated in the thin Galactic disk where the Sun resides. Detecting either of the long-lived radioisotopes [Formula: see text] or [Formula: see text] in one or more end-Devonian extinction strata would confirm a supernova origin, point to the core-collapse explosion of a massive star, and probe supernova nucleosynthesis. Other possible tests of the supernova hypothesis are discussed.


Asunto(s)
Radiación Cósmica/efectos adversos , Extinción Biológica , Fósiles/historia , Biodiversidad , Medio Ambiente Extraterrestre/química , Historia Antigua , Estrellas Celestiales
14.
Ann Sci ; 80(3): 199-231, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36800934

RESUMEN

While the link between navigation and astronomy is quite evident and its history has been extensively explored, the prognosticatory element included in astronomical knowledge has been almost completely left out. In the early modern world, the science of the stars also included prognostication known today as astrology. Together with astronomical learning, navigation also included astrology as a means to predict the success of a journey. This connection, however, has never been adequately researched. This paper makes the first broad study of the tradition of astrology in navigation as well as its role in early modern globalization. It shows how astrological doctrine had its own tools for nautical prognostication. These could be used when dealing with the uncertainty of reaching the desired destination, to inquire about the condition of a loved one, or an important cargo. It was widely used, both in time and geographical context, by navigators and cosmographers for weather forecasting and elections for the start of a successful voyage.


Asunto(s)
Astrología , Estrellas Celestiales , Astronomía , Conocimiento , Política
15.
Nature ; 600(7888): 227-228, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34880431
16.
Nature ; 536(7617): 437-40, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27558064

RESUMEN

At a distance of 1.295 parsecs, the red dwarf Proxima Centauri (α Centauri C, GL 551, HIP 70890 or simply Proxima) is the Sun's closest stellar neighbour and one of the best-studied low-mass stars. It has an effective temperature of only around 3,050 kelvin, a luminosity of 0.15 per cent of that of the Sun, a measured radius of 14 per cent of the radius of the Sun and a mass of about 12 per cent of the mass of the Sun. Although Proxima is considered a moderately active star, its rotation period is about 83 days (ref. 3) and its quiescent activity levels and X-ray luminosity are comparable to those of the Sun. Here we report observations that reveal the presence of a small planet with a minimum mass of about 1.3 Earth masses orbiting Proxima with a period of approximately 11.2 days at a semi-major-axis distance of around 0.05 astronomical units. Its equilibrium temperature is within the range where water could be liquid on its surface.


Asunto(s)
Planetas , Estrellas Celestiales , Medio Ambiente Extraterrestre/química , Rotación , Temperatura , Agua/análisis , Agua/química
17.
Nature ; 565(7739): 300-301, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30651620
18.
Proc Natl Acad Sci U S A ; 114(26): 6689-6693, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28611223

RESUMEN

We present a simple model for estimating the probability of interplanetary panspermia in the recently discovered system of seven planets orbiting the ultracool dwarf star TRAPPIST-1 and find that panspermia is potentially orders of magnitude more likely to occur in the TRAPPIST-1 system compared with the Earth-to-Mars case. As a consequence, we argue that the probability of abiogenesis is enhanced on the TRAPPIST-1 planets compared with the solar system. By adopting models from theoretical ecology, we show that the number of species transferred and the number of life-bearing planets are also likely to be higher because of the increased rates of immigration. We propose observational metrics for evaluating whether life was initiated by panspermia on multiple planets in the TRAPPIST-1 system. These results are also applicable to habitable exoplanets and exomoons in other planetary systems.


Asunto(s)
Vida , Planetas , Estrellas Celestiales
19.
Nature ; 504(7479): 268-71, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24336285

RESUMEN

The increase in solar luminosity over geological timescales should warm the Earth's climate, increasing water evaporation, which will in turn enhance the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can 'run away' until the oceans have completely evaporated. Through increases in stratospheric humidity, warming may also cause evaporative loss of the oceans to space before the runaway greenhouse state occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated using one-dimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of the Earth's climate. Here we use a three-dimensional global climate model to show that the insolation threshold for the runaway greenhouse state to occur is about 375 W m(-2), which is significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmospheres. In contrast with previous studies, we find that clouds have a destabilizing feedback effect on the long-term warming. However, subsident, unsaturated regions created by the Hadley circulation have a stabilizing effect that is strong enough to shift the runaway greenhouse limit to higher values of insolation than are inferred from one-dimensional models. Furthermore, because of wavelength-dependent radiative effects, the stratosphere remains sufficiently cold and dry to hamper the escape of atmospheric water, even at large fluxes. This has strong implications for the possibility of liquid water existing on Venus early in its history, and extends the size of the habitable zone around other stars.


Asunto(s)
Planeta Tierra , Efecto Invernadero , Planetas , Actividad Solar , Estrellas Celestiales , Atmósfera/análisis , Atmósfera/química , Exobiología , Humedad , Modelos Teóricos , Reproducibilidad de los Resultados , Temperatura , Venus , Agua/análisis , Ciclo Hidrológico , Viento
20.
Artículo en Inglés | MEDLINE | ID: mdl-30643093

RESUMEN

Modern sky surveys using large ground-based telescopes have discovered a variety of celestial objects. Prominent structures such as galaxies and galaxy clusters are found virtually everywhere, and their collective distribution forms the large-scale structure of the Universe. It is thought that all of the rich content in the present-day Universe developed through gravitational amplification of primeval density fluctuations generated in the very early phase of cosmic evolution. The standard theoretical model based on an array of recent observations accurately predicts the physical conditions in the early Universe, and powerful super-computers allow us to simulate in detail the formation and evolution of cosmic structure to the present epoch. We review recent progress in the study on the first generation of stars and blackholes. We focus on the physics of early structure formation, while identifying several key issues and open questions. Finally, we discuss prospects for future observations of the first stars, galaxies and blackholes.


Asunto(s)
Estrellas Celestiales , Evolución Planetaria , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda